Power-Aware Scheduling of Mixed Task Sets
in Priority-Driven Systems*

Dongkun Shin and Jihong Kim

School of Computer Science and Engineering
Seoul National University, Korea

Abstract. We propose power-aware on-line task scheduling algorithms
for mixed task sets which consist of both periodic and aperiodic tasks.
The proposed algorithms utilize the execution behaviors of scheduling
servers for aperiodic tasks. Since there is a trade-off between the energy
consumption and the response time of aperiodic tasks, the proposed al-
gorithms focus on bounding the response time degradation of aperiodic
tasks while they use a more aggressive slack estimation technique for
higher energy savings in mixed task sets. We also propose a new slack
distribution method which gives better response times with slight energy
increases. Experimental results show that the proposed algorithms re-
duce the energy consumption by 25% and 18% over the non-DVS scheme
under the RM scheduling and the EDF scheduling, respectively.

1 Introduction

Many practical real-time applications require aperiodic tasks as well as periodic
tasks. Generally, periodic tasks are time-driven with hard deadlines and aperi-
odic tasks are event-driven (i.e., activated at arbitrary times) with short response
times. In this paper, we call a system with both periodic and aperiodic tasks as
a mized task system.

In implementing mixed task systems, there are two major design objectives.
The first objective is to maintain the schedulability of (feasible) periodic tasks
under the presence of aperiodic tasks. That is, aperiodic tasks should not prevent
periodic tasks from completing before their deadlines. The second objective is
to serve aperiodic tasks with reasonable average response times. To satisfy these
two design objectives, many scheduling algorithms had been proposed, which are
called bandwidth-preserving servers [I] because they set aside some portion of
the system utilization for aperiodic tasks. In this paper, we consider as the third
design parameter the energy consumption of mixed task sets. With the added
energy consumption requirement, our overall design objective is to minimize
the total energy consumption of both periodic tasks and aperiodic tasks while
satisfying the previous two requirements.

* This work was supported by grant No. R01-2001-00360 from the Korea Science &
Engineering Foundation and University IT Research Center Project.

L.T. Yang et al. (Eds.): EUC 2004, LNCS 3207, pp. 227-237] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

228 D. Shin and J. Kim

Among many low-power design approaches, we focus on dynamic voltage
scaling (DVS) [2] in this paper. Many on-line voltage scheduling algorithms exist
for hard real-time systems [BI456]. Since most of these algorithms assume that
the system consists of periodic hard real-time tasks only and the task release
times are known a priori, they estimate slack times based on the known release
times and stretch the task execution using the estimated slack times. Generally,
the more slack times a DVS algorithm can estimate, the better energy efficiency
the DVS algorithm can have.

However, when we apply a DVS algorithm to mixed task sets, the DVS
algorithm should tackle the arbitrary behaviors of aperiodic tasks. Fortunately,
since a bandwidth-preserving server limits the execution of aperiodic tasks within
its allocated bandwidth, DVS algorithms can estimate slack times considering
the characteristics of bandwidth-preserving servers. Though the energy efficiency
of a DVS algorithm for mixed task sets is also related to how much slack times it
can find, the presence of aperiodic tasks in the mixed task sets raises the trade-
off between the energy consumption of the total system and the response time
of aperiodic tasks. If we ignore the response time of aperiodic tasks, the most
energy-efficient solution is not to serve aperiodic tasks, thus further reducing the
energy consumption of periodic tasks. However, it is obvious such a solution will
not be acceptable. Therefore, the main challenge in designing DVS algorithms
for the mixed task sets is to bound the response times of aperiodic tasks while
reducing the energy consumption of periodic tasks as well as aperiodic tasks.

In this paper, we first propose new DVS algorithms for deferrable server [7]
and sporadic server [8], which achieve higher energy reductions than the existing
DVS algorithms in [9]. Our DVS algorithms can reduce the energy consumption
by 18~29% over the existing algorithms. Second, we also propose the DVS
algorithm for the constant bandwidth server [10] which is not handled in [9)].
Lastly, we also propose a new slack distribution method for DVS algorithms.
By assigning slack times only to periodic tasks and executing aperiodic tasks
at the full speed, we can get better response times with small increases in the
energy consumption.

The rest of this paper is organized as follows. In Section [2, we compare the
related works for mixed task sets with our algorithms. We formulate the DVS
scheduling problem for a mixed task set in Section B. While the on-line DVS
algorithms under fixed-priority systems are presented in Section[d], the algorithms
under dynamic-priority systems are described in Section [Bl In Section [6], the
experimental results are discussed. Section [d concludes with a summary.

2 Related Works

Recently, several researchers have proposed DVS algorithms for mixed task sets.
W. Yuan et al. [I1] proposed DVS algorithms for another kind of mixed task sets
which consist of sporadic tasks and aperiodic tasks. The sporadic taskd] arrive

! Authors of [IT] say that their target system is a mix of soft real-time (SRT) multi-
media and best-effort applications. However, their definition for SRT tasks is same
to sporadic tasks.

Power-Aware Scheduling of Mixed Task Sets in Priority-Driven Systems 229

at arbitrary times and have soft deadlines. They handled only the constant
bandwidth server.

Y. Doh et al. [T2] investigated the problem of allocating both energy and
utilization for mixed task sets which consist of periodic tasks and aperiodic
tasks. They used the total bandwidth server and considered the static (off-line)
scheduling problem only. Given the energy budget, their algorithm finds voltage
settings for both periodic and aperiodic tasks such that all periodic tasks are
completed before their deadlines and all aperiodic tasks can attain the minimal
response times. While Y. Doh et al.’s algorithm is an off-line static speed assign-
ment algorithm under the EDF scheduling policy, we propose on-line algorithms.
Another difference is that we concentrate on minimizing the energy consumption
under the constraint on the average response time.

The DVS problem tackled by D. Shin et al. [9] has the same problem for-
mulation as one used in this paper. We improve the energy performance of the
DVS algorithm using a more aggressive slack estimation method and propose a
new slack distribution method.

3 Problem Formulation

We assume that a mixed task system 7T consists of n periodic tasks, 71, -, Ty,
and an aperiodic task, 0. The aperiodic task o is serviced by a scheduling server
S. The scheduling server S is characterized by an ordered pair (Qs,Ts). During
the execution of aperiodic tasks, the budget of S is consumed. We use g5 to denote
the remaining budget of S. The budget ¢s is set to Qs at each replenishment
time. S is scheduled together with periodic tasks in the system according to the
given priority-driven algorithm. Once S is activated, it executes any pending
aperiodic requests within the limit of its budget g;.

A periodic task 7; is specified by (C,,T7,) where C., and T, are the worst-
case execution cycles (WCEC) and the period of 7;, respectively. We assume that
periodic tasks have relative deadlines equal to their periods. The j-th instance of
7; and the k-th instance of o are denoted by 7; ; and o}, respectively. We assume
that the operating speeds are the values between 0 and 1.

If the response time of oy, is t(oy) in the non-DVS scheme, the response time
will be increased to t(oy) + D(ox) by a DVS algorithm because the operating
speeds of both periodic tasks and aperiodic tasks are changed. We call the in-
crease D(oy) in the response time as the response time delay. In this paper, we
propose the DVS algorithms which minimizes the energy consumption satisfying
the timing requirements of all periodic tasks while guaranteeing D (o) < Ts— Q5
for all oy,.

Existing on-line DVS algorithms such as [3/4J5] are not directly applicable
for the problem. As discussed in [2], most existing heuristics are based on three
techniques: (1) stretching-to-NTA, (2) priority-based slack-stealing, and (3) uti-
lization updating. For example, consider the stretching-to-NTA technique. The
technique stretches the execution time of the periodic task ready for execution
to the next task arrival time (NTA) of a periodic task when there is no an-

230 D. Shin and J. Kim

other periodic task in ready queue. To use the stretching-to-NTA technique for
a mixed task system, we should know the next arrival time of an aperiodic task
as well as a periodic task. Though the arrival times of periodic tasks can be eas-
ily computed using their periods, we cannot know the arrival times of aperiodic
tasks since they arrive at arbitrary times. If we ignore the arrival of aperiodic
tasks, there will be a deadline miss of periodic hard real-time task when an ape-
riodic task arrives before the next arrival time of a periodic task. Consequently,
the stretching-to-NTA technique should assign the full speed to all tasks in the
mixed task system.

To use the priority-based slack-stealing method or the utilization updating
method, we should be able to identify a slack time due to aperiodic tasks as well
as periodic tasks. The slack time of a periodic task can easily be defined as the dif-
ference between the WCET and the real execution time of the task. However, for
the slack time from aperiodic tasks, we should be concerned about the scheduling
server rather than aperiodic tasks because the utilization of scheduling server is
related with the schedulability condition. Therefore, we need to modify on-line
DVS algorithms to utilize the characteristics of scheduling servers.

4 Scheduling Algorithms in Fixed-Priority Systems

For fixed-priority systems, we assume the RM scheduling policy. In [9],
lppsRM/DS algorithm has been proposed to integrated the deferrable server
with the DVS algorithm 1ppsRM [3]. If there is no periodic task in
the ready queue, lppsRM/DS executes an aperiodic task at the speed of
maz(1,qs/(min(NTA, R) — t)) where NTA, R and t are the next arrival time
of a periodic task, the next replenishment time of DS and the current time (the
start time of the aperiodic task), respectively. If there is only one periodic task
in the ready queue and the remaining budget g; is 0, the algorithm stretches the
periodic task to min(NTA, R).

We applied the idea of lppsRM/DS algorithm to the sporadic server. Fig-
ure [M(a) shows the task schedule using a sporadic server SS. There are two
periodic tasks, 71 = (1,5) and 72 = (2,8), and one SS = (1,4). All periodic tasks
and the SS are scheduled by the RM scheduler. The utilization of SS is 0.25
(= ‘% = %) The budget of SS, g5, is set to Qs at time 0. If an aperiodic task
is executed during the time [t1,%2], ¢s is reduced by to — t; until the time ¢s.
The budget gs is replenished by the amount of to — ¢; at the time t; 4+ Ts. SS
preserves its budget ¢s if no requests are pending when released. An aperiodic
request can be serviced at any time (at server’s priority) as long as the budget
of SS is not exhausted (e.g., task o1). If the budget is exhausted, aperiodic tasks
should wait until the next replenishment time. For example, though the task o4
arrived at the time 19, it is serviced at the time 20. Figure [[(b) shows the task
schedule using the 1ppsRM/SS algorithm which is the modified version of 1ppsRM
for SS.

Though we can reduce the energy consumption by lppsRM/SS algorithm, the
algorithm can show poor performance when the workload of aperiodic tasks is

Power-Aware Scheduling of Mixed Task Sets in Priority-Driven Systems 231

speed

1 T1,1 71,2 71,3 71,4 71,5 71,6
1=(1,5) [—
5 15 20 25 3

speed 10 30

72:(2,8)|T ’_“Q,l Hz,z T T2,3 7[—?4

speed 8 16

-1 9 B la e P

26

budget +

2 15 19
I* “ +1 +1 +1 “
ss=1. T\] R N
6 16 20

24 30

(a) SS without DVS

speed
Ic Ti1 T1,2 T1,3 Ti4 TL5 T1,6
71=(1,5) —
E 5 10 15 20 25
) T2,1 T2,2 T2,3 T2,4
n=9]] . e I—
1 g1 o2 g3 T g4 %
S S b A | O
2 12 15 19 2
41 +1 +1
~)
16 20 JJ

(b) tppsRM/SS

speed

1 T1,1 T1,2 T1,3 T1,4 71,5 71,6
n=(1,5) 1

g 5 20 25

10 15 20 30

I T e G = N -

speed 8 i6 24

-1 5 Bmle o p

26

30

budget : +1 +1 N +1 Y +1
K N N
ss | ~ X |
16 20 24

(c) lppsRM/SS-SE

30

Fig. 1. Task schedules with a sporadic server.

small. In this case, since the budget ¢, is larger than 0 at most of scheduling
points, we cannot use the stretching rule for periodic task. Extremely, when
there is no aperiodic request, there is nothing to do for the DVS algorithm.
Therefore, we need a more advanced DVS algorithm which can be applicable
to the mixed task system with a low aperiodic workload. For this purpose, we
propose a new slack estimation method, bandwidth-based slack-stealing, which
identifies the maximum slack time for a periodic task considering the bandwidth
of scheduling server. Figure [i(c) shows the 1ppsRM/SS-SE algorithm, which is
based on lppsRM/SS but uses the bandwidth-based slack-stealing method. When
s is larger than 0 and there is only one periodic task in the ready queue, the slack
estimation method calculates the maximum available time before the arrival time
of next periodic task.

Figure[2 shows the bandwidth-based slack-stealing method. In Figure[2] T is
the period of 7, ¢ is the current time, NT' A is the next periodic task arrival time
and R is the next replenishment time of SS. We should consider two different
cases depending on the priority of SS. Figure[X(a) shows the case when T, > Ts.
In this case, the maximum blocking time by aperiodic tasks before the next
task arrival time (NTA) should be identified. Figure Pb) shows the case when

232 D. Shin and J. Kim

T, < Ts. In this case, the task 7 is stretched to min(R, NT A) — gs. Although
there is no deadline miss even when the periodic task 7 is completed after R,
the proposed DVS algorithm is designed to limit the response time delay. Under
this policy, we can guarantee that D(oy) < Ts — @, for all oy because oy, is not
delayed above the replenishment time R. The detail proof is provided in [13].

R+ LNT{:AS—RJR

ﬂ
A
N
ﬁ
-
Y

-t «‘ - » T
Ts s
NTA-R
v [F1Qs i v
qs min(NTA— R — L%‘:’RJTS, Qs) qs

(a) Tr > T, b) Tr < Ts

Fig. 2. Bandwidth-based slack stealing in 1ppsRM/SS-SE.

From Figure 2] the maximum available time M AT of a task 7 can be calcu-
lated as follows:

NTA -
if (T >Ts) MAT = NTA—t—qs — L%JQS
— min(NTA —~ R — LWJT& Qs)

if (Tr <Ts) MAT =min(R,NTA)—t—gs

In Figure 0l(c), the periodic tasks 712, 713 and 721 are stretched by the
bandwidth-based slack-stealing method. For example, at the time 5, the task
T1,2 has the available time 2 (= NTA —t —¢s = 8 — 5 — 1). A side effect
of the bandwidth-based slack-stealing method is that aperiodic tasks tend to
be executed at full speed. Due to the side effect, the DVS algorithm using the
bandwidth-based slack-stealing method generates better average response times.

5 Scheduling Algorithms in Dynamic-Priority Systems

For dynamic-priority systems, we assume the EDF scheduling policy. We propose
the slack estimation algorithm for constant bandwidth server (CBS). Figure Bla)
shows the task schedule using a CBS, assuming two periodic tasks, 71 = (2, 8)
and 7 = (3,12), and one CBS =(2,4). The maximum utilization of CBS (Us)
is 0.5(= 2/4). If U, + Us < 1, where U, is the maximum utilization of periodic
tasks, the task set is schedulable.

At each instant, a CBS deadline dj, is associated with CBS. At the beginning
do = 0. Each served aperiodic task o; is assigned a dynamic deadline equal to

Power-Aware Scheduling of Mixed Task Sets in Priority-Driven Systems 233

speed
T1,1 T1,2

neen [| 1

speed

wewin'| [e " p—

3
>
S
R

speed 12 24
'T o1 A oo rosk oa
o N V7 v
budget TJ rf fﬂl d2 d3 T3 Tf dy ds

+ + *
2 V) a T ~d I
CBS=(2,4) N %

(a) CBS without DVS

speed

S A s S e R

speed

n=(312)]T ’—‘TZYII—\ — | !—F—’I

speed * * 12 24
(1.5) (1.0) 0.5)

(09} (1)
B Lo
- 7
Budget T: ';‘2 d d3Ts 73 drt ds

) < . ~d
CBS=(2,4)
P — -— . PE——
CBS-slack CBS-slack CBS-slack CBS-slack

(b) DRA/CBS

5

W

Fig. 3. Task schedules with a constant bandwidth server.

the current server deadline dj.. Whenever a served task executes, the budget ¢; is
decreased by the same amount. When ¢s = 0, the server budget is replenished to
the maximum value ()5 and a new server deadline is generated as dj1 = di+T5s.
A CBS is said to be active at time ¢ if there are pending jobs; that is, if there
exists a served task o; such that r(o;) < t < e(0;), where r(o;) and e(o;) are
the arrival time and the completion time of the task o;. A CBS is said to be idle
at time t if it is not active. When a task o; arrives and the server is active, the
request is enqueued in a queue of pending jobs according to a given (arbitrary)
non-preemptive discipline (e.g., FIFO).

When an aperiodic task o; arrives at 7(o;) and the server is idle (when CBS
does not service aperiodic tasks), if g; > (dx — r(0;))Us the server generates a
new deadline di+1 = r(0;) + T and ¢; is replenished to the maximum value Qs,
otherwise the task is served with the last server deadline dj using the current
budget. When a job finishes, the next pending job, if any, is served using the
current budget and deadline. If there are no pending jobs, the server becomes
idle. At any instant, a job is assigned the last deadline generated by the server.

For example, when an aperiodic task o; arrives at time 3, CBS sets its dead-
line dy to 7 (=r(01)+Ts = 3+4) and o7 uses the deadline. When an aperiodic
task og arrives at time 6, CBS sets 02’s deadline to 10 (= r(02)+7Ts = 6+4) and
gs is replenished to 2 because g5 = 1 is greater than (d; —7(02))Us = (7—6)0.5 =
0.5. When a task o3 arrives at 14, CBS sets 03’s deadline to 18 and o3 preempts

234 D. Shin and J. Kim

the task 75 2. When an aperiodic task o4 arrives at 15, CBS sets 04’s deadline
to 18 (= d4) because ¢; = 1 is smaller than (ds — r(04))Us = (18 — 15)0.5 = 1.5.
When ¢; = 0 at time 16, CBS changes o04’s deadline to a new deadline
ds = ds+Ts = 22 and q; is replenished to 2. In this manner, CBS maintains its
bandwidth under Us.

To use the priority-based slack-stealing [2] method for CBS, we should iden-
tify the slack times of CBS. We can estimate the slack time using the workload-
based slack-estimation method. When the workload of CBS is lower than U,, we
can identify slack times.

Figure Bl shows the workload-based slack-estimation algorithm for CBS. The
algorithm uses four variables, release, Cyack, Cigie and Ciyetive- The release is a
flag variable to know whether an aperiodic task is released. The Cytipe contains
the number of execution cycles of the completed aperiodic tasks. When an aperi-
odic task is completed, C;q;., which is the number of idle cycles required to make
the workload of CBS to be same to U, is calculated. During the idle period,
the Cjgie is decreased. When Cj4;. becomes to 0, the workload of CBS is equal
to Us. If the idle interval of CBS continues, the workload of CBS becomes to
be smaller than U and Cgqc is increased. The Cyjuer can be used for periodic
tasks to stretch the execution time.

Initiation:
release=F; Csiac = 0; Cidgie = 0; Cactive = 0;

upon aperiodic_task_release:
release = T

upon aperiodic_task_completion:
Cidle += Cactive : (1 - Us) / U§7
release = F; Cactive = 0;

during aperiodic_task_execution(t):
increase Clctive DY t;

during CBS_idle(?):
if (release==F and C;q.e == 0) increase Cysqck by t - Us;
else decrease Ciqe by t;

Fig. 4. Workload-based slack estimation in CBS.

Figure BIb) shows the task schedule using the DRA/CBS algorithm which is
modified from the DR4 algorithm [4]. In Figure Blb), the time intervals, where
Csiaer > 0, are marked with arrow lines. For example, when a task 75 ; is sched-
uled at time 1, there is a slack time 1.5 (1 from the early completion of 71 ; and
0.5 from CBS during the time interval [0,1]). Using the slack time, the task 71 is
scheduled with the speed of 0.67 (=3/(3+1.5)). When the task 75 1 is preempted
at time 3, the slack time 1.0 from CBS is transferred to the remaining part of
T,1. The guarantee of D(oy) < Ty — Qs for all oy, is proved in [13].

Power-Aware Scheduling of Mixed Task Sets in Priority-Driven Systems 235

6 Experimental Results

We have evaluated the performance of our DVS algorithms for scheduling servers
using simulations. The execution time of each periodic task instance was ran-
domly drawn from a Gaussian distribution in the range of [BCET, WCET] where
BCET is the best case execution time. In the experiments, BCET is assumed to
be 10% of WCET.

The interarrival times and service times of aperiodic tasks were generated
from the exponential distribution using the parameters A and p where 1/ is the
mean interarrival time and 1/p is the mean service time. Then, the workload of
aperiodic tasks can be represented by p = A/p. If there is no interference between
aperiodic tasks and periodic tasks, the average response time of aperiodic tasks
is given by (— A)~! from the M/M/1 queueing model.

Varying the server utilization Us and the workload of aperiodic tasks p under
a fixed utilization U, of periodic tasks, we observed the energy consumption of
the total system and the average response time of aperiodic tasks. We present
only the experimental results where Uy is controlled by changing the value of T
with a fixed Qs value and p is controlled by a varying A with a fixed p value.

The periodic task set has three tasks with U, = 0.3 and four tasks with U, =
0.4 in the experiments of fixed-priority systems and dynamic-priority systems,
respectively. For all experiments including the non-DVS scheme, both periodic
tasks and aperiodic tasks were given an initial clock speed sg = (Up+Us)Sm/Unm,
where s, is the maximum clock speed and U,, is the upper bound of the schedu-
lable utilization (1 in the EDF policy and n(2'/™ — 1) for n tasks in the RM pol-
icy). During run time, the speed is further reduced by on-line DVS algorithms
exploiting the slack times.

Figure Bla) shows the energy consumptions of the ccRM/SS algorithm and
the ccRM/SS-SE algorithm normalized by that of the power-down method. We
also evaluated the modified version of ccRM/SS-SE called ccRM/SS-SD. The
ccRM/SS-SD algorithm uses a different slack distribution method. When slack
times are identified, ccRM/SS-SD gives the slack times to only periodic tasks.
Therefore, aperiodic tasks are always executed at the initial clock speed sg.
ccRM/SS-SD is good for a better response time.

The difference between the energy savings of ccRM/SS and ccRM/SS-SE de-
creases as p increases. This is because there are more chances for SS to have
the zero budget when p is large. As U, increases, ccRM/SS-SE shows a larger
energy saving compared with ccRM/SS because ccRM/SS-SE performs well in the
low aperiodic workload (over Us). The ccRM/SS and ccRM/SS-SE reduced the
energy consumption on average by 9% and 25% over the power-down method,
respectively. The ccRM/SS-SE reduced the energy consumption on average by
18% over ccRM/SS.

As shown in Figure Bl(b), ccRM/SS and ccRM/SS-SE increase the response
time on average by 8% and 6% over the power-down method, respectively. Due
to the side effect on aperiodic tasks explained at Section Bl ccRM/SS-SE shows
better average response times. ccRM/SS-SD shows almost the same response time

236 D. Shin and J. Kim

Eous
2 14
RE]

W
X

09 e
LS N o

Z
12
:
- N AR e
=
0.6 E 10
X z
Tk .

05 + 0.9 + |
S8 18 %‘: 21E s ‘ =4
p=0.15 p=0.20 g = 0.25| p=0.05 p=0.10 p=10.20 g = 0.25]

Server Utilization (Us) Server Utilization (Us)

nalized Energy Consumption

Norm

p=0.15

(a) Energy Consumption (b) Response Time

Fig. 5. Experimental results using sporadic servers.

‘+1pp~F.DF/(‘BS —a— IppsEDF/CBS-SD —&— DRA/CBS —8— DRA/CBS-SD ‘ ‘ IppsEDFICES IppSEDFICBS-SD DRA/CBS DRNCBS'SD‘

2 [pauet999 yg PPy wam=ss _amm _agas
00 FEHIes e gaes

e N, o [s 26 1A f./‘*\/\.ﬂv
08 s S N

Ry AN
M-M

EEEEEEFE\FE%E%EE\FEEEEE\F%%EE\E%EQ‘ ”“zEéﬁEﬁ%E FE%%%E&\F?EEE? FEEEE\FEE%

p=020 |p=0.2
Server Utilization (Us) Server Utilization (Us)

2.0

0.7

0.6

0

Normalized Energy Consumption

p=0.15

(a) Energy Consumption (b) Response Time

Fig. 6. Experimental results using constant bandwidth servers.

to that of power-down method because the execution speed of aperiodic task is
always sg. However, it shows better energy performances than ccRM/SS.

For CBS, we observed the performances of 1ppsEDF/CBS, lppsEDF/CBS-SD,
DRA/CBS and DRA/CBS-SD. lppsEDF/CBS-SD and DRA/CBS-SD assigns all aperi-
odic tasks the initial clock speed sg. Figure[@l(a) shows the energy consumption
by each algorithm normalized by that of power-down method. The energy reduc-
tions are not significantly changed as p changes. This is because DRA/CBS does
not utilize the zero budget of server as ccRM/SS. The average energy reductions
by DRA/CBS and DRA/CBS-SD are 18%. Since most of slack times are generated by
CBS and used by periodic tasks, DRA/CBS and DRA/CBS-SD show similar energy
performances.

DRA/CBS increased the average response time on average by 16%. As U,
decreases (T increasesﬂ, the response time increases because the maximum
response time delay is Ts — Q5. However, the response time delay of aperiodic
task is still smaller than Ty — Q5. Since DRA/CBS-SD is similar to DRA/CBS in
energy performances despite of its good response times, we can know that it is
better to give slack times only to periodic tasks when the short response times
are required.

2 Note that we varied T to change Us.

Power-Aware Scheduling of Mixed Task Sets in Priority-Driven Systems 237

7 Conclusions

We have proposed the on-line DVS algorithms for mixed task systems. Consid-
ering the trade-off between the energy consumption and the response time, we
modified the existing on-line DVS algorithms for periodic task sets to utilize
the execution behaviors of various bandwidth-preserving servers. The proposed
algorithms guarantee that the response time delay is no greater than Ts — Q. By
using a more aggressive slack estimation method than the existing algorithms for
the mixed task sets, the proposed algorithms reduced the energy consumption
by 18% over the existing algorithm. We also proposed a new slack distribution
method which provides better response times with slight energy overheads.

References

1. J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

2. W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance Comparison
of Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems. In Proc. of
IEEE Real-Time and Embedded Technology and Applications Symp., pages 219—
228, 2002.

3. Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard Real-
Time Systems. In Proc. of Design Automation Conf., pages 134-139, 1999.

4. H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and Aggressive
Scheduling Techniques for Power-Aware Real-Time Systems. In Proc. of IEEE
Real-Time Systems Symp., pages 95-106, 2001.

5. P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems. In Proc. of ACM Symp. on Operating Systems
Principles, pages 89-102, 2001.

6. W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm for
Dynamic-Priority Hard Real-Time Systems Using Slack Time Analysis. In Proc.
of Design Automation and Test in Europe, pages 788-794, 2002.

7. J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server Algorithm
for Enhanced Aperiodic Responsiveness in Hard Real-Time Environments. IEEFE
Transactions on Computers, 44(1):73-91, 1995.

8. B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for Hard Real-
Time Systems. Journal of Real-Time Systems, 1(1):27-60, 1989.

9. D. Shin and J. Kim. Dynamic Voltage Scaling of Periodic and Aperiodic Tasks in
Priority-Driven Systems. In Proc. of Asia and South Pacific Design Automation
Conf., 2004.

10. L. Abeni and G. Buttazzo. Integrating Multimedia Applications in Hard Real-Time
Systems. In Proc. of IEEE Real-Time Systems Symp., pages 4-13, 1998.

11. W. Yuan and K. Nahrstedt. Integration of Dynamic Voltage Scaling and Soft Real-
Time Scheduling for Open Mobile Systems. In Proc. of Int. Workshop on Network
and Operating Systems Support for Digital Audio and Video, pages 105—114, 2002.

12. Y. Doh, D. Kim, Y.-H. Lee, and C. M. Krishna. Constrained Energy Allocation
for Mixed Hard and Soft Real-Time Tasks. In Proc. of Int. Conf. on Real-Time
and Embedded Computing Systems and Applications, pages 533-550, 2003.

13. D. Shin and J. Kim. Dynamic Voltage Scaling for Mixed Task Systems in Priority-
Driven Systems. Technical report, Computer Architecture and Embedded Systems
Laboratory, Seoul National University, 2004.

	Introduction
	Related Works
	Problem Formulation
	Scheduling Algorithms in Fixed-Priority Systems
	Scheduling Algorithms in Dynamic-Priority Systems
	Experimental Results
	Conclusions

