
Locality and Duplication-Aware Garbage Collection for Flash Memory-Based
Virtual Memory Systems

Seunggu Ji and Dongkun Shin

School of ICE
Sungkyunkwan University

Suwon, Korea
{skyjsg, dongkun}@skku.edu

Abstract—As embedded systems adopt monolithic kernels,
NAND flash memory is used for swap space of virtual memory
systems. While flash memory has the advantages of low-power
consumption, shock-resistance and non-volatility, it requires
garbage collections due to its erase-before-write characteristic.
The efficiency of garbage collection scheme largely affects the
performance of flash memory. This paper proposes a novel
garbage collection technique which exploits data redundancy
between the main memory and flash memory in flash memory-
based virtual memory systems. The proposed scheme takes the
locality of data into consideration to minimize the garbage
collection overhead. Experimental results demonstrate that the
proposed garbage collection scheme improves performance by
37% on average compared to previous schemes.

Keywords-NAND flash memory, Flash Translation Layer
(FTL), Garbage Collection, Virtual Memory, Buffer
Management

I. 0BINTRODUCTION
NAND flash memory is widely used in building storage

systems of embedded systems such as cellular phones,
digital cameras and MP3 players. NAND flash memory has
the merits of low power consumption, high random access
performance and high shock-resistance. Due to the price
reduction of NAND flash memory, solid-state disk (SSD),
which is composed of several flash chips, has recently been
replacing hard disk drives (HDD) in desktop PCs and
enterprise servers.

Flash memory is a good device for swap space of virtual
memory systems as well as file and code storages due to its
low access cost [1, 2, 3]. Compared with hard disk drive,
flash memory can reduce the page swapping cost
significantly. As embedded systems adopt monolithic
kernels such as embedded Linux and MS Windows CE,
flash memory-based virtual memory systems will be popular.
However, most of researches on flash memory focused on
the flash file systems and there are only a few studies on the
flash memory-based virtual memory systems.

The characteristics of flash memory are quite different
from those of hard disk. A flash memory chip is composed
of several blocks and each block consists of multiple pages.
For example, in a large block MLC NAND flash memory,
one block is composed of 128 pages, and the size of each
page is 4 KB. Flash memory supports three commands: read,
program and erase. While the units for read and program
commands are page, blocks are the units for erase command.

We cannot overwrite new data at flash memory pages that
have already been programmed. The corresponding block
should be erased before data is written to the page. This
feature is called ‘erase-before-write’ constraint. Therefore,
most flash storage systems write the updated data to other
non-programmed pages, and they invalidate the old page.
This requires an address mapping scheme to translate a
logical address used in operating systems to a physical
address used in flash memory.

In order to handle these special features, a software layer
called flash translation layer (FTL) is usually used between
the file system and flash memory [4, 5]. FTL has two main
functions. The first one is address mapping, which can be
divided into three categories depending on the address
mapping granularities: block-level, page-level and hybrid
mappings. The second function of FTL is garbage collection
(GC) that reclaims the flash pages that have been
invalidated by the update operations. The GC has three steps,
i.e., victim block selection, valid page migration and victim
block erase. The victim block selection finds a victim block
that will invoke the lowest GC cost, i.e., the smallest
number of page migrations. The valid page migration moves
the valid pages in the victim block to other clean blocks.
The last step erases the victim block for future write
requests.

GC invokes a significant overhead since it requires a
large number of page migrations and block erasures.
Therefore, an efficient GC scheme is essential for achieving
high performance flash memory storage systems. There
have been many studies on efficient garbage collection.
However, only few works focused on the GC for flash
memory-based virtual memory systems.

When flash memory is used for a swap space, the GC
should exploit the data redundancy between the main
memory and flash memory to eliminate unnecessary valid
page copying. When a virtual memory page is swapped in,
this page exists in both the main memory and flash storage.
Since this page will be written back to flash memory when it
gets swapped out next time, we can reduce page copying
during GC if we do not move these duplicated pages of a
victim block to free space. The duplication-aware garbage
collection scheme (DA-GC) [6] uses the technique. DA-GC
is designed assuming that FTL uses page-level address
mapping and thus shows a good performance in the page-
level mapping. However, DA-GC cannot improve the
performance of garbage collection in the hybrid mapping.

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.307

1764

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.307

1764

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.307

1764

In this paper, we propose the locality and duplication-
aware victim block selection technique (LDA-VBS) and the
locality and duplication-aware block merge technique
(LDA-BM) for flash memory-based virtual memory systems.
These techniques significantly reduce the DA-GC overhead
in the hybrid mapping FTL by considering the update
probability of duplicated data. We evaluated the proposed
techniques using a trace-driven simulator. The experimental
results show that the proposed techniques can improve the
overall flash I/O performance, on average, by 37%
compared to the existing duplication-unaware garbage
collection (DU-GC) scheme for virtual memory benchmarks.

The remainder of the paper is organized as follows:
Section 2 provides a survey of the relevant literature on
flash memory management techniques. Section 3 presents
the motivations of this paper. The detailed descriptions on
LDA-VBS and LDA-BM techniques are provided at Section
4. Section 5 presents the performance evaluation results.
Finally, Section 6 concludes the paper.

II. 1BRELATED WORKS
Most previous studies on flash memory focused on

address mapping schemes. Block-level mapping [7]
maintains the translation information between the logical
block address and the physical block address; therefore, the
offsets of a page are the same within both logical block and
physical block. Block-level mapping requires only a small-
sized mapping table. However, even when only a small
portion of a block should be updated, all the non-updated
pages should be copied to other clean block invoking a
significant page copying overhead.

In page-level mapping [8], a logical page address is
mapped to a physical page address. Due to the independent
management of pages, page-level mapping is more efficient
than the block-level mapping, but it requires a large memory
space for the mapping table.

 Hybrid mapping [9, 10, 11] uses both the page-level
mapping and the block-level mapping. It reserves a portion
of flash blocks as a log buffer. Hence, the FTLs with hybrid
mapping are called the log buffer-based FTLs. Blocks in the
log buffer are called the log blocks. The normal data blocks
use block-level mapping, while the log blocks use page-
level mapping. All write requests are first sent to the log
buffer. If there is no free space in the log buffer, then the
valid data in a log block is moved into data blocks to make
free space. FTLs using hybrid mapping can yield high
performance with a small-sized mapping table. Therefore,
most of FTLs employ the hybrid mapping technique.

There are several studies on log buffer-based FTLs. In
the block-associative sector translation (BAST) [9] scheme,
a log block is associated with only one data block, that is,
when the pages in a data bock are updated, the new data
should be written at the associated log block. The GC is
invoked when there are no clean pages in the associated log
block or no log block is associated with the target data
block; this occurs frequently for random writes. The GC
selects one of the log blocks, and moves all valid pages of
this log block and its associated data block to a clean block.

The log block and the data block are then erased and are
exploited as new log blocks.

A drawback of the BAST scheme is its frequent GCs for
random write patterns. To solve this problem, the fully-
associative sector translation (FAST) scheme was proposed
[10], where one log block can be associated with multiple
data blocks. Therefore, it can prevent the frequent GCs for
random write requests. However, the FAST scheme requires
a large GC cost once garbage collection is invoked because
it should move many valid pages in several data blocks that
are associated with the victim log block.

 Generally, flash memory storage systems have a buffer
cache to hide the long latency of flash memory. The buffer
cache management is important for achieving high
performance flash storage since the I/O requests on flash
memory change depending on the buffer cache management
techniques. Jo et al. [12] proposed a flash-aware buffer
management scheme, called FAB, that uses block-level
buffer replacement policy that evicts all the pages of a
logical block at a time to reduce the GC cost. The logical
block that has the largest number of pages in the buffer
cache is selected as a victim to be replaced in the FAB
scheme. Park et al. [13] proposed a clean-first LRU
(CFLRU) replacement policy that delays the flushing of
dirty page in the buffer cache to reduce the number of write
requests to the flash memory. Kim et al. [14] proposed a
BPLRU buffer management scheme that also evicts all the
pages of a victim block like FAB, but it determines the
victim block based on the block-level LRU value. In
addition, BPLRU writes a whole block into a log block
using the block padding technique. Therefore, all log blocks
can be switched into a data block without page migrations.

Recently, Lee et al. [15] have proposed a buffer-aware
garbage collection (BA-GC) technique. BA-GC exploits the
duplicated pages that are written in both the buffer cache
and flash memory. During garbage collection, the duplicated
dirty pages are evicted into the flash memory to eliminate
unnecessary page migrations.

Li et al. [6] proposed a duplication-aware garbage
collection (DA-GC) technique for flash memory-based
virtual memory systems. DA-GC does not move the
duplicated pages in the flash memory during the valid page
migration. Therefore, the pages are removed from the flash
memory after GC erases the victim blocks; however, these
pages remain at the main memory. Since the target of the
DA-GC technique is the swap space of virtual memory
systems, there is no critical consistency problem even when
the duplicated pages are lost from the main memory by a
sudden power failure. The duplicated pages, which remain
only in the main memory after GC, are written in the flash
memory when they are swapped out. Although DA-GC can
reduce the garbage collection overhead of the page-level
mapping FTL, it can increase the garbage collection
overhead of the hybrid mapping FTLs. This is because DA-
GC generates more write requests on the log buffer, and
thus invokes frequent GCs in the hybrid mapping.

Our proposed techniques are based on the DA-GC
scheme. However, the proposed LDA-VBS and LDA-BM

176517651765

techniques solve the problem of DA-GC in the hybrid
mapping FTLs by considering the locality of duplicated data.

Jung et al. [16] proposed a flash-aware swap system
(FASS), where the operating system directly manages the
flash swap space to reduce the garbage collection overhead.
Kwon et al. [17] modified the greedy garbage collection
policy [18] for flash swap space to minimize the garbage
collection overhead and to prolong the life time of flash
memory. Their swap-aware garbage collection assumed that
a recently swapped-out page has a high probability to be
swapped-in. These flash-aware swapping techniques can be
used in combination with our approach.

III. 2BMOTIVATIONS
In this section, we describe the DA-GC technique and its

disadvantage in hybrid mapping. In hybrid mapping, the log
blocks are used as the write buffer for data blocks. If an
update request for valid pages of data block occurs, then the
new data is written in a log block and the old page in the
associated data block is invalidated. If there is no free space
in the log block, then the GC is invoked.

Figure 1 shows an example of duplication-unaware
garbage collection (DU-GC) in the FAST hybrid mapping.
The page cache has six pages that are sorted by their access
recencies. Page P2 is the least-recently-used (LRU) page
and page P9 is the most-recently-used (MRU) page. The
pages, P2 and P11, are dirty (i.e., the page cache and the
flash memory have different data) and the remaining pages
are clean. Flash memory consists of seven physical blocks
whose physical block numbers (PBNs) are 0~6. PBN 0,
PBN 1 and PBN 2 are allocated for data blocks, and PBN 3
and PBN 4 are allocated for log blocks. Since the data
blocks are managed by the block-level mapping, all pages
are written at the specified page offsets within the data
block. PBN 5 and PBN 6 are free blocks reserved for
garbage collection. We assume that each flash block is
composed of four pages. The log blocks have the logical

Figure 1. An example of duplication-unaware garbage collection

pages P1, P3, P4, P5, P8, and P10, and the corresponding
pages in the data blocks are invalidated. PBN 3 in the log
buffer is associated with data blocks PBN 0 and PBN 2.
PBN 4 is associated with only PBN 1.

Garbage collection should be invoked since there is no
free space in the log buffer. If PBN 3 is selected for a victim
block, then the GC copies all valid pages in PBN 3, PBN 0,
and PBN 2 to the free blocks PBN 5 and PBN 6. The valid
pages P0~P3 and P8~P11 are copied to PBN 5 and PBN 6,
respectively. Since all valid pages in both the log block and
its associated data blocks are merged into free blocks, this
step is called the block merge. After the block merge is
completed, PBN 5 and PBN 6 are changed into data blocks.
PBN 0, PBN 2 and PBN 3 are erased, and one of them is
allocated for a log block.

The DU-GC does not consider the duplicated pages in
the page cache. If we have the information on the page
cache, then a more efficient GC can be implemented by
considering the duplicated pages that both the page cache
and flash memory have. Figure 2 shows the duplication-
aware garbage collection (DA-GC) scheme [6]. When GC
selects PBN 3 as a victim block, GC does not copy the
duplicated pages P1, P2, P9, and P11 since the page cache
also has these pages. Therefore, the number of page
migrations is reduced by half. Instead, P1 and P9 are
changed into dirty states in the page cache since they should
be written in the flash memory when they are evicted from
the page cache.

P9 P7P11 P2P1P5

DirtycleanMRU LRU

(Data block) (Log block)

(Free block)

Victim block

P1

P3

P8

P10

P4

P5

P4

P4

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

PBN 0 PBN 1 PBN 2 PBN 3 PBN 4

P0

P3

P8

P10

PBN 5 PBN 6

Page Cache
(SDRAM)

Flash
memory

P9 P7P11 P2P1P5

change state

Before
GC

After
GC

page copy

Invalid page

Figure 2. An example of DA-GC

Although the DA-GC scheme significantly reduces the
block merge cost, more pages will be sent to the flash
memory from the page cache since all the duplicated clean
pages are changed into dirty pages. The increased number of
page evictions in the DA-GC scheme has no adverse effects
on garbage collection in page-level mapping since the pages

176617661766

can be written at any location in a block. Therefore, DA-GC
is an effective technique under page-level mapping.
However, DA-GC may invoke frequent garbage collections
in hybrid mapping. For instance, in Figure 2, four physical
pages in PBN 5 and PBN 6 are not used in DA-GC. Instead,
when pages P1 and P2 are evicted from the page cache by
page replacement, they should be written in the log blocks.
As a result, the log blocks consume the free space more
quickly.

If these pages remain clean until they are evicted from
the page cache, i.e., GC or host requests does not change
these pages into dirty, then these pages will not be written in
the flash memory. Especially, since page P1 has not recently
been used, there is little possibility for the page to be
updated (thus changed to dirty) before it is evicted from the
page cache. Therefore, it is better to copy page P1 during
the garbage collection. However, since page P9 is the MRU
page, it has a high possibility to be changed into dirty even
though GC does not change its state. Therefore, excluding
page P9 from page migration will not increase the frequency
of GC. Consequently, the DA-GC technique should be
applied selectively considering the localities of the
duplicated pages.

To solve the problem of DA-GC in hybrid mapping, we
propose a locality-aware victim block selection technique,
called LDA-VBS, and a locality-aware block merge
technique, called LDA-BM, for DA-GC. These techniques
divide the page cache into two regions, LRU region and
MRU region, and use different policies for the regions. The
LDA-VBS technique avoids selecting the victim log block
that includes duplicated clean pages in the LRU region of
page cache, as much as possible. The LDA-BM technique
copies the duplicated pages during page migration if the
corresponding pages in the page cache are clean and are
located in the LRU region in order to not change them into
dirty. In addition, we propose the LRU dirty page eviction
(LDE) technique that enforces the dirty pages in the LRU
region to be evicted during garbage collection to reduce the
unnecessary page migrations. The proposed techniques can
prevent the frequent garbage collections of DA-GC in
hybrid mapping while exploiting the advantage of DA-GC
that reduces unnecessary copies during garbage collection.

IV. 3BLOCALITY-AWARE GARBAGE COLLECTION

A. 6BLocality and Duplication-Aware Victim Block Selection
General victim block selection algorithms consider the

block merge cost when selecting a victim block. However,
in order to prevent the duplicated clean pages in the LRU
region of page cache from being changed into dirty, we
should consider not only the merge cost, but also the
potential loss resulting from the increase of write requests in
DA-GC. The proposed LDA-VBS technique optimizes both
the garbage collection overhead and the potential loss.

Under the DA-GC scheme, we can represent the garbage
collection overhead, CGC(Li), for a victim log block, Li, as
follows:

)()()1)(()(wrieiiGC CCLCLALC +⋅+⋅+= δ (1)

where A(Li) and δ(Li) denote the number of data blocks
associated with Li and the number of non-duplicated valid
pages in Li and its associated data blocks (thus they exist
only in the flash memory), respectively. For example, in
Figure 2, A(PBN 3) is 2 and δ(PBN 3) is 4. Ce, Cw and Cr
represent the timing costs for block erase, page write and
page read in the flash memory, respectively. Only δ(Li)
number of flash page reads and writes is required since DA-
GC does not copy the duplicated pages during the block
merge. After the block merge is completed, A(Li) number of
data bocks and one log block are erased. Therefore, A(Li)+1
number of block erases is required.

However, as explained at Section III, if DA-GC is used,
then the duplicated clean pages are changed into dirty pages,
invoking more write requests from the page cache to the
flash memory. Therefore, DA-GC has the potential loss as
follows:

)()()(αγ +⋅= wiiloss CLLC (2)

where γ(Li) represents the number of duplicated pages of the
log block Li whose corresponding pages in page cache are
changed from clean into dirty by the DA-GC and are not
updated further by following host requests until they are
evicted. In Figure 2, two dirty pages are generated by DA-
GC. However, since page P9 has a high possibility to be
changed to dirty by host requests, the value of γ(Li) will be
smaller than 2. The cost for writing the dirty pages in the
flash memory is γ(Li) ⋅ Cw. In addition, the write requests
invoke more garbage collections. We add the cost of α that
represents the average block merge cost per a dirty page
write in order to consider the overhead. The approximated
value of α is Cr+Cw+Ce/Npage because a dirty page written in
the flash memory invokes one page read/write for page
migration and one block erase per Npage number of pages,
where Npage represents the total number of flash pages in a
flash block.

However, it is impossible to know the exact values of
γ(Li) during GC without the knowledge of future host
requests. To predict these values, we used the 3-region LRU
buffer [15], with which we can predict the update
probability of each page in the page cache based on the
locality information.

To consider both the garbage collection overhead and
the potential loss, the overall garbage collection cost can be
represented as follows:

)()()(ilossiGCitotal LCLCLC += (3)

The LDA-VBS technique selects the victim block with
the lowest value of Ctotal(Li). LDA-VBS can then prevent
DA-GC from invoking a large potential loss.

176717671767

B. 7BLocality and Duplication-Aware Block Merge
Since the pages in the page cache have different

probabilities to be updated, the LDA-BM technique uses
different policies depending on the future access probability

P9 P7P11 P2P1P5

Dirtyclean MRU Region LRU Region

(Data block) (Log block)

(Free block)

Victim block

P1

P3

P8

P10

P4

P5

P4

P4

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

PBN 0 PBN 1 PBN 2 PBN 3 PBN 4

P0

P1

P3

P8

P10

PBN 5 PBN 6

Page Cache
(SDRAM)

Flash
Memory

P9 P7P11 P2P1P5

Before
GC

After
GC

change state

page copy

Invalid page

Figure 3. An example of LDA-BM

of each page. The clean pages in the MRU region of page
cache have high probabilities to be changed to dirty before
they are evicted from the page cache even though DA-GC
does not change their states. On the contrary, the clean
pages in the LRU region of page cache have low
possibilities to be changed to dirty by host requests.
Therefore, it may be beneficial to not apply the DA-GC
technique to the clean pages in the LRU region. Then, we
can prevent the clean data from being changed into dirty
data. Though the page migration cost increases during GC,
we can reduce the frequency of GC that invokes a large cost.

Figure 3 shows the LDA-BM technique. Page P1 is
copied during the block merge operation in the flash
memory since the corresponding page in page cache is clean
and is located in the LRU region, and P1 in the page cache
remains clean. However, the DA-BM technique is applied to
the clean page P9 in the MRU region of page cache and to
the dirty pages P2 and P11. Even though page P9 is changed
to dirty, the potential loss by the page will be small since it
has a high possibility of being changed to dirty by host
requests.

Under the LDA-BM technique, the victim block
selection technique should be modified. We can represent
the garbage collection overhead, CGC(Li), for a victim log
block, Li, as follows.

)())()(()1)(()(wriieiiGC CCLLCLALC +⋅++⋅+= πδ (4)

where π(Li) denotes the number of duplicated pages of the
log block Li whose corresponding pages in page cache are
duplicated clean pages in the LRU region. Compared to the
DA-GC cost in Equation (1), LDA-BM has a larger GC cost
since it requires copying more pages in the flash memory.
However, LDA-BM reduces the potential loss of DA-GC
since it does not change the clean pages in the LRU region
into dirty pages. Therefore, the potential loss when DA-GC
uses LDA-BM is as follows:

)()()(αγ +⋅= wiMRUiloss CLLC (5)

where γMRU(Li) is the number of duplicated pages of the log
block Li whose corresponding pages in page cache are clean
pages in the MRU region and are changed from clean into
dirty by DA-GC. The potential loss is smaller than that in
Equation (2) since γ(Li) is larger than γMRU(Li).

C. 8BLRU Dirty Page Eviction
The LRU dirty page eviction (LDE) technique exploits

the duplicated dirty data in the LRU region of the page
cache in order to reduce the GC cost. It is better to move the
duplicated dirty pages from the page cache to the flash
memory during garbage collection because the dirty pages
in the LRU region have high probabilities of being evicted
to the flash memory without further updates. Then, we can
efficiently utilize the data blocks by reducing the number of
flash memory pages unused by DA-GC. The copied dirty
pages in the page cache are changed to clean in the page
cache.

We can simultaneously use both LDA-BM and LDE
techniques during the block merge operation to apply
different policies with DA-BM for the duplicated pages in
the LRU region of the page cache. While LDA-BM is
applied to the duplicated clean pages, LDE is applied to the
duplicated dirty pages. We can reduce the potential garbage
collection overhead invoked by DA-GC by using different
policies for the pages in the LRU region.

When both the LDA-BM and LDE techniques are used,
the garbage collection overhead, CGC(Li), for a victim log
block, Li, is calculated as follows:

)()(
)())()(()1)(()(

wbi

wriieiiGC

CCL
CCLLCLALC

+⋅+
+⋅++⋅+=

θ
πδ (6)

where θ(Li) denotes the number of duplicated pages of the
log block Li whose corresponding pages in page cache are
duplicated dirty pages in the LRU region. Cb represents the
transfer cost of a page from the page cache to the flash
memory. We assume that Cb is larger than Cr. Compared to
the DA-GC cost in Equations (1) and (4), using both LDA-
BM and LDE techniques invokes a larger GC cost since it
should copy θ(Li) number of pages from the page cache to
the flash memory. However, the LDE technique generates a
potential benefit to the GC cost. Since LDE changes the
duplicated dirty pages in the LRU region of page cache into

176817681768

clean pages, the number of write requests to the log blocks
is reduced. Therefore, the total GC cost is as follows:

).()()(
and)()()(

),()()()(

αγ
αγ

+⋅=
+⋅=

−+=

wiLRUibenefit

wiMRUiloss

ibenefitilossiGCitotal

CLLC
CLLCwhere

LCLCLCLC
 (7)

where γLRU(Li) represents the number of duplicated pages of
the log block Li whose corresponding pages in page cache
are dirty pages in the LRU region and are changed into
clean by LDE without being updated by following host
requests.

Table I summarizes the changes of duplicated pages
under each scheme. ρ(Li) denotes the number of duplicated
pages of the log block Li whose corresponding pages in page
cache are duplicated in the MRU region. DA-GC and LDA-
VBS have the lowest GC costs but have the largest potential
loss on future GC costs since they change all the duplicated
clean pages in the page cache into dirty pages. LDA-BM has
a higher GC cost than DA-GC but has a lower potential loss
because it does not change the states of the duplicated clean
pages in the LRU region. By using LDE in addition to
LDA-BM, the GC cost increases but there is potential
benefit since the duplicated dirty pages in the LRU region
are changed into clean pages.

TABLE I.
THE CHANGES OF BUFFER STATE IN EACH SCHEME

Cache
Area

Before
GC Numbers

After GC

DA-GC

LDA-VBS
LDA-BM

LDA-BM

+ LDE

MRU
region

Dirty
ρ(Li)

Dirty Dirty Dirty

Clean Dirty Dirty Dirty

LRU
region

Dirty θ(Li) Dirty Dirty Clean

Clean π(Li) Dirty Clean Clean

Npage= ρ(Li)+θ(Li)+ π(Li)+δ(Li)

V. 4BEXPERIMENTAL RESULT

A. 9BExperiment Environments
We have implemented a trace-driven simulator in order

to evaluate the performances of the proposed schemes. Our
simulator consists of the page cache and the flash memory.
The flash memory model used in the simulation is based on
Samsung SLC large block NAND flash memory [19]. Each
flash block is composed of 64, 2 KB pages. The access
times of page read, page write and block erase (Cr, Cw and
Ce) are 25 usec, 200 usec and 2 msec, respectively. The
page cache is implemented using the 3-region LRU buffer
algorithm [15] to divide it into the LRU and MRU regions.

We used five real virtual memory traces collected by the
Valgrind 3.4.1 toolset [20]. They are captured while
executing the applications in Table II on a Linux system.

The seven schemes, shown in Table III, are compared.
Each scheme uses different victim block selection and block
merge techniques. All schemes use the FAST hybrid
mapping FTL. We assumed that the normal VBS algorithm
is the round-robin selection policy, which selects the oldest
log block as a victim. Since the oldest blocks generally have
a small number of valid pages, the round-robin selection
policy invokes small GC overheads.

TABLE II.
THE CHARACTERISTICS OF THE WORKLOAD USED IN EXPERIMENTS

applications write ratio scenario
acrobat 23.1% view PDF file
gqview 21.1% picture modification after

viewing image file
kword 14.9% data modification
mozilla 13.2% web information search

(google, yahoo, amazon etc.)
office 19.7% slide show

TABLE III.
A SUMMARY OF THE EVALUATED SCHEMES

schemes victim block selection block merge LDE
DU-GC RR DU-BM No
DA-GC RR DA-BM No

LDA-GC1 LDA-VBS DA-BM No
LDA-GC2 RR LDA-BM No
LDA-GC3 LDA-VBS LDA-BM No
LDA-GC4 RR LDA-BM Use
LDA-GC5 LDA-VBS LDA-BM Use
RR : Round-Robin policy

B. 10BPerformance Analysis
Figure 4 presents the total I/O execution times of the

examined GC schemes normalized by those of DU-GC. The
I/O execution times include the flash read and write costs
invoked by the garbage collection as well as the page swap-
out. The page cache size is 4 MB and the flash memory has
32 log blocks. The performance of DA-GC is similar or
inferior to that of DU-GC because the potential loss of DA-
GC is larger than the GC cost reduction resulting from not
copying the duplicated pages. From the results of LDA-GC1
and LDA-GC2, we can know that the LDA-VBS technique

Figure 4. The total execution time comparison

176917691769

Figure 5. The execution times and average numbers of duplicated pages

while varying the page cache size (kword workload)
14

(which presents the performance improvement by 10% on
average) is more effective than the LDA-BM technique
(which presents the performance improvement by 6% on
average). This is because LDA-VBS can significantly
reduce the garbage collection overhead as well as the
potential loss.

The LDA-GC3 scheme, which uses both LDA-VBS and
LDA-BM, shows more significant performance
improvements (by 24% on average) due to the synergetic
effect of the two techniques. The LDA-GC4 scheme, which
uses both LDA-BM and LDE, improves the performance by
28% on average. The LDA-GC5 scheme, which uses all the
proposed techniques, reduces the I/O execution times by
37% on average compared to that of DU-GC.

We also evaluated the effect of page cache size. Figure 5
illustrates the total I/O execution time and the average
number of duplicated pages (Ndup) for kword workload
while varying the size of the page cache from 1 MB to 16
MB. The number of log blocks is fixed to 32. The
performances are improved as the size of page cache
increases because the hit ratio of page cache increases.
LDA-GC3 and LDA-GC5 show better performances than
does DU-GC regardless of the page cache size. Moreover,
as the size of the page cache increases, the performance
gaps between DU-GC and LDA-GC schemes are increased
since the number of duplicated pages increases as shown in
Figure 5. When there are many duplicated pages, the
proposed schemes have more chances to reduce the garbage
collection overhead.

We also evaluated the effect of the flash log buffer size.
Figure 6 shows the I/O execution time and the average
number of duplicated pages while varying the number of log
blocks in the flash memory from 8 to 128. The page cache
size is fixed to 4 MB. As the number of log blocks increases,
the execution times are reduced. When there are many log
blocks, it takes a long time for a log block to be selected as a
victim block. Therefore, when a log block is selected as a
victim block by the garbage collection, most of the pages in
the victim block may be invalid, and thus the GC invokes a
small page migration cost. The performance gaps between

Figure 6. The execution times and average numbers of duplicated pages

while varying the number of log blocks (kword workload)

DU-GC and LDA-GC schemes increase as the number
of log blocks increases. This is because LDA-VBS can find
a more proper victim block when there are many log blocks
available.

The average number of duplicated pages increases as the
number of log blocks increases since LDA-VBS, which
selects the log block with many duplicated pages, has more
victim candidates. However, the value reaches its peak
when the number of log blocks is 32. When there are too
many log blocks, the victim block has a small number of
valid pages, and thus the number of duplicated pages
decreases.

Figure 7 shows the number of garbage collections
invoked during benchmark executions under the proposed
GC schemes. These values are normalized by those of DU-
GC. While LDA-GC4 and LDA-GC5 that use the LDE
technique outperform DU-GC by about 4~5%, other
schemes, i.e., DA-GC, LDA-GC1, LDA-GC2, and LDA-GC3,
invoke larger numbers of GCs than does DU-GC due to the
potential loss on GC cost. Since all proposed schemes show
the performance improvements over DU-GC as shown in
Figure 4, we can infer that each GC invocation requires
smaller cost under the proposed GC schemes than DU-GC.

Figure 7. The number of garbage collections

177017701770

0

0.2

0.4

0.6

0.8

1

1.2

acrobat gqview kword mozilla office

DA-GC LDA-GC LDA-GC LDA-GC LDA-GC LDA-GC 54321

N
or

m
al

iz
ed

 a
ve

ra
ge

 G
C

 c
os

t

Figure 8. The average garbage collection cost

Accordingly, we measured the average cost per garbage
collection under the proposed GC schemes as shown in
Figure 8. These values are normalized by those of DU-GC.
All GC schemes provide smaller average GC costs than
does DU-GC. Especially, the average GC costs of LDA-GC1,
LDA-GC3, and LDA-GC5, which use the LDA-VBS
technique, are lower than those of other schemes since
LDA-VBS considers the GC cost of the victim log block.
Although LDA-GC4 and LDA-GC5 have similar numbers of
garbage collections in Figure 7, LDA-GC5 achieves better
performance than LDA-GC4 due to the lower average GC
cost as shown in Figure 8.

VI. 5BCONCLUSION
Flash memory is a good device for swap space of virtual

memory systems. For the flash memory-based virtual
memory systems, the locality and duplication-aware garbage
collection technique are proposed, which can reduce the
garbage collection overhead by removing the duplicated
pages from the flash memory. In order to solve the potential
loss problem of the previous duplication-aware garbage
collection technique in the hybrid mapping FTLs, the
proposed locality and duplicated-aware victim block
selection (LDA-VBS) technique considers both the garbage
collection overhead and the potential loss. The locality and
duplicated-aware block merge (LDA-BM) and LRU dirty
page eviction (LDE) techniques selectively apply the
duplication-aware page migration depending on the locality
of each page in the page cache. The experimental results
showed that the LDA-VBS and LDA-BM techniques reduce
the total I/O execution time by 10% and 6%, on average,
compared to that of DU-GC, respectively. By applying both
the LDA-VBS and LDA-BM techniques, the performance
can be improved by 24% on average compared to that of
DU-GC. By additionally adopting the LDE technique,
performance can be improved by 37%, on average,
compared to that of DU-GC.

REFERENCES
[1] C. Park, J. Kang, S. Park, and J. Kim, “Energy-Aware Demand

Paging on NAND Flash-based Embedded Storages,” In Proc.
International Symposium on Low Power Electronics and Design,
pages 338–343, 2004.

[2] Y. Joo, Y. Choi, C. Park, S. W. Chung, E.-Y. Chung, and N. Chang,
“Demand Paging for OneNAND Flash eXecute-In-Place,” In Proc.
CODES+ISSS’06, pages 229–234, 2006.

[3] J. In, I. Shin, and H. Kim, “SWL: A Search-While-Load Demand
Paging Scheme with NAND Flash Memory,” In Proc. Conference on
Languages, Compilers, and Tools for Embedded Systemsn (LCTES),
pages 217–225, 2007.

[4] Intel Corporation, “Understanding the flash translation layer (FTL)
specification,” http://developer.intel.com/.

[5] CompactFlash Association, http://www.compactflash.org/.
[6] H.-L. Li, C-L. Yang, H-W. Tseng, “Energy-Aware Flash Memory

Management in Virtual Memory System,” IEEE Trans. Very Large
Scale Integration System, 16(8):952–964, 2008.

[7] A. Ban. Flash file system optimized for page-mode flash technologies,
US Patent 5,937,425, Aug. 10, 1999.

[8] A. Ban. Flash file system, US Patent 5,404,485, Apr. 4, 1995.
[9] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A Space-

Efficient Flash Translation Layer for Compact Flash Systems,” IEEE
Trans. on Consumer Electronics, vol. 48, no. 2, pp. 366-375, 2002.

[10] S. W. Lee, D. J. Park, T. S. Chung, W. K. Choi, D. H. Lee, S. W.
Park, and H. J. Song, “A Log Buffer based Flash Translation Layer
using Fully Associative Sector Translation,” ACM Trans. on
Embedded Computing Systems, vol. 6, no. 3, 2007.

[11] C. I. Park, W. M. Cheon, J. G. Kang, K. H. Roh, W. H. Cho, and J. S.
Kim, “A Reconfigurable FTL (Flash Translation Layer) Architecture
for NAND Flash-based Applications,” ACM Trans. on Embedded
Computing Systems, vol. 7, no. 4, 2008.

[12] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee, “FAB: Flash-Aware
Buffer Management Policy for Portable Media Players,” IEEE Trans.
On Consumer Electronics, vol. 52, no. 2, pp. 485-493, 2006.

[13] S. Y. Park, D. Jung, J. U. Kang, J. S. Kim, and J. Lee, “CFLRU: A
Replacement Algorithm for Flash Memory,” In Proc. of the Int. Conf.
on Compilers, Architecture and Synthesis for Embedded Systems, pp.
234-241, 2006.

[14] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” In Proc. of the USENIX
Conf. on File and Storage Technologies, pp. 239- 252, 2008.

[15] S. Lee, D. Shin, and J. Kim, “Buffer-Aware Garbage Collection
Techniques for NAND Flash Memory-Based Storage Systems,” In
Proc. of the Int. Work. on Software Support for Portable Storage
(IWSSPS’08) , pp.27-32, 2008.

[16] D. W. Jung, J. S. Kim, S. Y. Park, J. U. Kang, and J. Lee, “FASS: A
Flash-Aware Swap System,” In Proc. of the Int. Work. on Software
Support for Portable Storage (IWSSPS’05), 2005.

[17] O. Kwon, K. Koh, “Swap-Aware Garbage Collection for NAND
Flash Memory Based Embedded Systems,” In Proc. of the Seventh
IEEE Int. Conf. on Computer and Information Technology, 2007.

[18] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory
Storage System,” In Proc. of the Int. Conf. on Architectural Support
for Programming Languages and Operating Systems, pp.86-97, 1994.

[19] Samsung Corp, “K9WBG08U1M NAND Flash Memory,” 2007.
[20] N. Nethercote and J. Seward, “Valgrind: A framework for

heavyweight dynamic binary instrumentation,” SIGPLAN Not., vol.
42, no. 6, pp.89–100, 2007.

177117711771

