
70740-7475/02/$17.00 © 2002 IEEEJuly–August 2002

Designing cost-sensitive embedded products

such as cellular phones and portable media play-

ers requires maximizing a platform’s performance

while minimizing energy use. For example, if two

software implementations of an MPEG-4 decoder

perform quite differently on the same target plat-

form, clearly the more efficient version will result

in a more cost-effective product.

Developing efficient embedded software

requires a wide range of knowledge and skills.

Programmers must have a good understanding

not only of the target algorithms and target

processor’s intricacies, but also of a program’s

overall performance behavior. For example, if a

program execution incurs extra performance

overheads from resource conflicts, such as con-

flict cache misses, programmers should identi-

fy and eliminate the problems for maximum

performance. In addition, programmers should

be able to remove hot spots that could degrade

a program’s overall performance.

Unfortunately, even experienced program-

mers have difficulty predicting and identifying

hot spots and performance bottlenecks.

Therefore, designing highly efficient embedded

programs requires efficient tools to support per-

formance monitoring and tuning of embedded

software. Several such tools are available for

various embedded processors. For example,

profilers such as MULTI can optimize program

execution time.1

With the recent, explosive market growth of

mobile embedded devices, low power con-

sumption has become an important design

constraint. To effectively meet the energy con-

sumption requirements of embedded systems,

programmers need to understand the energy

and power consumption of embedded systems

as a high-priority monitoring target. Although

vendors offer several low-power design tools,

most are specialized for analyzing the energy

and power consumption of embedded systems

in lower levels of design abstraction such as cir-

cuit or gate levels, which makes them unsuit-

able for embedded software development.2

Energy-monitoring tool
requirements

When developing low-power embedded

programs, programmers have specific require-

ments for energy-monitoring tools.

� The tool should produce accurate analysis

results reasonably fast. The tool should give

accurate results so that programmers can

make correct decisions for reducing a pro-

gram’s energy consumption. Further, because

Energy-Monitoring Tool
for Low-Power
Embedded Programs

SES is a highly integrated tool that delivers cycle-

by-cycle power consumption data for optimizing

embedded programs.

Dongkun Shin, Hojun Shim, Yongsoo Joo,
Han-Saem Yun, Jihong Kim, and Naehyuck Chang
Seoul National University

programmers repeatedly revise embedded

programs multiple times to satisfy design con-

straints, the tool must produce the analysis

results quickly.

� Designers should seamlessly integrate the

energy-monitoring tool with functional

debugging tools such as the GNU project

debugger. Because programmers use func-

tional debuggers for a variety of program

development in embedded systems, the

energy-monitoring tool should be easily

integrated with the debugger. Further, the

debugging and energy-monitoring tools

should share the same user interface so that

programmers of embedded systems don’t

need to learn a new user interface.

� The energy-monitoring tool should present

its results in a user-friendly format. Because

its users are unfamiliar with power and ener-

gy issues, the tool should display the moni-

toring results at the program-source level, a

comfortable abstraction level for program-

mers of embedded systems.

� The energy-monitoring tool should not

require hardware or software resources,

such as extra measurement equipment, that

are not commonly available to the average

embedded-systems programmer. For exam-

ple, tool designers should not assume that

each programmer has access to a high-end

digital multimeter.

Drawbacks of current estimation
tools

We categorize existing energy estimation

and monitoring techniques based on the two

methods a tool uses to acquire energy con-

sumption information: simulations or mea-

surements.

Programmers find simulation-based energy

estimation techniques convenient if appropri-

ate simulation models are available.2-5 For

example, a power-analysis tool such as

QuickPower can accurately estimate the ener-

gy consumption in the lower abstraction levels,

such as the switch or gate levels.2 These tools

are reasonably accurate in predicting power

consumption and are useful during hardware

development. However, they are not appropri-

ate for embedded software development

because they are too expensive and slow for

average programmers to find them useful.

Power analysis tools present energy estimation

results for major hardware blocks of the target

system, such as an ALU block, but program-

mers of embedded systems have difficulty link-

ing these results with the program source code.

For low-power software development, instruc-

tion- or architecture-level energy simulators such

as Wattch and SimplePower might be better

solutions.3,4 These simulators estimate the power

consumption of microprocessor-based systems

more quickly and at a lower cost than lower-

level power analysis tools. However, these tools

suffer from low estimation accuracy, which

makes meaningful energy tuning difficult. For

example, Ghiasi et al. show that different energy

simulators can produce contradictory results for

the same application running on the same hard-

ware platform.6

The second category of energy estimation

techniques actually involves measuring a sys-

tem’s energy or power consumption.7 In gener-

al, measured energy consumption results are

quite accurate. However, this estimation tech-

nique doesn’t easily obtain correct measure-

ments because digital systems typically

consume energy in spikes of usage at frequen-

cies of hundreds of MHz. Therefore, these actu-

al measurements might not be accurate when

the measurement equipment cannot sample the

range of power data at very high rates.

Existing measurement-based estimation

techniques require measurement equipment

that most programmers of embedded systems

wouldn’t normally have. And even if program-

mers of embedded systems have access to this

equipment, they might lack the skills to prop-

erly operate it.

Energy estimation and analysis tool
We developed the Seoul National University

energy scanner (SES)to overcome these

drawbacks. SES is a highly integrated, energy-

monitoring tool that collects power consump-

tion data in a cycle-by-cycle resolution and

associates the collected power data with C pro-

gram and assembly language source code. SES

does not require any additional measurement

equipment because the power measurement

Embedded Systems

8 IEEE Design & Test of Computers

circuitry is embedded in its board.8 By present-

ing energy-monitoring results at the C source or

assembly language levels using the GNU pro-

ject debugger (GDB)-like user interface, SES

helps users identify potential energy hot spots

in embedded programs. The current version of

SES works for ARM7TDMI-processor-based

embedded systems. However, the proposed

power measurement technique and its overall

energy-monitoring methodology are both plat-

form independent.

SES overview
SES has three logical modules: energy esti-

mation, energy analysis, and user interface.

Figure 1 shows the overall SES architecture.

The energy estimation module consists of

the energy measurement board and the mem-

ory energy estimator. The board is a peripheral

component interconnect (PCI) bus expansion

card that uses a real-time profile acquisition

module to collect a target application’s cycle-

accurate system traces. The PCI local-bus inter-

face transfers the collected system traces to the

host PC, which runs a Linux operating system.

The energy measurement board includes

the ARM7TDMI processor core with its con-

troller, profile acquisition module, program

memory, and PCI controller, as Figure 2 (next

page) shows. The profile acquisition module

consists of the cycle-accurate energy measure-

ment circuit, acquisition memory, and profile

controller. The energy measurement board

works as an ARM7TDMI emulator equipped

with the cycle-accurate energy measurement

circuit. A system trace collected from the board

includes a cycle-level energy trace of the

processor core and a cycle-level memory trace.

The memory energy estimator running on

the host PC is a software memory simulator

with cycle-accurate energy models for various

caches, memory buses, and memory devices.

The measurement board transfers the memory

traces as inputs to the memory energy estima-

tor and the estimator produces the cycle-level

energy profile of the off-chip memory system

and cache memory.

The energy analysis module matches the

9July–August 2002

Host PC
Host PC

Energy analysis module

User interface

Hardware-software PCI interface

Execution and energy information

CompilerC program

CPU energy analyzer
Memory energy

estimator

 Energy Measurement Board
 (ARM7TDMI)

Energy measurement board
(ARM7TDMI)

Profile
 acquisition moduleController

Profile-matching module

Memory

Program
loader

Control
input

Energy
estimation

module

Figure 1. SES architectural overview including the user interface, energy analysis module, and

energy estimation module.

cycle-level energy profile of the target processor

and memory system to the program’s source

code. The module associates the energy profile

with the source code at three different levels: C

source, assembly language, and C function.

Users can interact with SES using the stan-

dard GDB-like, graphical user interface shown

in Figure 3. The main display window lists the

source code of the program that SES is moni-

toring. The menu bar shows various functions

useful for monitoring a program’s energy pro-

file. Through the menu bar, users can compile

the source code, specify the profile region, set

breakpoints, and download the executable

binary to the energy measurement board. The

program segment between lines 27 and 32 in

Figure 3a is the current energy profile region.

Users can select a display that shows one of

three supported modes: C source, assembly, or

mixed mode with both shown together.

For function-level energy monitoring, the

display screen shows the energy consumption

profile using the energy distribution graph,

shown in Figure 3a. Programmers find this

graph useful for quickly identifying a program’s

energy hot spots.

Energy information in Figure 3a is associat-

ed with each C statement in the C source dis-

play mode and each assembly instruction in

the assembly display mode. The energy infor-

mation consists of the following data: total CPU

core energy consumption, total memory system

energy consumption, and cache miss rate. For

example, line number 32 of Figure 3a indicates

that the C statement consumed 12.38 nJ at the

CPU core and 18.24 nJ at the memory system.

Energy estimation module
SES estimates a target application’s energy

consumption in a hybrid fashion. SES directly

measures the CPU core’s energy consumption

while it uses a memory-power model to calcu-

late the memory system’s energy consumption

from collected memory traces.

Energy measurement board. In addition to the

target ARM7TDMI embedded processor and pro-

gram memory, the energy measurement board

includes a profile acquisition module. This mod-

ule measures the cycle-by-cycle energy con-

sumed by the target embedded processor and

collects cycle-by-cycle memory access traces.

Because one of SES’s main roles is to quickly

identify energy hot spots, we designed the ener-

gy measurement board to gather sufficient sys-

tem information. With this information, SES can

accurately restructure a detailed snapshot of sys-

tem activity. Based on the collected information,

IEEE Design & Test of Computers

PCI
controller

ARM7TDMI
controller

Program
memory

ARM7TDMI
core

Measurement
circuit

Profile
acquisition

module

Profile
controller

Acquisition
memory

Figure 2. SES energy measurement board, including the ARM7TDMI processor core.

Embedded Systems

10

SES can correctly attribute appropriate energy

costs to each instruction or C statement.

We based SES’s CPU energy profiling on an

energy measurement technique developed by

Chang et al.8 Unlike conventional energy mea-

surement techniques based on the voltmeter or

digital oscilloscope, this technique can mea-

sure energy consumption accurately with a

small number of samples.

Conventional energy measurement tech-

niques rely on instrumentation of the voltage

across a series resistor in the power supply

line. The power spectrum of the voltage across

the resistor is dominant up to 1/2tf, where tf is

the shortest fall time of the signal, often 2 ns or

less. Thus, measurement equipment should

sample the voltage at a very high rate for rea-

sonable accuracy. For complex systems, the

high sampling requirement makes both the

energy measurement and energy analysis steps

more difficult.

In contrast, SES achieves similar measure-

ment accuracy with fewer samples. SES mea-

sures the exact amount of energy consumption

by instrumentation of the charge transfer, as

Figure 4 shows. The switch pairs, connected by

the dashed lines, repeat on and off actions alter-

nately. The power supply charges the C1 and C2

capacitors (which have the same capacitance)

with Vs during a clock cycle, and the processor

discharges them during the next cycle. Because

Ci initially stores the energy of 1/2CiVCi
2, we can

calculate the difference between the initial

energy and the remaining energy stored in Ci to

estimate the energy consumed at

the clock cycle.

Figure 5 (next page) shows the

difference between conventional

power-measurement techniques

and the SES technique. Conven-

tional techniques use the volt-

meter, which can only measure

the average power consumption,

or the high-bandwidth digital oscil-

loscope, which can capture the

voltage envelope. The high-band-

width digital oscilloscope, which

is more accurate than the volt-

meter, can be error-prone in

acquiring the voltage envelope—

11July–August 2002

Energy distribution graph
(by procedures)

Summary window for
the energy profile
of selected region

Menu bar

Break point

Source area

Energy information
(CPU energy

consumption, memory
energy consumption,
and cache miss rate)

Selected region

(b)

(a)

Figure 3. Screen shot (a) and schematic diagram (b) of

the SES user interface.

PC

Switch
control

Real-time
acquisition

Field-
programmable

gate array
vector

generator

Target
processor

Power supply

Nonoverlapping node

+

−

VS
VM

VC1

VC2

C2

C1

ϕ1

ϕ2

Figure 4. Real-time, cycle-accurate, energy measurement circuit.

and thus the energy consumption—because

the power spectrum is usually significant up to

hundreds of MHz, as Figure 5a shows.

On the other hand, the SES technique

requires only two samples per clock period, as

Figure 5b shows. Because SES requires much

fewer samples to achieve accuracy compara-

ble to existing techniques, we can build an

affordable data acquisition system for energy

measurement in the field using commercial off-

the-shelf components. SES requires fewer sam-

ples because the capacitor voltage’s transient

state does not affect the measurement process;

the technique finds only the initial and final

voltages meaningful. SES eliminates the noise

more easily with only two samples. In addition,

we compensate for the effect of the on- and off-

chip bypass capacitors during measurement,

both of which are connected in parallel to the

power supply and ground rails.

Memory energy estimator. Instead of directly

measuring the memory system’s energy con-

sumption, SES uses a trace-driven memory

energy simulator. The simulator estimates mem-

ory energy consumption with memory traces

and memory energy models. The energy mea-

surement board collects memory traces and

transfers them to the memory energy simulator.

A memory trace consists of address bus, data

bus, and control signals sampled at each cycle.

SES takes a hybrid approach to estimating

memory power consumption. Manufacturers of

embedded-systems products commonly devel-

op a family of products rather than a single

product. Products in the same family line are

usually based on the same embedded micro-

processor but have different memory configu-

rations. A hybrid approach is more useful for

embedded systems because a single energy

measurement board can be used across the

complete line by simply modifying the memo-

ry system configuration. Further, unlike soft-

ware-based CPU power estimation, a software

power model can accurately estimate a memo-

ry’s energy consumption.

The memory energy simulator includes a

cache simulator and estimates the memory sys-

tem’s energy consumption based on the cur-

rent configuration of the cache, memory, and

bus. The cache simulator divides memory

traces into cache hits and misses. SES then uses

the cache-miss memory traces to estimate the

energy consumption of the external memory

system. The existing literature has buildable

examples of software power models for the

cache, external memory, and bus.9

A user can easily change the cache config-

uration, memory, or bus by modifying the cor-

responding configuration parameters. By

exploiting this reconfiguration function of the

memory energy estimator, programmers can

use SES in exploring the design space of ener-

gy-efficient memory systems. The cache simu-

lator design assumes separate instruction and

data caches. The user can configure the index

size, associativity, cache block size, and the

cache’s replacement policy. Similarly, the

memory controller can configure the bus clock

frequency, burst length,CAS latency, burst

refresh, precharge mode, and so forth. For the

bus, the user can configure the bus drivers, dri-

ver I/O capacitance, transmission line capaci-

tance, and load capacitance.

IEEE Design & Test of Computers

(a)

Clock

FSM

ϕ1
ϕ2

iDD

VM

VC1

VC2

(b)

Figure 5. Conventional power measurement compared

with new cycle-accurate energy measurement using

switched capacitors: sampling points of the conven-

tional (a) and new cycle-accurate (b) techniques.

Embedded Systems

12

Energy analysis module
To provide users with source-level energy

consumption information, SES matches the

cycle-level energy profile to the source code at

three different levels—assembly, C source, and

function—in the energy analysis module.

Because the ARM7TDMI processor has a

three-stage pipelineinstruction fetch, instruc-

tion decode, and executewe found associat-

ing the energy measurement data with the

corresponding instruction to be a little tricky.

For example, when the energy measurement

board samples a single energy consumption

data at time t, the processor executes three dif-

ferent instructions simultaneously. Because it

is impossible to accurately divide the measured

energy cost among three executed instructions,

SES attributes the measured energy to the

instruction in the execute stage. As the instruc-

tion fetch and instruction decode stages work

similarly regardless of the instruction types

being fetched or decoded, we believe that our

approach is reasonable. SES handles more

complex instructions—like multicycle, memo-

ry-access, and branch—slightly differently in

attributing the energy profile to the instructions.

After matching the energy profile to assem-

bly instructions, SES uses the assembly-level

energy information to construct the C-source-

and function-level energy information. When a

compiler heavily optimizes a program—such

as under the-O2 option in the armcc compil-

er—an assembly instruction might not be

matched to a single C statement. In this case, a

group of assembly instructions is associated

with a region of multiple C statements.

Energy monitoring examples
Two energy monitoring examples demon-

strate how designers can use SES to develop ener-

gy-aware software. Both case studies assume that

the ARM7TDMI core runs at 266 MHz with the

instruction and data caches each configured as

4K-byte, two-way, set-associative caches.

MPEG-4 energy optimization
To show how programmers can use SES for

optimizing an embedded application’s energy

efficiency, we started with a video-decoder pro-

gram adopted from the MPEG-4 video verifica-

tion model. The video decoder implements only

the simple profile and does not support shaped

video objects. SES monitoring results showed that

the original version of the MPEG-4 video decoder,

denoted as Porig, consumed 225,353 µJ and took

33 million cycles to decode a sequence of four

picture frames (an IPPP). Figure 6a (next page)

shows the energy distribution of Porig using the

per-procedure energy distribution graph.

The idct procedure consumes a significant

amount of energy. An analysis of the caller-callee

relationship verifies that the next four largest

energy-consuming procedures—_dadd, _fp

_mult_common, _fp_addsub_comm, and

_dmul—are library routines, all of which simu-

late floating-point operations. These routines

were necessary because the ARM7TDMI proces-

sor did not have a separate floating-point

coprocessor.

As Figure 6b shows, to reduce the overhead

of simulating floating-point operations using

library routines, the second version of the MPEG-

4 video decoder, denoted Pfixed, implemented a

fixed-point version of the idct module. This

MPEG version reduced energy consumption of

the idct procedure by 72.8%, from 37,756 µJ to

10,264 µJ. This version reduced the total energy

consumption by 61.8% compared to Porig.

In Pfixed, however, the programmer moves

energy hot spots to the predict, addpre-

dict, and clearblock procedures. The

predict and addpredict procedures

implement motion compensation, while the

clearblock procedure implements array ini-

tialization for the coded image blocks. SES’s

monitoring of these routines showed that they

introduce many unnecessary cache misses from

redundant copy and initialization operations.

The third version of the video decoder,

Pmem_opt, removed these redundant operations. As

Figure 6c shows, this version consumed 20% less

than Pfixed. The predict and addpredictpro-

cedures of Pmem_opt consumed 35% less than Pfixed.

Pmem_opt merged the predict and addpredict

routines into the predict routine. The energy

consumption of the clearblock procedure is

reduced by 50% as well. The getblock proce-

dure’s energy consumption increased because

this version moved some of the clearblock

procedure’s operations to the getblock pro-

13July–August 2002

cedure. Doing so, however,

reduced the total energy consump-

tion of both the clearblock and

getblock procedures.

Reducing loop overhead further

improved the energy efficiency of

several procedures. Figure 7 shows

partial energy-monitoring results of

the predict procedure of Pmem_opt.

SES annotates each C statement

with the CPU energy consumption,

memory energy consumption, and

cache miss rate. In Figure 7, assem-

bly instructions at addresses

0xdd0, 0xdd4, and 0xdd8 corre-

spond to the for statement of line

641. These instructions consume

425,928 nJ, which is about 7% of the

selected region’s total energy con-

sumption. Because the loop body,

line 642, only has 10 instructions,

three loop-overhead instructions

consume a relatively large amount

of energy. In the fourth version of

the MPEG-4 decoder, Ploop_opt, we

unrolled several loops, such as the

one in the predict procedure.

This version consumes 14% less

energy than Pmem_opt.

The SES monitoring results for

all four versions of the MPEG-4

video decoder program showed

that the memory system consumes

a large portion of the total energy.

To see whether program size

affects energy consumption, we

compiled the Ploop_opt version of the

MPEG-4 video decoder program for

the Thumb instructions, denoted

as PThumb. Although this change

decreased the program size of

PThumb by 4%, the energy consump-

tion increased by 28% compared to

Ploop_opt. An increase in execution

time of 38% caused PThumb’s

increased energy use compared to

Ploop_opt. Table 1 shows that the final

version, Ploop_opt, consumes only

26.4% of the energy that Porig con-

sumes.

IEEE Design & Test of Computers

0 5 10 15 20 25 30 35 40

others
__fp_norm_op1

iquant_intra
getblock
copyblk

getpicture
copyref

clearblock
__fp_e2d
addpred

predict
_dmul

__fp_addsub_common
__fp_mult_common

_dadd
idct

P
ro

ce
du

re
s

Energy consumption (mJ)

0 5 10 15 20

others
getmvdata

iquant_non_intra
getbits

showbits
getbits1

fillbfr
iquant_intra

getblock
copyblk

getpicture
copyref

clearblock
idct

addpred
predict

P
ro

ce
du

re
s

Energy consumption (mJ)

(a)

(b)

0 5 10 15 20

others
init

flushbits
iquant_non_intra

showbits
getbits

fillbfr
getbits1

iquant_intra
getpicture

copyblk
clearblock

getblock
copyref

idct
predict

P
ro

ce
du

re
s

Energy consumption (mJ)

CPU

Memory

CPU

Memory

CPU

Memory

(c)

Figure 6. Energy distribution for the original MPEG-4 video decoder program,

Porig (a); the second version of the decoder program, Pfixed (b); and the third

version, Pmem_opt (c).

Embedded Systems

14

Energy characterization of
embedded Linux

As embedded applications

become more complex, many run

on top of real-time operating sys-

tems. We use SES to characterize

the energy consumption of

µClinux, an embedded Linux oper-

ating system.10 Although the litera-

ture contains information about

the energy characterization of

small operating systems such as

µC/OS and eCos, to the best of our

knowledge, this is the first analysis

of embedded Linux’s energy con-

sumption.11,12

We ported the µClinux operat-

ing system, a variant of an embed-

ded Linux, to the SES board. We

focused on characterizing the ener-

gy consumption of µClinux system

calls and standard library functions,

as Table 2 (next page) shows.

These results can help programmers and

application developers select the most energy-

efficient system calls or library functions for

implementing energy-efficient programs on top

of embedded operating systems. For example,

in Table 2, systems can use both open and

fopen before accessing a particular file.

Because the fopen library function consumes

about 3.11 times more energy than the open

system call, choosing the open system call is a

more energy-efficient implementation, but it

might require more custom code. Making this

type of optimization decision requires an under-

standing of the exact energy gains from choos-

ing lower-level operating-system primitives.

Unlike those listed in Table 2, some system

calls and library functions—including str-

cpy, atoi, and malloc—have energy con-

sumption dependent on the current system sta-

tus as well as input arguments. For strcpy

and atoi, energy consumption linearly

depends on the input parameter value—that is,

string length. SES can represent the energy con-

sumption of strcpy and atoi as a function

of input parameters as follows:

E(strcpy, n) = 42.62 nJ × n + 334.58 nJ

E(atoi, n) = 40.29 nJ × n + 269.71 nJ

where n is the length of the input string to str-

cpy and atoi.

The malloc function has a more compli-

cated energy consumption behavior because

the current status of memory allocation, as well

15July–August 2002

Figure 7. Partial energy monitoring results of the predict procedure of Pmem_opt.

Table 1. The energy consumption of the five versions of the MPEG-4 video decoder program.

Program Energy (nJ) Cycles Normalized energy Optimization policy

Porig 225,353,964 33,190,594 1 No optimization

Pfixed 86,062,153 13,306,996 0.382 Fixed-point operations

Pmem_opt 69,586,309 10,956,664 0.309 Redundant-array copies and initializations removed

Ploop_opt 59,584,068 9,535,632 0.264 Loop unrolling

PThumb 76,531,291 12,348,761 0.340 Thumb instructions

as the input parameter value, affect the energy

consumed by malloc. SES characterizes the

energy consumption of malloc as

E(malloc,n) = 3.87 nJ × n + 4825.68 nJ +

= E(get_free_page) × k

= 3.87 nJ × n + 4825.68 nJ +

= 2239.75 nJ × k

where the get_free_page function allo-

cates a memory page, n denotes the size of the

requested memory block, and k denotes the

number of get_free_page invocations dur-

ing the malloc execution. The malloc func-

tion in µClinux allocates a requested memory

block from the free pages previously allocated

by the get_free_page function. If no free

page is available, the malloc function calls

the get_free_page function and allocates

a new free page from system memory.

The energy characterization equation for

malloc is difficult to use because it cannot

determine the exact value of k in advance—k

depends on the free pages’ status. An alternative

is to estimate the upper bound of k. When the

size n of a requested memory block is smaller

than page size p, the malloc function calls the

get_free_page function at most once. When

size n of a requested memory block is larger than

page size p, the system calls the function at most

n/p times. Therefore, the value of n/p can

bound the value of k. Using the upper bound on

k, we can bound the energy the malloc func-

tion consumes as follows:

E(malloc, n)≤ 3.87 nJ × n + 4825.68 nJ +

2239.75 nJ × n/p

TOOLS LIKE SES greatly simplify the chal-

lenging task of developing low-power embed-

ded programs. With the fast-growing mobile

market, we expect to see similar software devel-

opment tools that focus on reducing the ener-

gy consumption of embedded programs.

The current version of SES focuses on the

energy consumption of the computation func-

tions of embedded software. We plan to extend

SES for the more networked mobile devices

coming to market. We will develop SES into a

complete system-level tool by monitoring the

energy consumed by the communication func-

tions of networked mobile devices. �

Acknowledgments
We thank Hyung Gyu Lee and Yongseok Choi

for their assistance in developing the SES hard-

ware board and Jungmin Yoon for his help with

the embedded Linux case study. Dongkun Shin,

Han-Saem Yun, and Jihong Kim were supported

by grant No. R01-2001-00360 from the Korea

Science and Engineering Foundation. The

Research Institute of Advanced Computer

Technology at Seoul National University provid-

ed research facilities for this study.

References
1. Green Hills Software Inc., The MULTI

Performance Profiler, http://www.ghs.com/

products/MULTI_IDE.html (current May 2002).

2. Mentor Graphics Corp., QuickPower,

http://www.mentor.com (current May 2002).

3. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A

Framework for Architectural-Level Power Analysis

and Optimizations,”Proc. Int’l Symp. Computer

Architecture (ISCA 2000), IEEE CS Press, Los

Alamitos, Calif., 2000, pp. 83-94.

4. W. Ye et al., “The Design and Use of SimplePow-

er: A Cycle Accurate Energy Estimation Tool,”

Proc. 37th Design Automation Conf. (DAC 00),

ACM Press, New York, 2000, pp. 340-345.

IEEE Design & Test of Computers

Table 2. Energy consumption of µClinux system calls and

standard library functions.

 System calls Library functions

Function Average (nJ) Function Average (nJ)

open 20,523 fopen 63,880

wait 2,112 fclose 17,492

pipe 12,680 fputc 765

getpid 1,148 fgetc 547

stat 34,484 srand 453

chmod 41,348 rand 799

nice 1,350 time 1,311

mmap 1,583 setjmp 368

chdir 24,981 remove 39,370

create 47,254 rename 51,523

vfork 70,849 isupper 65

Embedded Systems

16

5. T. Simunic, L. Benini, and G. De Micheli, “Cycle-

Accurate Simulation of Energy Consumption in

Embedded Systems,” Proc. Design Automation

Conf. (DAC 99), ACM Press, New York, 1999, pp.

867-872.

6. S. Ghiasi and D. Grunwald, “A Comparison of Two

Architectural Power Models,” Proc. Workshop

Power-Aware Computer Systems (PACS 01), Lec-

ture Notes in Computer Science, Springer-Verlag,

Heidelberg, Germany, vol. 2008, 2001, pp. 137-152.

7. J. Flinn and M. Satyanarayanan, “Powerscope: A

Tool for Profiling the Energy Usage of Mobile Appli-

cations,” Proc. IEEE Workshop Mobile Computing

Systems and Applications (WMCSA 1999), IEEE

CS Press, Los Alamitos, Calif., 1999, pp. 2-10.

8. N. Chang, K. Kim, and H.G. Lee, “Cycle-Accurate

Energy Consumption Measurement and Charac-

terization, with a Case Study of the ARM7TDMI,”

IEEE Trans. Very Large Scale Integration (VLSI)

Systems, vol. 10, no. 2, Apr. 2002, pp. 146-154.

9. N. Chang et al., “Bus Encoding for Low-Power

High-Performance Memory Systems,” Proc. 37th

Design Automation Conf. (DAC 00), ACM Press,

New York, 2000, pp. 800-805.

10. D.J. Dionne and M. Durrant, “Embedded Linux/

Microcontroller Project,” http://www.uclinux.org

(current May 2002).

11. A. Acquaviva, L. Benini, and B. Ricco, “Energy

Characterization of Embedded Real-Time Operat-

ing Systems,” Proc. Workshop Compilers and

Operating Systems for Low Power, Kluwer Acade-

mic, Boston, 2001, pp.30-37.

12. R.P. Dick et al., “Power Analysis of Embedded

Operating Systems,” Proc. 37th Design Automa-

tion Conf. (DAC 00), ACM Press, New York, 2000,

pp. 312-315.

Dongkun Shin is a PhD student at the School
of Computer Science and Engineering, Seoul
National University. His research interests
include low-power systems, computer architec-
ture, and embedded and real-time systems. Shin
has a BS in computer science and statistics, and
an MS in computer science, both from Seoul
National University. He is a student member of
the IEEE and ACM.

Hojun Shim is a PhD student at the School of
Computer Science and Engineering, Seoul Nation-
al University. His research interests include low-

power systems and embedded systems. Shim
has a BS in computer science and engineering
from Seoul National University. He is a student
member of the IEEE.

Yongsoo Joo is a PhD student at the School of
Computer Science and Engineering, Seoul
National University. His research interests
include low-power and embedded systems. Joo
has a BS and MS in computer science and engi-
neering from Seoul National University. He is a
student member of the IEEE.

Han-Saem Yun is a PhD student at the School
of Computer Science and Engineering, Seoul
National University. His research interests include
parallelizing and optimizing compilers, static pro-
gram analysis techniques, and embedded sys-
tems. Yun has a BS and MS in electrical
engineering from Seoul National University.

Jihong Kim is an associate professor in the
School of Computer Science and Engineering,
Seoul National University. His research interests
include embedded systems, computer architec-
ture, Java computing, and multimedia and real-
time systems. Kim has a BS in computer science
and statistics from Seoul National University, and
an MS and PhD in computer science and engi-
neering from the University of Washington. He is
a member of the IEEE and ACM.

Naehyuck Chang is an assistant professor in
the School of Computer Science and Engineer-
ing, Seoul National University. His research inter-
ests include embedded and low-power systems.
Chang has a BS, MS, and PhD in control and
instrumentation engineering from Seoul Nation-
al University. He is a member of the IEEE and
ACM.

Direct questions and comments about this
article to Jihong Kim, School of Computer
Science and Engineering, Seoul National
University, Shilim-dong, Kwanak-ku, Seoul,
Korea 151-742; jihong@davinci.snu.ac.kr.

For further information on this or any other comput-

ing topic, visit our Digital Library at http://computer.

org/publications/dlib.

17July–August 2002

