
IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, August 2010

Contributed Paper
Manuscript received 07/08/10
Current version published 09/23/10
Electronic version published 09/30/10. 0098 3063/10/$20.00 © 2010 IEEE

1516

Non-Preemptive Demand Paging Technique for
NAND Flash-based Real-Time Embedded Systems

Wangyu Kim and Dongkun Shin, Member, IEEE

Abstract —NAND flash memory is utilized as code storage
as well as for file system storage in consumer electronics. The
demand paging technique for NAND flash code storage can
reduce the required main memory space. However, in real-
time systems, demand paging may invoke several problems,
one such example is unpredictable timing behavior. Moreover,
when NAND flash memory is used for both code storage and
file system storage, the resource conflict issue needs to be
resolved to allow for simultaneous accesses of demand paging
and file system requests. This paper addresses several
practical problems of NAND flash-based demand paging in
real-time embedded systems and proposes a non-preemptive
demand paging technique to resolve the resource conflict
within non-preemptive critical sections. Experiments on a real
mobile phone platform show that the proposed demand paging
requires no significant overhead1.

Index Terms —NAND flash memory, demand paging, resource
synchronization, embedded storage, real-time systems.

I. INTRODUCTION
In mobile consumer electronics, flash memory is an

indispensable component due to its non-volatility and low power
consumption. Flash memories are subdivided into two main
classes: NOR type and NAND type. While NOR flash memory is
well suited for code storage because of its eXecute-In-Place (XIP)
feature, NAND flash memory is more suitable for data storage
because of its fast write performance and its lower cost per bit in
comparison to those of NOR flash memory [1].

Therefore, mobile systems which require data storage as well
as code storage incorporate both NOR and NAND flash
memories. In order to reduce the component cost, it is better to
use a single-type storage device to service both code and data.
For example, NAND flash shadowing is a widely-used technique
for NAND flash-only storage architecture, in which both code
and data are stored in NAND flash memory and all the program
codes are loaded into the main memory during start-up. We can
eliminate NOR memory in the system by using NAND flash
shadowing. However, the shadowing technique requires
sufficient main memory to retain all program codes, which
increases the product cost and power consumption.

1 This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2010-0010387).

W. Kim is with Samsung Electronics, Ltd., Suwon, Korea (e-mail:
wangyu.kim@samsung.com).

D. Shin (corresponding author) is with the School of Information and
Communication Engineering, Sungkyunkwan University, Suwon, Korea (e-
mail: dongkun@skku.edu).

Demand paging, in which the main memory contains only
part of the program code, is a promising technique to reduce
the size of the main memory. If an attempt is made to access a
page not contained within the main memory, a page fault
occurs, and the page fault handler loads the required page into
the main memory from the NAND flash storage. Therefore,
programs would no longer be constrained by the amount of
available physical memory.

Although the demand paging technique is widely used in
general-purpose operating systems such as Linux, a real-time
operating system generally does not support demand paging
due to its unpredictability. This unpredictable behavior first
arises due to unpredictable timing. The page faults which
occur during program execution make it difficult to guarantee
the real-time constraints. Demand paging may cause
unexpected long-term delays in the execution of a process
while the missing pages are loaded into the memory.

The second issue with unpredictability concerns the
scheduling behavior. In NAND flash-based demand paging,
the NAND flash storage is a shared resource since it services
both the data request from the file system and the code request
from the demand paging. Though NOR flash memory supports
a simultaneous read operation while writing or erasing another
flash memory partition, NAND flash memory does not provide
such a feature. This limitation results in a resource conflict
when more than two requests attempt to simultaneously access
the NAND flash storage. Therefore, a synchronization
mechanism is required to deal with these conflicting requests.
However, the use of synchronization can result in changes in
the task schedule, contrary to the user's expectations. The
unpredictable scheduling behavior results in unpredictable
timing behavior.

This paper addresses several problems involved in the use
of demand paging in real-time consumer electronics and then
provides practical solutions. We focus in particular on the non-
preemptive critical section (NPCS) that is widely used in
embedded systems but which makes it difficult to use demand
paging. For the NPCS, we propose the page pinning technique
and the non-preemptive demand paging (NPDP) technique, in
which there is no need for application developers to consider
the effects of demand paging. In addition, legacy codes
developed without consideration for demand paging can be
reused in NAND flash-based demand paging systems. We
applied the proposed NAND flash-based demand paging
technique to an actual mobile phone, a typical real-time system
that uses flash memory, and ascertained that the demand
paging did not disturb the time-critical mobile phone

W. Kim and D. Shin: Non-Preemptive Demand Paging Technique for NAND Flash-based Real-Time Embedded Systems 1517

operations. Experimental results showed that there was no
significant run-time overhead due to the use of demand paging.

The rest of the paper is organized as follows: Section 2
briefly reviews the related works of NAND flash-based
demand paging, Section 3 introduces the architecture of
NAND flash memory, Section 4 describes the proposed
NAND demand paging technique, Section 5 presents the
experimental results, and Section 6 concludes the paper with a
summary as well as considerations for future work.

II. RELATED WORKS

The critical issue in demand paging architecture is how to
support simultaneous accesses to both code and data. For
example, it takes 2 msec to erase a block of NAND flash
memory. Moreover, if the multi-block erase operation is used,
the erase time is 4 msec. Without a simultaneous access
mechanism, a read request has to wait a maximum of 2 msec
(or 4 msec) while the flash memory serves the erase operation.

NOR flash memory provides both the suspend and resume
functions for program or erase operations in order to support a
read operation while writing or erasing the flash memory.
Brown et al. [2] proposed a NOR flash memory which allows
the program and erase operations in one partition to be
suspended by a software command in order to read the
program code in another partition. It takes 5~20 μsec to
suspend the program or erase operation. A partition is a group
of blocks that share common program and erase circuitry and a
command status register. Because each partition has its own
status register, the flash can continue from the point at which
the suspend command was issued by using the resume
command. Using the suspend/resume feature, a true
background erase can thus be achieved. Gefen et al. [3]
proposed a hardware mechanism which can support automatic
suspend and resume operations to enable dual functionality of
the flash memory while Brown et al. used the software
command.

For NAND flash memory, one simple technique is to use a
dual-bank architecture. The device can begin programming or
erasing in one bank, and then simultaneously read from the
other bank, with zero latency. This can prevent the read
request from having to wait for the completion of program or
erase operations. However, this solution is not flexible because
it is difficult to fit data and code completely within the fixed
banks.

Several NAND storage architectures have been studied for
the use of NAND flash memory as code storage. Park et al. [4]
proposed a NAND XIP controller to provide XIP functionality.
The controller uses a small amount of SRAM for cache,
improving the average access time of the NAND flash memory.
Park et al. [5] also studied a NAND flash-based demand
paging technique which exploited the main memory as a page
cache. Specially, they were interested in energy consumption
and, therefore, proposed an energy-aware page replacement
algorithm which assigns higher priorities to clean pages rather
than dirty pages when selecting a victim page because the

energy consumption of writing is much higher than that of
reading in NAND flash memory.

Since a memory management unit (MMU) is required to
implement demand paging, the compiler-assisted code overlay
technique [6] is useful for low-end embedded systems without
an MMU. In the overlay technique, the compiler transforms a
program using a post-pass analysis of an executable image.
The transformed program loads the code of called function
into the main memory on demand at run time without the need
for hardware intervention.

Joo et al. [7] proposed a demand paging technique for
fusion NAND flash memories [8], consisting of a NAND flash
array and SRAM buffers. The technique utilizes the internal
SRAM buffer as a page cache in order to avoid loading data
onto the external memory.

Two kinds of optimization techniques can be considered to
improve the demand paging performance: reducing the
frequency of page faults and reducing the page fault latency.
Prefetching is one method for reducing the number of page
faults, and there have been several studies on improving the
accuracy of prefetching [1, 9].

In et al. [10] proposed a Search-While-Load (SWL) demand
paging scheme which reduces the long latency of page faults
by overlapping the page load operation with the victim page
search operation. While the requested page is being loaded
from the NAND flash memory, the page fault handler searches
the victim page that is to be evicted in order to make room for
the requested page. Hyun et al. [11] proposed the vectored
read scheme, which reduces the page fault latencies at the
fusion NAND flash memories.

Those researches have focused only on enabling the NAND
flash for use as code storage but did not address the concurrent
access of code and data requests. To the best of our knowledge,
our work is the first attempt to attend to the practical issues of
NAND flash-based demand paging in real-time embedded
systems.

III. NAND FLASH ARCHITECTURE

As shown in Fig. 1, a NAND flash device includes control
logic, an address register, a status register, a command register,
a NAND flash array, and an I/O buffer.

In order to read a page from the NAND device, the
following four steps must be performed: 1) the target address
and command are sent, 2) the device driver waits until the
status register is changed into the ready status, indicating that
the target page has been loaded into the I/O buffer, 3) the error
collection code (ECC) is verified, and 4) the required data is
copied from the I/O buffer to the host. The program operation
is composed of the following three steps: 1) the target address,
data and command are sent, 2) the status register of the NAND
device is changed into the busy status, and the device driver
waits until the status is updated to the ready status (during this
step, the task of accessing the NAND device can be preempted
by higher priority tasks), and 3) the device driver does any
required error handling and notifies the command completion

IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, August 20101518

to the host. Fig. 2 shows the access steps for NAND flash
reading and programming.

R
ow

 d
ec

od
er

Fig. 1 The architecture of NAND flash memory.

Fig. 2 Access steps for NAND flash memory.

Among the several components within a NAND device, the
status register and I/O buffer are important shared resources.
Unless these components are protected, the wrong data will be
read or written. For example, when task τ1 sends a read
command and then waits for the change of status register, if
another task τ2 preempts task τ1 and sends a read command,
task τ1 will read the data of τ2 at the I/O buffer after it resumes.

IV. FLASH MEMORY DEMAND PAGING

A. Resource Synchronization
The device driver of NAND flash memory generally uses a

semaphore (SF) to protect the status register and I/O buffer
from being altered by other operations. Only when an
operation acquires the semaphore, it can send a command to
the NAND device. Fig. 3 shows our NAND storage
architecture, which can be simultaneously accessed by both the
file system and the demand paging manager. The file system
sends read/write requests through the flash translation layer
(FTL) and the NAND flash device driver (FDD). The FTL is

responsible for translating a logical page address into a
physical page address and also performs the block allocation,
block reclamation and wear-leveling. The FDD provides low-
level interfaces for read, program and erase operations. The
demand paging manager directly calls the flash device driver
since it uses only the read operation.

The demand paging manager manages a page cache, which
retains only the pages likely to be accessed within a short time.
We used a clock (i.e., second chance) replacement algorithm to
manage the page cache. Since there is no hardware support of
reference bit or reference counter in most embedded systems, we
emulated the reference bits by artificially invalidating some valid
pages at every page fault. When a falsely-invalidated but cache-
resident page is accessed, the page is marked as a valid page.
We call this situation a false fault.

Task 1

File Systems

Flash Translation
Layer

Flash
Device Driver

NAND

Demand Paging
Manager

Page Fault
Handler

Task 2

SF

Fig. 3 Resource sharing in NAND-based demand paging.

The proposed demand paging is implemented with the help
of an MMU, which contains an address translation table that
provides the mapping information between the virtual address
and the physical address. When there is no valid address
translation information of the page to be accessed, a page fault
exception occurs. Then, the demand paging manager loads the
page into the page cache (unless it is a false fault) and inserts
the translation information of the page into the page translation
table. In order to prevent a nested page fault exception, the
codes of the page fault handler and the demand paging
manager are not evicted from the main memory.

In this scheme, the semaphore of the flash device driver (SF)
is exploited for resource synchronization, which is similar to
the page fault handling mechanism in a general purpose OS,
such as Linux. If a page fault occurs when the FTL has the
semaphore SF, the demand paging manager should wait until
SF is released by the FTL. Therefore, the task which invoked
the page fault should be blocked until SF is available, and other
tasks will be scheduled. That is, the page fault handling cannot
interrupt the previous operation of NAND storage. Fig. 4
shows an example of page fault handling. When the page fault
exception occurs during the execution of task 2, it tries to
obtain the semaphore SF via the demand paging manager.

W. Kim and D. Shin: Non-Preemptive Demand Paging Technique for NAND Flash-based Real-Time Embedded Systems 1519

Since SF belongs to task 1, task 2 enters into the sleep state.
After task 1 releases SF, task 2 acquires the semaphore SF and
then reads the required pages from the NAND device.

The page fault latency (PFL) is the time from the
occurrence of the page fault to the completion of a page load
and can be expressed as follows:

PFL= tsem + twait + tread + tcache (1)

 where tsem, twait, tread and tcache represent the semaphore
handling overhead, the waiting time for the semaphore, the
page read time from the flash array to the host memory and the
page cache update time, respectively. While the values of tsem,
tread and tcache are fixed for a given system, the value of twait

varies depending upon how long the task should wait for the
semaphore SF. Therefore, the demand paging overhead of a
task depends on twait as well as the number of page faults that
occur during the task execution.

Fig. 4 Page fault handling.

B. Practical Issues in Demand Paging
The described demand paging technique introduces several

problems when it is used in real-time operating systems.
1) Unpredictable Timing Behavior

The first problem is the unpredictable timing behavior of
demand paging. Especially, the semaphore waiting time, twait,
can be unbounded due to the priority inversion problem. For
example, while a low-priority task τL accesses a file in NAND
storage, a high-priority task τH can preempt task τL and
generate a page fault, which also accesses the NAND storage.
Then, task τH should wait until task τL releases SF. Moreover,
task τH can be delayed by all other tasks whose priorities are
higher than τL but lower than τH. The priority inversion
problem can be solved by using a priority inheritance or
priority ceiling protocol [12] if the operating system provides
the scheme. Then, twait can be bounded by the block erase time.

However, it is difficult to predict the accurate number of
page faults during task execution, which must be known to
estimate the demand paging overhead of a real-time task.
Particularly for embedded systems using pre-built libraries,
such as a mobile phone, it is impossible to analyze the worst-
case behavior of an application.

2) Deadlock
The second problem of demand paging is that a deadlock

situation can happen if the file system invokes a page fault

while it has the semaphore SF to access the data storage. If the
file system code is shadowed at boot time, no code page fault
will occur during the file system execution, however, data page
faults can occur. For example, assume that a task attempts to
copy data from the main memory into NAND storage via the
file system. First, the file system acquires the semaphore SF.
Then, the data in the main memory is copied into the I/O
buffer of the NAND device. If the data is not located in the
physical memory, a data page fault can occur. When the data
page fault handler attempts to acquire the semaphore SF, a
deadlock occurs since SF is already being occupied by the file
system and the file system will not release the semaphore until
the page fault is resolved.

3) Debugging
When a program developer sets a software breakpoint at

program code using a debugger, the debugger replaces the
target program instruction with a trap instruction that causes an
exception. When the trap instruction is encountered, the
debugger catches the exception and stops the program. When
the developer commands the debugger to continue, it restores
the original instruction. Therefore, the precondition for
software breakpoint is that the program code should reside
within the physical memory and should be writable. However,
in demand paging schemes, it is possible that the target
instruction will not be located in the physical memory and,
thus, a breakpoint cannot be set.

4) Non-Preemptive Critical Section
The last issue is unexpected scheduling behavior. There are

two kinds of protection mechanisms for the critical section in
embedded systems; one mechanism is to use a semaphore and
the other is to use the non-preemptive critical section (NPCS)
protocol [12]. In order to implement an NPCS in an embedded
system, developers generally prevent the preemption of a task
by locking the OS scheduler, disabling interrupts, or
temporarily assigning the highest priority to the current task.
Under some real-time operating systems (RTOSes), a non-
preemptive task can also be created. The shortcoming of the
NPCS is that every task can be blocked by a lower-priority
task executing a non-preemptive critical section, even when
there is no resource conflict between them. However, the
NPCS protocol is widely used due to its simplicity. In addition,
the behavior of a task using the NPCS is predictable, since it
removes inter-task effects.

The problem arises when a page fault occurs within the
NPCS. On a page fault, the corresponding task can be
preempted by other tasks if the semaphore SF is not available.
Therefore, the task may fail to protect the shared resources
within the NPCS and the system may show behaviors different
with the developer's expectations. This problem results from
the fact that application developers cannot know the page fault
occurrences at run time. Therefore, a resource synchronization
protocol is required to solve the problem without involving the
developer's concern.

IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, August 20101520

C. Solutions
In order to solve the previously mentioned problems in
demand paging within real-time systems, we propose several
practical solutions.

1) Hybrid Demand Paging
A practical approach can be adopted to solve the

unpredictable timing behavior of demand paging. Since not all
applications in high-end embedded systems such as mobile
phones have real-time constraints, we divided the applications
into two groups: real-time applications and non real-time
applications. While the shadowing technique is applied to real-
time applications, the demand paging technique is used for the
others. To this end, the address space of the main memory is
split into two regions: the shadowing region and the demand
paging region. The codes to be shadowed are copied from the
NAND flash storage to the shadowing region at boot time, and
other codes are loaded into the demand paging region on
demand during operation. Since all of the time critical tasks
are shadowed and, therefore, invoke no page faults, we can
avoid the priority inversion problem. Undoubtedly, it will be
more beneficial to add the codes of real-time applications into
the demand paging region if the timing constraints of the real-
time applications will be satisfied, despite the demand paging
overhead.

2) Nested Semaphore Acquisition
The deadlock situation can be avoided by using a counting

semaphore, which is able to be locked multiple times. The
deadlock situation can be identified by examining whether the
task with SF is the same as the task invoking the page fault. In
such a case, the count value of the semaphore is incremented
and the demand paging manager can access the NAND flash
device. After the page fault handling, the count value of the
semaphore is decremented.

3) Breakpoint Setting with Page Pinning
We revised the debugger to use the page pinning API

function in order to solve the breakpoint problem. The
debugger calls the page pinning API when the target
instruction for the software breakpoint is not in the physical
memory. The page containing the target instruction is loaded
into and pinned at the page cache.

4) Semaphore Pre-acquisition
In order to prevent the NPCS problem, we can force a task

to acquire SF before it starts an NPCS, called semaphore pre-
acquisition. However, if there is a file access within the NAND
flash during an NPCS, the file operation will wait for the
semaphore SF permanently because SF is already assigned to
the task. Therefore, the semaphore should be released just after
the task starts an NPCS. We can implement the semaphore
pre-acquisition without user's intervention by hooking the APIs
for NPCS.

However, this technique involves semaphore-related
overheads whenever a task enters into NPCS even though the
task generates no page fault. In order to minimize the overhead,
we can exempt the shadowed code from performing the
semaphore pre-acquisition. However, it is still difficult to
predict whether a data page fault will occur at an NPCS.

5) Page Pinning
Another solution for the prevention of preemption in NPCS

is to load and pin all of the pages to be accessed in NPCS into
the page cache at boot time. The page cache replacement
algorithm excludes the replacement of pinned pages and then
no page fault occurs in NPCS. Shadowing and pinning are
different with respect to granularity. While shadowing is
performed by the unit of object file, pinning is processed by
the unit of page in order to minimize the page cache waste.

Using static analysis, we are able to identify the pages to be
accessed in NPCS regions at compile time. First, NPCS
regions within the program code should be identified. An
NPCS starts from the program code which disables interrupts,
locks the scheduler or assigns the highest priority to the
corresponding task, and it ends at the program code which
enables interrupts, unlocks the scheduler or assigns the original
priority to the task. Second, the pages which are accessed in
the NPCS regions should be selected and the pinning page list
is generated.

For page pinning, we added a new API which loads the
specified pages into the page cache and pins the pages in order
to prevent them from being replaced.

D. Non-Preemptive Demand Paging (NPDP)
The page pinning requires a static analysis technique that is

able to identify the page accesses in NPCS regions. However,
it is significantly difficult to implement an exact static analysis
tool. An alternative solution for composing the pinning page
list is to use a profile-based technique. A profiler checks the
page faults during the target applications execution. If a page
fault is generated with the preemption disabled, the profiler
inserts the corresponding page into the pinning page list. After
profiling, the pages in the pinning page list are pinned in the
page cache during system start-up. However, the profile-based
pinning may provide an incomplete pinning page list since the
profile step does not cover all program paths.

Considering the limitations of the semaphore pre-acquisition
and page pinning techniques, we devised the non-preemptive
demand paging (NPDP) technique, which enables the page
fault handler to preempt the ongoing NAND flash operation in
order to support a read operation while the NAND flash
memory is servicing the file system. Even if SF is occupied by
the file system, the page fault handler can access the NAND
storage without semaphore acquisition.

The NPDP technique has the additional advantage of
reducing the page fault latency. Even though we can avoid the
page faults in NPCS by pinning the pages of NPCS, the normal
page faults outside of the NPCS should wait a maximum of 4
msec (i.e., the multi-block erase time) before acquiring the
semaphore. However, the NPDP scheme can handle the page
fault without waiting for the semaphore release. In NPDP,
FDD is in charge of the resource synchronization instead of
the semaphore.

W. Kim and D. Shin: Non-Preemptive Demand Paging Technique for NAND Flash-based Real-Time Embedded Systems 1521

Fig. 5 shows the algorithm used in the NPDP, which first
checks the value of semaphore and, if the semaphore is free
(the semaphore count is 0), the page fault handler reads the
faulted page. If the semaphore is not free (the semaphore count
is larger than 0) but the semaphore is occupied by the task
which invoked the page fault, the faulted page is loaded in
order to avoid the deadlock (lines 4-6).

Non-Preemptive Demand Paging

 1: check the semaphore SF;
 2: if SF is occupied by the current process /* deadlock
prevention */
 3: or SF is free then
 4: increment the semaphore count;
 5: load the fault page;
 6: decrement the semaphore count;
 7: else /* SF is occupied by the file system */
 8: if the page fault is invoked within NPCS then
 9: if the status of flash memory is busy then
10: check the ongoing flash operation;
11: if the flash operation is erase then
12: send the reset command;
13: endif
14: wait until the status is changed into ready;
15: endif
16: save status reg. and I/O buffer;
17: load the fault page;
18: restore status reg. and I/O buffer;
19: if the suspended flash operation is erase then
20: send the erase command;
21: endif
22: else /* page fault outside of NPCS */
23: sleep until SF is released;
24: increment the semaphore count;
25: load the fault page;
26: decrement the semaphore count;
27: end if
28: endif

Fig. 5 The NPDP algorithm

If the semaphore is occupied by the file system and the page
fault is invoked outside of the NPCS, the operation should wait
for the semaphore release (lines 22-27). However, when NPCS
invoked the page fault, the proposed NPDP technique is used.
If read or program operations are executing, NPDP waits until
the status register’s value is updated to ready since a new
command cannot be sent to the device while it is busy (lines 9-
14). Fortunately, it takes a short amount of time to complete
these operations of NAND flash memory. The NPDP only
waits for the completion of Step 2 not Steps 3 or 4 in Fig. 3.
However, the erase mode is aborted before completion since it
requires a maximum 4 msec. We exploit the ‘reset’ command
of the NAND device in order to abort the erase operation.
When the device is in the busy state during the read, program
or erase mode, the reset operation aborts these operations. The
reset command requires 5 μsec, 10 μsec and 500 μsec to abort

read, program and erase modes, respectively. Fig. 6 shows the
aborting operations of the NPDP. Task 1 issued a NAND
operation and was preempted by task 2. While executing task 2,
a page fault occurs and the NPDP services the page fault.

Fig. 6 Aborting NAND operations in NPDP

After the NAND device is changed to the ready status, the
device is available for reading or programming data. Since a
NAND device has only one status register and one I/O buffer,
the read command generated by the NPDP will change the
status register and the I/O buffer. Therefore, the NPDP should
save the status register and the I/O buffer data before it
accesses the NAND device (line 16). After the page fault
handling, the NPDP restores the saved values of the status
register and the I/O buffer (line 18), and the preempted task
can finalize its NAND operation. When the erase mode is
aborted, the NPDP should retry the preempted erase operation
after page fault handling (line 20).

The NPDP technique can also be used for the normal page
faults in the preemptable region. However, NPDP imposes an
I/O overhead because it should save and restore the status
register as well as the I/O buffer. Moreover, the erase
operation should be restarted after the page fault handling. The
page fault latency (PFL) in NPDP can be expressed as follows:

PFL = tabort + tsave + tread + tcache + tresume (2)

where tabort, tsave and tresume represent the command aborting
time for the erase command (or the waiting time for
read/program completion), the status saving time, and the time
for resuming the aborted operation (or the status restoring time
for read/program completion), respectively. Therefore, it is
better to use NPDP only when a page fault occurs in NPCS.

There is another critical problem when NPDP is used within
a preemptable region. During the NPDP, interrupts should be

IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, August 20101522

disabled in order to prevent task scheduling. However, the
system is then not able to provide timely service for a time
critical task. For example, when the page fault handling reads a
4 KB page after aborting the erase command, the interrupt is
disabled during at least 800 μsec (500 μsec to abort the erase
operation and 300 μsec to read the page). If the relative
deadline of a real-time task, triggered by an external interrupt,
is smaller than 800 μsec, the task could miss its deadline.

V. EXPERIMENTS

In order to estimate the effect as well as the overhead of
demand paging, we applied the proposed demand paging
technique to a 140 MHz ARM926EJ-based CDMA mobile
phone. The non-preemptive page fault handling technique was
used. The phone is equipped with a 3 Gb NAND flash memory
and 64 MB DRAM. The total program code size is 29 MB. If
the full shadowing technique is used, 45% of DRAM should
be allocated for code shadowing. For demand paging, we
allocated 5 MB of DRAM memory to the page cache (PC).
The page size is 4 KB. Only 6 MB of the program code was
shadowed into DRAM, and the rest of the 23 MB code was
demand-paged into the demand paging region (DPR). The
shadowed region (SR) includes the call processing protocol
stack and time-critical device drivers. Consequently, 11 MB of
the DRAM memory is allocated for code memory, and the
memory space for application code can be reduced by 62% in
comparison to that of the full shadowing technique.

We compared the boot times of four different configurations
of demand paging, as shown in Table I. The boot time is
composed of the loading time for the shadowed program
image and the total execution time of boot-related programs.
While the loading time of a program image was 0.27 sec in
configuration I, 1.35 sec were needed for configuration IV,
which had a larger shadowing region. As a larger PC and SR
are utilized, the execution time decreases due to the smaller
demand paging overhead. Consequently, the total boot times
under different demand paging configurations are similar.

TABLE I
DEMAND PAGING DURING BOOT TIME.

Configuration (MB) Boot Time (sec)

No. SR DPR PC Mem
Total Load Exec. Total

I 6 26 2 8 0.27 14.37 14.64
II 6 26 5 11 0.26 14.18 14.44
III 6 26 20 26 0.29 13.99 14.29
IV 22 10 5 27 1.35 13.40 14.75

We measured the page fault latency while executing real
phone applications on the target platform. An MPEG4 video
recording program and an MP3 audio player program were used,
and both of the two applications were demand-paged and used
the file system. In addition, in order to make the resource
conflict situation, we executed a background program which
repeats file reading, deleting and writing in a period of 700 msec.

0.01%

0.10%

1.00%

10.00%

100.00%

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

PC
=1

M
B

PC
=3

M
B

PC
=5

M
B

PC
=1

M
B

PC
=3

M
B

PC
=5

M
B

PC
=1

M
B

PC
=3

M
B

PC
=5

M
B

PC
=1

M
B

PC
=3

M
B

PC
=5

M
B

SR= 6MB SR =22MB SR= 6MB SR =22MB

MP3 MP4

Pa
ge

 fa
ul

t
ov

er
he

ad

of

 p
ag

e
fa

ul
ts

of PFs PF overhead

Fig. 7 Page fault counts and total page fault overheads.

Fig. 7 shows the number of page faults and the page fault
overheads at various shadowing region and page cache sizes.
As the sizes of the PC and SR increase, the number of page
faults and the page fault overhead decrease. When the
shadowing region was 6 MB and the page cache was 5 MB,
the page fault overheads of the MP3 and MPEG4 applications
were only 0.17% and 0.16% of the total application execution
times, respectively. This means that the page fault overhead is
too small to be noticeable for a reasonable page cache size.

Table II shows the number of page faults in NPCS, the
number of deadlocks and the number of non-preemptive
demand pagings under different SR and PC configurations. We
can know from the results that there can be frequent page
faults in NPCS when the page cache is small, therefore, the
NPDP scheme is indispensable for embedded systems.

TABLE II
NUMBERS OF NPCSS, DEADLOCKS AND NPDPS

App. SR
(MB)

PC
(MB)

PF in
NPCS Deadlock NPDP

1 585 8 11 6
3 1 1 0 MP3

22 1 2 0 0
1 1416 43 1 6
3 5 0 0 MP4

22 1 6 0 0

We also observed the different behaviors resulting from
different page sizes. When we use a page size of 1 KB, instead
of 4 KB, the number of page faults increases by 85% in the
MPEG4 program. However, the increase in page fault count
does not indicate an increase in page fault overhead. The total
page fault overhead increases only 1% since the 1 KB page
requires a small time for page transferring.

VI. CONCLUSIONS

The NAND-based demand paging can significantly reduce
the required memory space for consumer electronics. However,
in order to simultaneously service both the demand paging
request and the file system request, a resource synchronization

W. Kim and D. Shin: Non-Preemptive Demand Paging Technique for NAND Flash-based Real-Time Embedded Systems 1523

technique for NAND flash memory is needed. One simple
technique is the exploitation of the semaphore of NAND
storage to control the simultaneous accesses to the shared
resource. However, using the semaphore can result in a
preemption of the non-preemptive critical section (NPCS).

We proposed the non-preemptive demand paging (NPDP)
technique in order to solve the NPCS issue. With the NPDP
technique, the flash device driver both saves and restores the
status registers and the I/O buffer of NAND flash memory for
resource synchronization. Experimental results showed that the
NAND-based demand paging can reduce the memory
requirement with a negligible timing overhead.

Our work can be extended in several directions. Multimedia
application requires a sustained bandwidth in order to
guarantee the quality-of-service (QoS). Therefore, a real-time
resource reservation scheme for NAND storage, providing
timely and guaranteed access to system resources, is required
for multimedia applications. Hence, there is a need to study the
distribution of NAND storage bandwidth between demand
paging and file systems.

REFERENCES

[1] J.-H. Lin, Y.-H. Chang, J.-W. Hsieh, T.-W. Kuo, and C.-C. Yang. A
NOR Emulation Strategy over NAND Flash Memory. In Proc. the 13th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 95-102, 2007.

[2] C. Brown and R. Hasbun. Simultaneous code execution and data storage
in a single flash memory chip for real time wireless communication
systems. In Proc. the 40th Midwest Symposium on Circuits and System,
pages 740–745, 1997.

[3] M. Gefen, S. Zernovizky, and A. Ban. System and method for enabling
non-volatile memory to execute code while operating as a data
storage/processing device. US Patent 7032081, 2006.

[4] C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim. A low cost
memory architecture with NAND XIP for mobile embedded systems. In
Proc. CODES+ISSS’03, pages 138–143, 2003.

[5] C. Park, J. Kang, S. Park, and J. Kim. Energy-aware demand paging on
NAND flash-based embedded storages. In Proc. International
Symposium on Low Power Electronics and Design, pages 338–343,
2004.

[6] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min. Compiler assisted
demand paging for embedded systems with flash memory. In Proc.
International Conference on Embedded Software, pages 114–124, 2004.

[7] Y. Joo, Y. Choi, C. Park, S. W. Chung, E.-Y. Chung, and N. Chang.
Demand Paging for OneNAND Flash eXecute-In-Place. In Proc.
CODES+ISSS’06, pages 229–234, 2006.

[8] Samsung Electronics. OneNAND Features and Performance.
http://www.samsung.com/Products/Semiconductor/OneNAND. 2005.

[9] S. A. Belogolov, J. Park, J. Park, and S. Hong, Scheduler-Assisted
Prefetching: Efficient Demand Paging for Embedded Systems. In Proc.
the 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 111-119, 2008.

[10] J. In, I. Shin, and H. Kim. SWL: A Search-While-Load Demand Paging
Scheme with NAND Flash Memory. In Proc. Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages 217–225,
2007.

[11] S. Hyun, S. Lee, H. Bahn, and K. Koh. Vectored read: Exploiting the
read performance of hybrid NAND flash. In Proc. the 14th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 177-184, 2008.

[12] J. Liu. Real-Time Systems. Prentice Hall, 2000.

BIOGRAPHIES

 Wangyu Kim received the B.S. degree in Information
and Telecommunication engineering from Korea
Aerospace University, Korea in 2004. Since 2004, he is an
engineer of Samsung Electronics CO., LTD. Korea. He is
also currently a Master student in the School of
Information and Communication Engineering,
Sungkyunkwan University. His research interests include
embedded software, low-power systems, file systems and

flash memory.
Dongkun Shin (M’08) received the B.S. degree in
computer science and statistics, the M.S. degree in
computer science, and the Ph.D. degree in computer
science and engineering from Seoul National University,
Korea, in 1994, 2000 and 2004, respectively. He is
currently an Assistant Professor in the School of
Information and Communication Engineering,

Sungkyunkwan University (SKKU). Before joining SKKU in 2007, he was a
senior engineer of Samsung Electronics Co., Korea. His research interests
include embedded software, low-power systems, computer architecture, and
multimedia and real-time systems.

