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Abstract—As embedded systems adopt monolithic kernels, 
NAND flash memory is used for swap space of virtual memory 
systems. While flash memory has the advantages of low-power 
consumption, shock-resistance and non-volatility, it requires 
garbage collections due to its erase-before-write characteristic. 
The efficiency of garbage collection scheme largely affects the 
performance of flash memory. This paper proposes a novel 
garbage collection technique which exploits data redundancy 
between the main memory and flash memory in flash memory-
based virtual memory systems. The proposed scheme takes the 
locality of data into consideration to minimize the garbage 
collection overhead. Experimental results demonstrate that the 
proposed garbage collection scheme improves performance by 
37% on average compared to previous schemes. 

Keywords-NAND flash memory, Flash Translation Layer 
(FTL), Garbage Collection, Virtual Memory, Buffer 
Management 

I. 0BINTRODUCTION 
NAND flash memory is widely used in building storage 

systems of embedded systems such as cellular phones, 
digital cameras and MP3 players. NAND flash memory has 
the merits of low power consumption, high random access 
performance and high shock-resistance. Due to the price 
reduction of NAND flash memory, solid-state disk (SSD), 
which is composed of several flash chips, has recently been 
replacing hard disk drives (HDD) in desktop PCs and 
enterprise servers. 

Flash memory is a good device for swap space of virtual 
memory systems as well as file and code storages due to its 
low access cost [1, 2, 3]. Compared with hard disk drive, 
flash memory can reduce the page swapping cost 
significantly. As embedded systems adopt monolithic 
kernels such as embedded Linux and MS Windows CE, 
flash memory-based virtual memory systems will be popular.  
However, most of researches on flash memory focused on 
the flash file systems and there are only a few studies on the 
flash memory-based virtual memory systems. 

The characteristics of flash memory are quite different 
from those of hard disk. A flash memory chip is composed 
of several blocks and each block consists of multiple pages. 
For example, in a large block MLC NAND flash memory, 
one block is composed of 128 pages, and the size of each 
page is 4 KB. Flash memory supports three commands: read, 
program and erase. While the units for read and program 
commands are page, blocks are the units for erase command. 

We cannot overwrite new data at flash memory pages that 
have already been programmed. The corresponding block 
should be erased before data is written to the page. This 
feature is called ‘erase-before-write’ constraint. Therefore, 
most flash storage systems write the updated data to other 
non-programmed pages, and they invalidate the old page.  
This requires an address mapping scheme to translate a 
logical address used in operating systems to a physical 
address used in flash memory. 

In order to handle these special features, a software layer 
called flash translation layer (FTL) is usually used between 
the file system and flash memory [4, 5]. FTL has two main 
functions. The first one is address mapping, which can be 
divided into three categories depending on the address 
mapping granularities: block-level, page-level and hybrid 
mappings. The second function of FTL is garbage collection 
(GC) that reclaims the flash pages that have been 
invalidated by the update operations. The GC has three steps, 
i.e., victim block selection, valid page migration and victim 
block erase. The victim block selection finds a victim block 
that will invoke the lowest GC cost, i.e., the smallest 
number of page migrations. The valid page migration moves 
the valid pages in the victim block to other clean blocks.  
The last step erases the victim block for future write 
requests.  

GC invokes a significant overhead since it requires a 
large number of page migrations and block erasures. 
Therefore, an efficient GC scheme is essential for achieving 
high performance flash memory storage systems. There 
have been many studies on efficient garbage collection. 
However, only few works focused on the GC for flash 
memory-based virtual memory systems.  

When flash memory is used for a swap space, the GC 
should exploit the data redundancy between the main 
memory and flash memory to eliminate unnecessary valid 
page copying. When a virtual memory page is swapped in, 
this page exists in both the main memory and flash storage. 
Since this page will be written back to flash memory when it 
gets swapped out next time, we can reduce page copying 
during GC if we do not move these duplicated pages of a 
victim block to free space. The duplication-aware garbage 
collection scheme (DA-GC) [6] uses the technique. DA-GC 
is designed assuming that FTL uses page-level address 
mapping and thus shows a good performance in the page-
level mapping. However, DA-GC cannot improve the 
performance of garbage collection in the hybrid mapping. 
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In this paper, we propose the locality and duplication-
aware victim block selection technique (LDA-VBS) and the 
locality and duplication-aware block merge technique 
(LDA-BM) for flash memory-based virtual memory systems. 
These techniques significantly reduce the DA-GC overhead 
in the hybrid mapping FTL by considering the update 
probability of duplicated data. We evaluated the proposed 
techniques using a trace-driven simulator. The experimental 
results show that the proposed techniques can improve the 
overall flash I/O performance, on average, by 37% 
compared to the existing duplication-unaware garbage 
collection (DU-GC) scheme for virtual memory benchmarks. 

The remainder of the paper is organized as follows: 
Section 2 provides a survey of the relevant literature on 
flash memory management techniques. Section 3 presents 
the motivations of this paper. The detailed descriptions on 
LDA-VBS and LDA-BM techniques are provided at Section 
4. Section 5 presents the performance evaluation results. 
Finally, Section 6 concludes the paper. 

II. 1BRELATED WORKS 
Most previous studies on flash memory focused on 

address mapping schemes. Block-level mapping [7] 
maintains the translation information between the logical 
block address and the physical block address; therefore, the 
offsets of a page are the same within both logical block and 
physical block. Block-level mapping requires only a small-
sized mapping table. However, even when only a small 
portion of a block should be updated, all the non-updated 
pages should be copied to other clean block invoking a 
significant page copying overhead.  

In page-level mapping [8], a logical page address is 
mapped to a physical page address. Due to the independent 
management of pages, page-level mapping is more efficient 
than the block-level mapping, but it requires a large memory 
space for the mapping table. 

 Hybrid mapping [9, 10, 11] uses both the page-level 
mapping and the block-level mapping. It reserves a portion 
of flash blocks as a log buffer. Hence, the FTLs with hybrid 
mapping are called the log buffer-based FTLs. Blocks in the 
log buffer are called the log blocks. The normal data blocks 
use block-level mapping, while the log blocks use page-
level mapping. All write requests are first sent to the log 
buffer. If there is no free space in the log buffer, then the 
valid data in a log block is moved into data blocks to make 
free space. FTLs using hybrid mapping can yield high 
performance with a small-sized mapping table. Therefore, 
most of FTLs employ the hybrid mapping technique. 

There are several studies on log buffer-based FTLs. In 
the block-associative sector translation (BAST) [9] scheme, 
a log block is associated with only one data block, that is, 
when the pages in a data bock are updated, the new data 
should be written at the associated log block. The GC is 
invoked when there are no clean pages in the associated log 
block or no log block is associated with the target data 
block; this occurs frequently for random writes. The GC 
selects one of the log blocks, and moves all valid pages of 
this log block and its associated data block to a clean block. 

The log block and the data block are then erased and are 
exploited as new log blocks. 

A drawback of the BAST scheme is its frequent GCs for 
random write patterns. To solve this problem, the fully-
associative sector translation (FAST) scheme was proposed 
[10], where one log block can be associated with multiple 
data blocks. Therefore, it can prevent the frequent GCs for 
random write requests. However, the FAST scheme requires 
a large GC cost once garbage collection is invoked because 
it should move many valid pages in several data blocks that 
are associated with the victim log block.  

 Generally, flash memory storage systems have a buffer 
cache to hide the long latency of flash memory. The buffer 
cache management is important for achieving high 
performance flash storage since the I/O requests on flash 
memory change depending on the buffer cache management 
techniques. Jo et al. [12] proposed a flash-aware buffer 
management scheme, called FAB, that uses block-level 
buffer replacement policy that evicts all the pages of a 
logical block at a time to reduce the GC cost. The logical 
block that has the largest number of pages in the buffer 
cache is selected as a victim to be replaced in the FAB 
scheme. Park et al. [13] proposed a clean-first LRU 
(CFLRU) replacement policy that delays the flushing of 
dirty page in the buffer cache to reduce the number of write 
requests to the flash memory. Kim et al. [14] proposed a 
BPLRU buffer management scheme that also evicts all the 
pages of a victim block like FAB, but it determines the 
victim block based on the block-level LRU value. In 
addition, BPLRU writes a whole block into a log block 
using the block padding technique. Therefore, all log blocks 
can be switched into a data block without page migrations.  

Recently, Lee et al. [15] have proposed a buffer-aware 
garbage collection (BA-GC) technique. BA-GC exploits the 
duplicated pages that are written in both the buffer cache 
and flash memory. During garbage collection, the duplicated 
dirty pages are evicted into the flash memory to eliminate 
unnecessary page migrations.  

Li et al. [6] proposed a duplication-aware garbage 
collection (DA-GC) technique for flash memory-based 
virtual memory systems. DA-GC does not move the 
duplicated pages in the flash memory during the valid page 
migration. Therefore, the pages are removed from the flash 
memory after GC erases the victim blocks; however, these 
pages remain at the main memory. Since the target of the 
DA-GC technique is the swap space of virtual memory 
systems, there is no critical consistency problem even when 
the duplicated pages are lost from the main memory by a 
sudden power failure. The duplicated pages, which remain 
only in the main memory after GC, are written in the flash 
memory when they are swapped out. Although DA-GC can 
reduce the garbage collection overhead of the page-level 
mapping FTL, it can increase the garbage collection 
overhead of the hybrid mapping FTLs. This is because DA-
GC generates more write requests on the log buffer, and 
thus invokes frequent GCs in the hybrid mapping. 

Our proposed techniques are based on the DA-GC 
scheme. However, the proposed LDA-VBS and LDA-BM 
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techniques solve the problem of DA-GC in the hybrid 
mapping FTLs by considering the locality of duplicated data. 

Jung et al. [16] proposed a flash-aware swap system 
(FASS), where the operating system directly manages the 
flash swap space to reduce the garbage collection overhead. 
Kwon et al. [17] modified the greedy garbage collection 
policy [18] for flash swap space to minimize the garbage 
collection overhead and to prolong the life time of flash 
memory. Their swap-aware garbage collection assumed that 
a recently swapped-out page has a high probability to be 
swapped-in. These flash-aware swapping techniques can be 
used in combination with our approach. 

III. 2BMOTIVATIONS 
In this section, we describe the DA-GC technique and its 

disadvantage in hybrid mapping. In hybrid mapping, the log 
blocks are used as the write buffer for data blocks. If an 
update request for valid pages of data block occurs, then the 
new data is written in a log block and the old page in the 
associated data block is invalidated. If there is no free space 
in the log block, then the GC is invoked.  

Figure 1 shows an example of duplication-unaware 
garbage collection (DU-GC) in the FAST hybrid mapping. 
The page cache has six pages that are sorted by their access 
recencies. Page P2 is the least-recently-used (LRU) page 
and page P9 is the most-recently-used (MRU) page. The 
pages, P2 and P11, are dirty (i.e., the page cache and the 
flash memory have different data) and the remaining pages 
are clean. Flash memory consists of seven physical blocks 
whose physical block numbers (PBNs) are 0~6. PBN 0, 
PBN 1 and PBN 2 are allocated for data blocks, and PBN 3 
and PBN 4 are allocated for log blocks. Since the data 
blocks are managed by the block-level mapping, all pages 
are written at the specified page offsets within the data 
block. PBN 5 and PBN 6 are free blocks reserved for 
garbage collection.  We assume that each flash block is 
composed of four pages. The log blocks have the logical 

 
Figure 1.  An example of duplication-unaware garbage collection 

pages P1, P3, P4, P5, P8, and P10, and the corresponding 
pages in the data blocks are invalidated. PBN 3 in the log 
buffer is associated with data blocks PBN 0 and PBN 2. 
PBN 4 is associated with only PBN 1. 

Garbage collection should be invoked since there is no 
free space in the log buffer. If PBN 3 is selected for a victim 
block, then the GC copies all valid pages in PBN 3, PBN 0, 
and PBN 2 to the free blocks PBN 5 and PBN 6. The valid 
pages P0~P3 and P8~P11 are copied to PBN 5 and PBN 6, 
respectively. Since all valid pages in both the log block and 
its associated data blocks are merged into free blocks, this 
step is called the block merge. After the block merge is 
completed, PBN 5 and PBN 6 are changed into data blocks. 
PBN 0, PBN 2 and PBN 3 are erased, and one of them is 
allocated for a log block.  

The DU-GC does not consider the duplicated pages in 
the page cache. If we have the information on the page 
cache, then a more efficient GC can be implemented by 
considering the duplicated pages that both the page cache 
and flash memory have.  Figure 2 shows the duplication-
aware garbage collection (DA-GC) scheme [6]. When GC 
selects PBN 3 as a victim block, GC does not copy the 
duplicated pages P1, P2, P9, and P11 since the page cache 
also has these pages. Therefore, the number of page 
migrations is reduced by half. Instead, P1 and P9 are 
changed into dirty states in the page cache since they should 
be written in the flash memory when they are evicted from 
the page cache. 
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Figure 2.  An example of DA-GC 

Although the DA-GC scheme significantly reduces the 
block merge cost, more pages will be sent to the flash 
memory from the page cache since all the duplicated clean 
pages are changed into dirty pages. The increased number of 
page evictions in the DA-GC scheme has no adverse effects 
on garbage collection in page-level mapping since the pages 
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can be written at any location in a block. Therefore, DA-GC 
is an effective technique under page-level mapping. 
However, DA-GC may invoke frequent garbage collections 
in hybrid mapping. For instance, in Figure 2, four physical 
pages in PBN 5 and PBN 6 are not used in DA-GC. Instead, 
when pages P1 and P2 are evicted from the page cache by 
page replacement, they should be written in the log blocks. 
As a result, the log blocks consume the free space more 
quickly.  

If these pages remain clean until they are evicted from 
the page cache, i.e., GC or host requests does not change 
these pages into dirty, then these pages will not be written in 
the flash memory. Especially, since page P1 has not recently 
been used, there is little possibility for the page to be 
updated (thus changed to dirty) before it is evicted from the 
page cache. Therefore, it is better to copy page P1 during 
the garbage collection. However, since page P9 is the MRU 
page, it has a high possibility to be changed into dirty even 
though GC does not change its state. Therefore, excluding 
page P9 from page migration will not increase the frequency 
of GC. Consequently, the DA-GC technique should be 
applied selectively considering the localities of the 
duplicated pages. 

To solve the problem of DA-GC in hybrid mapping, we 
propose a locality-aware victim block selection technique, 
called LDA-VBS, and a locality-aware block merge 
technique, called LDA-BM, for DA-GC. These techniques 
divide the page cache into two regions, LRU region and 
MRU region, and use different policies for the regions. The 
LDA-VBS technique avoids selecting the victim log block 
that includes duplicated clean pages in the LRU region of 
page cache, as much as possible. The LDA-BM technique 
copies the duplicated pages during page migration if the 
corresponding pages in the page cache are clean and are 
located in the LRU region in order to not change them into 
dirty. In addition, we propose the LRU dirty page eviction 
(LDE) technique that enforces the dirty pages in the LRU 
region to be evicted during garbage collection to reduce the 
unnecessary page migrations. The proposed techniques can 
prevent the frequent garbage collections of DA-GC in 
hybrid mapping while exploiting the advantage of DA-GC 
that reduces unnecessary copies during garbage collection. 

IV. 3BLOCALITY-AWARE GARBAGE COLLECTION 

A. 6BLocality and Duplication-Aware Victim Block Selection 
General victim block selection algorithms consider the 

block merge cost when selecting a victim block. However, 
in order to prevent the duplicated clean pages in the LRU 
region of page cache from being changed into dirty, we 
should consider not only the merge cost, but also the 
potential loss resulting from the increase of write requests in 
DA-GC. The proposed LDA-VBS technique optimizes both 
the garbage collection overhead and the potential loss. 

Under the DA-GC scheme, we can represent the garbage 
collection overhead, CGC(Li), for a victim log block, Li, as 
follows:  

)()()1)(()( wrieiiGC CCLCLALC +⋅+⋅+= δ         (1) 

where A(Li) and δ(Li) denote the number of data blocks 
associated with Li and the number of non-duplicated valid 
pages in Li and its associated data blocks (thus they exist 
only in the flash memory), respectively. For example, in 
Figure 2, A(PBN 3) is 2 and δ(PBN 3) is 4. Ce, Cw and Cr 
represent the timing costs for block erase, page write and 
page read in the flash memory, respectively. Only δ(Li) 
number of flash page reads and writes is required since DA-
GC does not copy the duplicated pages during the block 
merge. After the block merge is completed, A(Li) number of 
data bocks and one log block are erased. Therefore, A(Li)+1 
number of block erases is required.   

However, as explained at Section III, if DA-GC is used, 
then the duplicated clean pages are changed into dirty pages, 
invoking more write requests from the page cache to the 
flash memory. Therefore, DA-GC has the potential loss as 
follows: 

)()()( αγ +⋅= wiiloss CLLC                      (2) 

where γ(Li) represents the number of duplicated pages of the 
log block Li whose corresponding pages in page cache are 
changed from clean into dirty by the DA-GC and are not 
updated further by following host requests until they are 
evicted. In Figure 2, two dirty pages are generated by DA-
GC. However, since page P9 has a high possibility to be 
changed to dirty by host requests, the value of γ(Li) will be 
smaller than 2. The cost for writing the dirty pages in the 
flash memory is γ(Li) ⋅ Cw. In addition, the write requests 
invoke more garbage collections. We add the cost of α that 
represents the average block merge cost per a dirty page 
write in order to consider the overhead. The approximated 
value of α is Cr+Cw+Ce/Npage because a dirty page written in 
the flash memory invokes one page read/write for page 
migration and one block erase per Npage number of pages, 
where Npage represents the total number of flash pages in a 
flash block.  

However, it is impossible to know the exact values of 
γ(Li) during GC without the knowledge of future host 
requests. To predict these values, we used the 3-region LRU 
buffer [15], with which we can predict the update 
probability of each page in the page cache based on the 
locality information.   

To consider both the garbage collection overhead and 
the potential loss, the overall garbage collection cost can be 
represented as follows: 

)()()( ilossiGCitotal LCLCLC +=                       (3) 

The LDA-VBS technique selects the victim block with 
the lowest value of Ctotal(Li). LDA-VBS can then prevent 
DA-GC from invoking a large potential loss. 
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B. 7BLocality and Duplication-Aware Block Merge 
Since the pages in the page cache have different 

probabilities to be updated, the LDA-BM technique uses 
different policies depending on the future access probability 
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Figure 3.  An example of LDA-BM 

of each page. The clean pages in the MRU region of page 
cache have high probabilities to be changed to dirty before 
they are evicted from the page cache even though DA-GC 
does not change their states. On the contrary, the clean 
pages in the LRU region of page cache have low 
possibilities to be changed to dirty by host requests. 
Therefore, it may be beneficial to not apply the DA-GC 
technique to the clean pages in the LRU region. Then, we 
can prevent the clean data from being changed into dirty 
data. Though the page migration cost increases during GC, 
we can reduce the frequency of GC that invokes a large cost. 

Figure 3 shows the LDA-BM technique. Page P1 is 
copied during the block merge operation in the flash 
memory since the corresponding page in page cache is clean 
and is located in the LRU region, and P1 in the page cache 
remains clean. However, the DA-BM technique is applied to 
the clean page P9 in the MRU region of page cache and to 
the dirty pages P2 and P11. Even though page P9 is changed 
to dirty, the potential loss by the page will be small since it 
has a high possibility of being changed to dirty by host 
requests. 

Under the LDA-BM technique, the victim block 
selection technique should be modified. We can represent 
the garbage collection overhead, CGC(Li),  for a victim log 
block, Li, as follows. 

)())()(()1)(()( wriieiiGC CCLLCLALC +⋅++⋅+= πδ    (4) 

where π(Li) denotes the number of duplicated pages of the 
log block Li whose corresponding pages in page cache are 
duplicated clean pages in the LRU region. Compared to the 
DA-GC cost in Equation (1), LDA-BM has a larger GC cost 
since it requires copying more pages in the flash memory. 
However, LDA-BM reduces the potential loss of DA-GC 
since it does not change the clean pages in the LRU region 
into dirty pages. Therefore, the potential loss when DA-GC 
uses LDA-BM is as follows: 

)()()( αγ +⋅= wiMRUiloss CLLC             (5) 

where γMRU(Li) is the number of duplicated pages of the log 
block Li whose corresponding pages in page cache are clean 
pages in the MRU region and are changed from clean into 
dirty by DA-GC. The potential loss is smaller than that in 
Equation (2) since γ(Li) is larger than γMRU(Li). 

C. 8BLRU Dirty Page Eviction 
The LRU dirty page eviction (LDE) technique exploits 

the duplicated dirty data in the LRU region of the page 
cache in order to reduce the GC cost. It is better to move the 
duplicated dirty pages from the page cache to the flash 
memory during garbage collection because the dirty pages 
in the LRU region have high probabilities of being evicted 
to the flash memory without further updates. Then, we can 
efficiently utilize the data blocks by reducing the number of 
flash memory pages unused by DA-GC. The copied dirty 
pages in the page cache are changed to clean in the page 
cache. 

We can simultaneously use both LDA-BM and LDE 
techniques during the block merge operation to apply 
different policies with DA-BM for the duplicated pages in 
the LRU region of the page cache. While LDA-BM is 
applied to the duplicated clean pages, LDE is applied to the 
duplicated dirty pages. We can reduce the potential garbage 
collection overhead invoked by DA-GC by using different 
policies for the pages in the LRU region. 

When both the LDA-BM and LDE techniques are used, 
the garbage collection overhead, CGC(Li),  for a victim log 
block, Li, is calculated as follows: 

)()(
)())()(()1)(()(

wbi

wriieiiGC

CCL
CCLLCLALC

+⋅+
+⋅++⋅+=

θ
πδ (6) 

where θ(Li) denotes the number of duplicated pages of the 
log block Li whose corresponding pages in page cache are 
duplicated dirty pages in the LRU region. Cb represents the 
transfer cost of a page from the page cache to the flash 
memory. We assume that Cb is larger than Cr. Compared to 
the DA-GC cost in Equations (1) and (4), using both LDA-
BM and LDE techniques invokes a larger GC cost since it 
should copy θ(Li) number of pages from the page cache to 
the flash memory. However, the LDE technique generates a 
potential benefit to the GC cost. Since LDE changes the 
duplicated dirty pages in the LRU region of page cache into 
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clean pages, the number of write requests to the log blocks 
is reduced. Therefore, the total GC cost is as follows: 

).()()(
and)()()(

),()()()(

αγ
αγ

+⋅=
+⋅=

−+=

wiLRUibenefit

wiMRUiloss

ibenefitilossiGCitotal

CLLC
CLLCwhere

LCLCLCLC
               (7) 

where γLRU(Li) represents the number of duplicated pages of 
the log block Li whose corresponding pages in page cache 
are dirty pages in the LRU region and are changed into 
clean by LDE without being updated by following host 
requests. 

Table I summarizes the changes of duplicated pages 
under each scheme. ρ(Li) denotes the number of duplicated 
pages of the log block Li whose corresponding pages in page 
cache are duplicated in the MRU region. DA-GC and LDA-
VBS have the lowest GC costs but have the largest potential 
loss on future GC costs since they change all the duplicated 
clean pages in the page cache into dirty pages. LDA-BM has 
a higher GC cost than DA-GC but has a lower potential loss 
because it does not change the states of the duplicated clean 
pages in the LRU region. By using LDE in addition to 
LDA-BM, the GC cost increases but there is potential 
benefit since the duplicated dirty pages in the LRU region 
are changed into clean pages. 

TABLE I.  
THE CHANGES OF BUFFER STATE IN EACH SCHEME 

Cache 
Area 

Before 
GC Numbers 

After GC 

DA-GC 

LDA-VBS 
LDA-BM 

LDA-BM 

+ LDE 

MRU 
region 

Dirty 
ρ(Li) 

Dirty Dirty Dirty 

Clean Dirty Dirty Dirty 

LRU 
region 

Dirty θ(Li) Dirty Dirty Clean 

Clean π(Li) Dirty Clean Clean 

Npage= ρ(Li)+θ(Li)+ π(Li)+δ(Li) 

V. 4BEXPERIMENTAL RESULT 

A. 9BExperiment Environments 
We have implemented a trace-driven simulator in order 

to evaluate the performances of the proposed schemes. Our 
simulator consists of the page cache and the flash memory. 
The flash memory model used in the simulation is based on 
Samsung SLC large block NAND flash memory [19]. Each 
flash block is composed of 64, 2 KB pages. The access 
times of page read, page write and block erase (Cr, Cw and 
Ce) are 25 usec, 200 usec and 2 msec, respectively. The 
page cache is implemented using the 3-region LRU buffer 
algorithm [15] to divide it into the LRU and MRU regions.  

We used five real virtual memory traces collected by the 
Valgrind 3.4.1 toolset [20]. They are captured while 
executing the applications in Table II on a Linux system. 

The seven schemes, shown in Table III, are compared. 
Each scheme uses different victim block selection and block 
merge techniques. All schemes use the FAST hybrid 
mapping FTL. We assumed that the normal VBS algorithm 
is the round-robin selection policy, which selects the oldest 
log block as a victim. Since the oldest blocks generally have 
a small number of valid pages, the round-robin selection 
policy invokes small GC overheads. 

TABLE II.  
THE CHARACTERISTICS OF THE WORKLOAD USED IN EXPERIMENTS 

applications write ratio scenario 
acrobat 23.1% view PDF file 
gqview 21.1% picture modification after 

viewing image file 
kword 14.9% data modification 
mozilla 13.2% web information search 

(google, yahoo, amazon etc.) 
office 19.7% slide show 

TABLE III.  
A SUMMARY OF THE EVALUATED SCHEMES 

schemes victim block selection block merge LDE 
DU-GC RR DU-BM No 
DA-GC RR DA-BM No 

LDA-GC1 LDA-VBS DA-BM No 
LDA-GC2 RR LDA-BM No 
LDA-GC3 LDA-VBS LDA-BM No 
LDA-GC4 RR LDA-BM Use 
LDA-GC5 LDA-VBS LDA-BM Use 
RR : Round-Robin policy 

B. 10BPerformance Analysis 
Figure 4 presents the total I/O execution times of the 

examined GC schemes normalized by those of DU-GC. The 
I/O execution times include the flash read and write costs 
invoked by the garbage collection as well as the page swap-
out. The page cache size is 4 MB and the flash memory has 
32 log blocks. The performance of DA-GC is similar or 
inferior to that of DU-GC because the potential loss of DA-
GC is larger than the GC cost reduction resulting from not 
copying the duplicated pages. From the results of LDA-GC1 
and LDA-GC2, we can know that the LDA-VBS technique  

 
Figure 4.  The total execution time comparison 
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Figure 5.  The execution times and average numbers of duplicated pages 

while varying the page cache size (kword workload) 
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(which presents the performance improvement by 10% on 
average) is more effective than the LDA-BM technique 
(which presents the performance improvement by 6% on 
average). This is because LDA-VBS can significantly 
reduce the garbage collection overhead as well as the 
potential loss. 

The LDA-GC3 scheme, which uses both LDA-VBS and 
LDA-BM, shows more significant performance 
improvements (by 24% on average) due to the synergetic 
effect of the two techniques. The LDA-GC4 scheme, which 
uses both LDA-BM and LDE, improves the performance by 
28% on average. The LDA-GC5 scheme, which uses all the 
proposed techniques, reduces the I/O execution times by 
37% on average compared to that of DU-GC. 

We also evaluated the effect of page cache size. Figure 5 
illustrates the total I/O execution time and the average 
number of duplicated pages (Ndup) for kword workload 
while varying the size of the page cache from 1 MB to 16 
MB. The number of log blocks is fixed to 32. The 
performances are improved as the size of page cache 
increases because the hit ratio of page cache increases. 
LDA-GC3 and LDA-GC5 show better performances than 
does DU-GC regardless of the page cache size. Moreover, 
as the size of the page cache increases, the performance 
gaps between DU-GC and LDA-GC schemes are increased 
since the number of duplicated pages increases as shown in 
Figure 5. When there are many duplicated pages, the 
proposed schemes have more chances to reduce the garbage 
collection overhead. 

We also evaluated the effect of the flash log buffer size. 
Figure 6 shows the I/O execution time and the average 
number of duplicated pages while varying the number of log 
blocks in the flash memory from 8 to 128. The page cache 
size is fixed to 4 MB. As the number of log blocks increases, 
the execution times are reduced. When there are many log 
blocks, it takes a long time for a log block to be selected as a 
victim block. Therefore, when a log block is selected as a 
victim block by the garbage collection, most of the pages in 
the victim block may be invalid, and thus the GC invokes a 
small page migration cost. The performance gaps between  

 
Figure 6.  The execution times and average numbers of duplicated pages 

while varying the number of log blocks (kword workload) 

DU-GC and LDA-GC schemes increase as the number 
of log blocks increases. This is because LDA-VBS can find 
a more proper victim block when there are many log blocks 
available. 

The average number of duplicated pages increases as the 
number of log blocks increases since LDA-VBS, which 
selects the log block with many duplicated pages, has more 
victim candidates. However, the value reaches its peak 
when the number of log blocks is 32. When there are too 
many log blocks, the victim block has a small number of 
valid pages, and thus the number of duplicated pages 
decreases. 

Figure 7 shows the number of garbage collections 
invoked during benchmark executions under the proposed 
GC schemes. These values are normalized by those of DU-
GC. While LDA-GC4 and LDA-GC5 that use the LDE 
technique outperform DU-GC by about 4~5%, other 
schemes, i.e., DA-GC, LDA-GC1, LDA-GC2, and LDA-GC3, 
invoke larger numbers of GCs than does DU-GC due to the 
potential loss on GC cost. Since all proposed schemes show 
the performance improvements over DU-GC as shown in 
Figure 4, we can infer that each GC invocation requires 
smaller cost under the proposed GC schemes than DU-GC.  

 

 
Figure 7.  The number of garbage collections 
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Figure 8.  The average garbage collection cost 

Accordingly, we measured the average cost per garbage 
collection under the proposed GC schemes as shown in 
Figure 8. These values are normalized by those of DU-GC. 
All GC schemes provide smaller average GC costs than 
does DU-GC. Especially, the average GC costs of LDA-GC1, 
LDA-GC3, and LDA-GC5, which use the LDA-VBS 
technique, are lower than those of other schemes since 
LDA-VBS considers the GC cost of the victim log block. 
Although LDA-GC4 and LDA-GC5 have similar numbers of 
garbage collections in Figure 7, LDA-GC5 achieves better 
performance than LDA-GC4 due to the lower average GC 
cost as shown in Figure 8. 

VI. 5BCONCLUSION 
Flash memory is a good device for swap space of virtual 

memory systems. For the flash memory-based virtual 
memory systems, the locality and duplication-aware garbage 
collection technique are proposed, which can reduce the 
garbage collection overhead by removing the duplicated 
pages from the flash memory. In order to solve the potential 
loss problem of the previous duplication-aware garbage 
collection technique in the hybrid mapping FTLs, the 
proposed locality and duplicated-aware victim block 
selection (LDA-VBS) technique considers both the garbage 
collection overhead and the potential loss. The locality and 
duplicated-aware block merge (LDA-BM) and LRU dirty 
page eviction (LDE) techniques selectively apply the 
duplication-aware page migration depending on the locality 
of each page in the page cache. The experimental results 
showed that the LDA-VBS and LDA-BM techniques reduce 
the total I/O execution time by 10% and 6%, on average, 
compared to that of DU-GC, respectively.  By applying both 
the LDA-VBS and LDA-BM techniques, the performance 
can be improved by 24% on average compared to that of 
DU-GC. By additionally adopting the LDE technique, 
performance can be improved by 37%, on average, 
compared to that of DU-GC.     
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