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Non-Preemptive Demand Paging Technique for 
NAND Flash-based Real-Time Embedded Systems

Wangyu Kim and Dongkun Shin, Member, IEEE 

Abstract —NAND flash memory is utilized as code storage 
as well as for file system storage in consumer electronics. The 
demand paging technique for NAND flash code storage can 
reduce the required main memory space. However, in real-
time systems, demand paging may invoke several problems, 
one such example is unpredictable timing behavior. Moreover, 
when NAND flash memory is used for both code storage and 
file system storage, the resource conflict issue needs to be 
resolved to allow for simultaneous accesses of demand paging 
and file system requests. This paper addresses several 
practical problems of NAND flash-based demand paging in 
real-time embedded systems and proposes a non-preemptive 
demand paging technique to resolve the resource conflict 
within non-preemptive critical sections. Experiments on a real 
mobile phone platform show that the proposed demand paging 
requires no significant overhead1.

Index Terms —NAND flash memory, demand paging, resource 
synchronization, embedded storage, real-time systems.  

I. INTRODUCTION 
In mobile consumer electronics, flash memory is an 

indispensable component due to its non-volatility and low power 
consumption. Flash memories are subdivided into two main 
classes: NOR type and NAND type. While NOR flash memory is 
well suited for code storage because of its eXecute-In-Place (XIP) 
feature, NAND flash memory is more suitable for data storage 
because of its fast write performance and its lower cost per bit in 
comparison to those of NOR flash memory [1].  

Therefore, mobile systems which require data storage as well 
as code storage incorporate both NOR and NAND flash 
memories. In order to reduce the component cost, it is better to 
use a single-type storage device to service both code and data. 
For example, NAND flash shadowing is a widely-used technique 
for NAND flash-only storage architecture, in which both code 
and data are stored in NAND flash memory and all the program 
codes are loaded into the main memory during start-up. We can 
eliminate NOR memory in the system by using NAND flash 
shadowing. However, the shadowing technique requires 
sufficient main memory to retain all program codes, which 
increases the product cost and power consumption. 
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Demand paging, in which the main memory contains only 
part of the program code, is a promising technique to reduce 
the size of the main memory. If an attempt is made to access a 
page not contained within the main memory, a page fault 
occurs, and the page fault handler loads the required page into 
the main memory from the NAND flash storage. Therefore, 
programs would no longer be constrained by the amount of 
available physical memory. 

Although the demand paging technique is widely used in 
general-purpose operating systems such as Linux, a real-time 
operating system generally does not support demand paging 
due to its unpredictability. This unpredictable behavior first 
arises due to unpredictable timing. The page faults which 
occur during program execution make it difficult to guarantee 
the real-time constraints. Demand paging may cause 
unexpected long-term delays in the execution of a process 
while the missing pages are loaded into the memory.  

The second issue with unpredictability concerns the 
scheduling behavior. In NAND flash-based demand paging, 
the NAND flash storage is a shared resource since it services 
both the data request from the file system and the code request 
from the demand paging. Though NOR flash memory supports 
a simultaneous read operation while writing or erasing another 
flash memory partition, NAND flash memory does not provide 
such a feature. This limitation results in a resource conflict 
when more than two requests attempt to simultaneously access 
the NAND flash storage. Therefore, a synchronization 
mechanism is required to deal with these conflicting requests. 
However, the use of synchronization can result in changes in 
the task schedule, contrary to the user's expectations. The 
unpredictable scheduling behavior results in unpredictable 
timing behavior. 

This paper addresses several problems involved in the use 
of demand paging in real-time consumer electronics and then 
provides practical solutions. We focus in particular on the non-
preemptive critical section (NPCS) that is widely used in 
embedded systems but which makes it difficult to use demand 
paging. For the NPCS, we propose the page pinning technique 
and the non-preemptive demand paging (NPDP) technique, in 
which there is no need for application developers to consider 
the effects of demand paging. In addition, legacy codes 
developed without consideration for demand paging can be 
reused in NAND flash-based demand paging systems. We 
applied the proposed NAND flash-based demand paging 
technique to an actual mobile phone, a typical real-time system 
that uses flash memory, and ascertained that the demand 
paging did not disturb the time-critical mobile phone 
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operations. Experimental results showed that there was no 
significant run-time overhead due to the use of demand paging. 

The rest of the paper is organized as follows: Section 2 
briefly reviews the related works of NAND flash-based 
demand paging, Section 3 introduces the architecture of 
NAND flash memory, Section 4 describes the proposed 
NAND demand paging technique, Section 5 presents the 
experimental results, and Section 6 concludes the paper with a 
summary as well as considerations for future work.  

II. RELATED WORKS

The critical issue in demand paging architecture is how to 
support simultaneous accesses to both code and data. For 
example, it takes 2 msec to erase a block of NAND flash 
memory. Moreover, if the multi-block erase operation is used, 
the erase time is 4 msec. Without a simultaneous access 
mechanism, a read request has to wait a maximum of 2 msec 
(or 4 msec) while the flash memory serves the erase operation. 

NOR flash memory provides both the suspend and resume 
functions for program or erase operations in order to support a 
read operation while writing or erasing the flash memory. 
Brown et al. [2] proposed a NOR flash memory which allows 
the program and erase operations in one partition to be 
suspended by a software command in order to read the 
program code in another partition. It takes 5~20 μsec to 
suspend the program or erase operation. A partition is a group 
of blocks that share common program and erase circuitry and a 
command status register. Because each partition has its own 
status register, the flash can continue from the point at which 
the suspend command was issued by using the resume 
command. Using the suspend/resume feature, a true 
background erase can thus be achieved. Gefen et al. [3] 
proposed a hardware mechanism which can support automatic 
suspend and resume operations to enable dual functionality of 
the flash memory while Brown et al. used the software 
command. 

For NAND flash memory, one simple technique is to use a 
dual-bank architecture. The device can begin programming or 
erasing in one bank, and then simultaneously read from the 
other bank, with zero latency. This can prevent the read 
request from having to wait for the completion of program or 
erase operations. However, this solution is not flexible because 
it is difficult to fit data and code completely within the fixed 
banks. 

Several NAND storage architectures have been studied for 
the use of NAND flash memory as code storage. Park et al. [4] 
proposed a NAND XIP controller to provide XIP functionality. 
The controller uses a small amount of SRAM for cache, 
improving the average access time of the NAND flash memory.  
Park et al. [5] also studied a NAND flash-based demand 
paging technique which exploited the main memory as a page 
cache. Specially, they were interested in energy consumption 
and, therefore, proposed an energy-aware page replacement 
algorithm which assigns higher priorities to clean pages rather 
than dirty pages when selecting a victim page because the 

energy consumption of writing is much higher than that of 
reading in NAND flash memory. 

Since a memory management unit (MMU) is required to 
implement demand paging, the compiler-assisted code overlay 
technique [6] is useful for low-end embedded systems without 
an MMU. In the overlay technique, the compiler transforms a 
program using a post-pass analysis of an executable image. 
The transformed program loads the code of called function 
into the main memory on demand at run time without the need 
for hardware intervention. 

Joo et al. [7] proposed a demand paging technique for 
fusion NAND flash memories [8], consisting of a NAND flash 
array and SRAM buffers. The technique utilizes the internal 
SRAM buffer as a page cache in order to avoid loading data 
onto the external memory.  

Two kinds of optimization techniques can be considered to 
improve the demand paging performance: reducing the 
frequency of page faults and reducing the page fault latency. 
Prefetching is one method for reducing the number of page 
faults, and there have been several studies on improving the 
accuracy of prefetching [1, 9].  

In et al. [10] proposed a Search-While-Load (SWL) demand 
paging scheme which reduces the long latency of page faults 
by overlapping the page load operation with the victim page 
search operation. While the requested page is being loaded 
from the NAND flash memory, the page fault handler searches 
the victim page that is to be evicted in order to make room for 
the requested page. Hyun et al. [11] proposed the vectored 
read scheme, which reduces the page fault latencies at the 
fusion NAND flash memories. 

Those researches have focused only on enabling the NAND 
flash for use as code storage but did not address the concurrent 
access of code and data requests. To the best of our knowledge, 
our work is the first attempt to attend to the practical issues of 
NAND flash-based demand paging in real-time embedded 
systems. 

III. NAND FLASH ARCHITECTURE

As shown in Fig. 1, a NAND flash device includes control 
logic, an address register, a status register, a command register, 
a NAND flash array, and an I/O buffer. 

In order to read a page from the NAND device, the 
following four steps must be performed: 1) the target address 
and command are sent, 2) the device driver waits until the 
status register is changed into the ready status, indicating that 
the target page has been loaded into the I/O buffer, 3) the error 
collection code (ECC) is verified, and 4) the required data is 
copied from the I/O buffer to the host. The program operation 
is composed of the following three steps: 1) the target address, 
data and command are sent, 2) the status register of the NAND 
device is changed into the busy status, and the device driver 
waits until the status is updated to the ready status (during this 
step, the task of accessing the NAND device can be preempted 
by higher priority tasks), and 3) the device driver does any 
required error handling and notifies the command completion 
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to the host. Fig. 2 shows the access steps for NAND flash 
reading and programming. 

R
ow

 d
ec

od
er

Fig. 1 The architecture of NAND flash memory. 

Fig. 2 Access steps for NAND flash memory. 

Among the several components within a NAND device, the 
status register and I/O buffer are important shared resources. 
Unless these components are protected, the wrong data will be 
read or written. For example, when task τ1 sends a read 
command and then waits for the change of status register, if 
another task τ2 preempts task τ1 and sends a read command, 
task τ1 will read the data of τ2 at the I/O buffer after it resumes.  

IV. FLASH MEMORY DEMAND PAGING

A. Resource Synchronization 
The device driver of NAND flash memory generally uses a 

semaphore (SF) to protect the status register and I/O buffer 
from being altered by other operations. Only when an 
operation acquires the semaphore, it can send a command to 
the NAND device. Fig. 3 shows our NAND storage 
architecture, which can be simultaneously accessed by both the 
file system and the demand paging manager. The file system 
sends read/write requests through the flash translation layer 
(FTL) and the NAND flash device driver (FDD). The FTL is 

responsible for translating a logical page address into a 
physical page address and also performs the block allocation, 
block reclamation and wear-leveling. The FDD provides low-
level interfaces for read, program and erase operations. The 
demand paging manager directly calls the flash device driver 
since it uses only the read operation. 

The demand paging manager manages a page cache, which 
retains only the pages likely to be accessed within a short time. 
We used a clock (i.e., second chance) replacement algorithm to 
manage the page cache. Since there is no hardware support of 
reference bit or reference counter in most embedded systems, we 
emulated the reference bits by artificially invalidating some valid 
pages at every page fault. When a falsely-invalidated but cache-
resident page is accessed, the page is marked as a valid page. 
We call this situation a false fault. 

Task 1

File Systems

Flash Translation 
Layer

Flash
Device Driver

NAND

Demand Paging 
Manager

Page Fault 
Handler

Task 2

SF

Fig. 3 Resource sharing in NAND-based demand paging. 

The proposed demand paging is implemented with the help 
of an MMU, which contains an address translation table that 
provides the mapping information between the virtual address 
and the physical address. When there is no valid address 
translation information of the page to be accessed, a page fault 
exception occurs. Then, the demand paging manager loads the 
page into the page cache (unless it is a false fault) and inserts 
the translation information of the page into the page translation 
table. In order to prevent a nested page fault exception, the 
codes of the page fault handler and the demand paging 
manager are not evicted from the main memory. 

In this scheme, the semaphore of the flash device driver (SF)
is exploited for resource synchronization, which is similar to 
the page fault handling mechanism in a general purpose OS, 
such as Linux. If a page fault occurs when the FTL has the 
semaphore SF, the demand paging manager should wait until 
SF is released by the FTL. Therefore, the task which invoked 
the page fault should be blocked until SF is available, and other 
tasks will be scheduled. That is, the page fault handling cannot 
interrupt the previous operation of NAND storage. Fig. 4 
shows an example of page fault handling. When the page fault 
exception occurs during the execution of task 2, it tries to 
obtain the semaphore SF via the demand paging manager. 
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Since SF belongs to task 1, task 2 enters into the sleep state. 
After task 1 releases SF, task 2 acquires the semaphore SF and 
then reads the required pages from the NAND device. 

The page fault latency (PFL) is the time from the 
occurrence of the page fault to the completion of a page load 
and can be expressed as follows: 

PFL= tsem + twait + tread + tcache         (1) 

 where tsem, twait, tread and tcache represent the semaphore 
handling overhead, the waiting time for the semaphore, the 
page read time from the flash array to the host memory and the 
page cache update time, respectively. While the values of tsem,
tread and tcache are fixed for a given system, the value of twait

varies depending upon how long the task should wait for the 
semaphore SF. Therefore, the demand paging overhead of a 
task depends on twait as well as the number of page faults that 
occur during the task execution.  

Fig. 4 Page fault handling.

B. Practical Issues in Demand Paging 
The described demand paging technique introduces several 

problems when it is used in real-time operating systems. 
1) Unpredictable Timing Behavior 

The first problem is the unpredictable timing behavior of 
demand paging. Especially, the semaphore waiting time, twait,
can be unbounded due to the priority inversion problem. For 
example, while a low-priority task τL accesses a file in NAND 
storage, a high-priority task τH can preempt task τL and 
generate a page fault, which also accesses the NAND storage. 
Then, task τH should wait until task τL releases SF. Moreover, 
task τH can be delayed by all other tasks whose priorities are 
higher than τL but lower than τH. The priority inversion 
problem can be solved by using a priority inheritance or 
priority ceiling protocol [12] if the operating system provides 
the scheme. Then, twait can be bounded by the block erase time. 

However, it is difficult to predict the accurate number of 
page faults during task execution, which must be known to 
estimate the demand paging overhead of a real-time task. 
Particularly for embedded systems using pre-built libraries, 
such as a mobile phone, it is impossible to analyze the worst-
case behavior of an application. 

2) Deadlock 
The second problem of demand paging is that a deadlock 

situation can happen if the file system invokes a page fault 

while it has the semaphore SF to access the data storage. If the 
file system code is shadowed at boot time, no code page fault 
will occur during the file system execution, however, data page 
faults can occur. For example, assume that a task attempts to 
copy data from the main memory into NAND storage via the 
file system. First, the file system acquires the semaphore SF.
Then, the data in the main memory is copied into the I/O 
buffer of the NAND device. If the data is not located in the 
physical memory, a data page fault can occur. When the data 
page fault handler attempts to acquire the semaphore SF, a 
deadlock occurs since SF is already being occupied by the file 
system and the file system will not release the semaphore until 
the page fault is resolved.  

3) Debugging 
When a program developer sets a software breakpoint at 

program code using a debugger, the debugger replaces the 
target program instruction with a trap instruction that causes an 
exception. When the trap instruction is encountered, the 
debugger catches the exception and stops the program. When 
the developer commands the debugger to continue, it restores 
the original instruction. Therefore, the precondition for 
software breakpoint is that the program code should reside 
within the physical memory and should be writable. However, 
in demand paging schemes, it is possible that the target 
instruction will not be located in the physical memory and, 
thus, a breakpoint cannot be set. 

4) Non-Preemptive Critical Section 
The last issue is unexpected scheduling behavior. There are 

two kinds of protection mechanisms for the critical section in 
embedded systems; one mechanism is to use a semaphore and 
the other is to use the non-preemptive critical section (NPCS) 
protocol [12]. In order to implement an NPCS in an embedded 
system, developers generally prevent the preemption of a task 
by locking the OS scheduler, disabling interrupts, or 
temporarily assigning the highest priority to the current task. 
Under some real-time operating systems (RTOSes), a non-
preemptive task can also be created.  The shortcoming of the 
NPCS is that every task can be blocked by a lower-priority 
task executing a non-preemptive critical section, even when 
there is no resource conflict between them. However, the 
NPCS protocol is widely used due to its simplicity. In addition, 
the behavior of a task using the NPCS is predictable, since it 
removes inter-task effects.  

The problem arises when a page fault occurs within the 
NPCS. On a page fault, the corresponding task can be 
preempted by other tasks if the semaphore SF is not available. 
Therefore, the task may fail to protect the shared resources 
within the NPCS and the system may show behaviors different 
with the developer's expectations. This problem results from 
the fact that application developers cannot know the page fault 
occurrences at run time. Therefore, a resource synchronization 
protocol is required to solve the problem without involving the 
developer's concern. 



IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, August 20101520

C. Solutions 
In order to solve the previously mentioned problems in 
demand paging within real-time systems, we propose several 
practical solutions. 

1) Hybrid Demand Paging 
A practical approach can be adopted to solve the 

unpredictable timing behavior of demand paging. Since not all 
applications in high-end embedded systems such as mobile 
phones have real-time constraints, we divided the applications 
into two groups: real-time applications and non real-time 
applications. While the shadowing technique is applied to real-
time applications, the demand paging technique is used for the 
others. To this end, the address space of the main memory is 
split into two regions: the shadowing region and the demand 
paging region. The codes to be shadowed are copied from the 
NAND flash storage to the shadowing region at boot time, and 
other codes are loaded into the demand paging region on 
demand during operation. Since all of the time critical tasks 
are shadowed and, therefore, invoke no page faults, we can 
avoid the priority inversion problem. Undoubtedly, it will be 
more beneficial to add the codes of real-time applications into 
the demand paging region if the timing constraints of the real-
time applications will be satisfied, despite the demand paging 
overhead. 

2) Nested Semaphore Acquisition 
The deadlock situation can be avoided by using a counting 

semaphore, which is able to be locked multiple times. The 
deadlock situation can be identified by examining whether the 
task with SF is the same as the task invoking the page fault. In 
such a case, the count value of the semaphore is incremented 
and the demand paging manager can access the NAND flash 
device. After the page fault handling, the count value of the 
semaphore is decremented.  

3) Breakpoint Setting with Page Pinning 
We revised the debugger to use the page pinning API 

function in order to solve the breakpoint problem. The 
debugger calls the page pinning API when the target 
instruction for the software breakpoint is not in the physical 
memory. The page containing the target instruction is loaded 
into and pinned at the page cache. 

4) Semaphore Pre-acquisition 
In order to prevent the NPCS problem, we can force a task 

to acquire SF before it starts an NPCS, called semaphore pre-
acquisition. However, if there is a file access within the NAND 
flash during an NPCS, the file operation will wait for the 
semaphore SF permanently because SF is already assigned to 
the task. Therefore, the semaphore should be released just after 
the task starts an NPCS. We can implement the semaphore 
pre-acquisition without user's intervention by hooking the APIs 
for NPCS. 

However, this technique involves semaphore-related 
overheads whenever a task enters into NPCS even though the 
task generates no page fault. In order to minimize the overhead, 
we can exempt the shadowed code from performing the 
semaphore pre-acquisition. However, it is still difficult to 
predict whether a data page fault will occur at an NPCS.  

5) Page Pinning 
Another solution for the prevention of preemption in NPCS 

is to load and pin all of the pages to be accessed in NPCS into 
the page cache at boot time. The page cache replacement 
algorithm excludes the replacement of pinned pages and then 
no page fault occurs in NPCS. Shadowing and pinning are 
different with respect to granularity. While shadowing is 
performed by the unit of object file, pinning is processed by 
the unit of page in order to minimize the page cache waste. 

Using static analysis, we are able to identify the pages to be 
accessed in NPCS regions at compile time. First, NPCS 
regions within the program code should be identified. An 
NPCS starts from the program code which disables interrupts, 
locks the scheduler or assigns the highest priority to the 
corresponding task, and it ends at the program code which 
enables interrupts, unlocks the scheduler or assigns the original 
priority to the task. Second, the pages which are accessed in 
the NPCS regions should be selected and the pinning page list 
is generated.  

For page pinning, we added a new API which loads the 
specified pages into the page cache and pins the pages in order 
to prevent them from being replaced. 

D. Non-Preemptive Demand Paging (NPDP) 
The page pinning requires a static analysis technique that is 

able to identify the page accesses in NPCS regions. However, 
it is significantly difficult to implement an exact static analysis 
tool. An alternative solution for composing the pinning page 
list is to use a profile-based technique. A profiler checks the 
page faults during the target applications execution. If a page 
fault is generated with the preemption disabled, the profiler 
inserts the corresponding page into the pinning page list. After 
profiling, the pages in the pinning page list are pinned in the 
page cache during system start-up. However, the profile-based 
pinning may provide an incomplete pinning page list since the 
profile step does not cover all program paths.  

Considering the limitations of the semaphore pre-acquisition 
and page pinning techniques, we devised the non-preemptive 
demand paging (NPDP) technique, which enables the page 
fault handler to preempt the ongoing NAND flash operation in 
order to support a read operation while the NAND flash 
memory is servicing the file system. Even if SF is occupied by 
the file system, the page fault handler can access the NAND 
storage without semaphore acquisition. 

The NPDP technique has the additional advantage of 
reducing the page fault latency. Even though we can avoid the 
page faults in NPCS by pinning the pages of NPCS, the normal 
page faults outside of the NPCS should wait a maximum of 4 
msec (i.e., the multi-block erase time) before acquiring the 
semaphore. However, the NPDP scheme can handle the page 
fault without waiting for the semaphore release. In NPDP, 
FDD is in charge of the resource synchronization instead of 
the semaphore. 
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Fig. 5 shows the algorithm used in the NPDP, which first 
checks the value of semaphore and, if the semaphore is free 
(the semaphore count is 0), the page fault handler reads the 
faulted page. If the semaphore is not free (the semaphore count 
is larger than 0) but the semaphore is occupied by the task 
which invoked the page fault, the faulted page is loaded in 
order to avoid the deadlock (lines 4-6). 

Non-Preemptive Demand Paging 

  1: check the semaphore SF;
  2: if SF is occupied by the current process   /* deadlock 
prevention */ 
  3:     or SF is free  then    
  4:   increment the semaphore count; 
  5:   load the fault page; 
  6:   decrement the semaphore count; 
  7: else      /* SF is occupied by the file system */ 
  8:   if the page fault is invoked within NPCS then
  9:    if the status of flash memory is busy then
10:     check the ongoing flash operation; 
11:     if the flash operation is erase then
12:          send the reset command; 
13:     endif
14:     wait until the status is changed into ready; 
15:    endif
16:    save status reg. and I/O buffer; 
17:        load the fault page; 
18:    restore status reg. and I/O buffer; 
19:    if the suspended flash operation is erase then
20:      send the erase command; 
21:    endif
22:   else  /* page fault outside of NPCS */ 
23:    sleep until SF is released; 
24:        increment the semaphore count; 
25:        load the fault page; 
26:        decrement the semaphore count; 
27:       end if
28: endif

Fig. 5 The NPDP algorithm 

If the semaphore is occupied by the file system and the page 
fault is invoked outside of the NPCS, the operation should wait 
for the semaphore release (lines 22-27). However, when NPCS 
invoked the page fault, the proposed NPDP technique is used. 
If read or program operations are executing, NPDP waits until 
the status register’s value is updated to ready since a new 
command cannot be sent to the device while it is busy (lines 9-
14). Fortunately, it takes a short amount of time to complete 
these operations of NAND flash memory. The NPDP only 
waits for the completion of Step 2 not Steps 3 or 4 in Fig. 3. 
However, the erase mode is aborted before completion since it 
requires a maximum 4 msec. We exploit the ‘reset’ command 
of the NAND device in order to abort the erase operation. 
When the device is in the busy state during the read, program 
or erase mode, the reset operation aborts these operations. The 
reset command requires 5 μsec, 10 μsec and 500 μsec to abort 

read, program and erase modes, respectively. Fig. 6 shows the 
aborting operations of the NPDP. Task 1 issued a NAND 
operation and was preempted by task 2. While executing task 2, 
a page fault occurs and the NPDP services the page fault. 

Fig. 6 Aborting NAND operations in NPDP 

After the NAND device is changed to the ready status, the 
device is available for reading or programming data. Since a 
NAND device has only one status register and one I/O buffer, 
the read command generated by the NPDP will change the 
status register and the I/O buffer. Therefore, the NPDP should 
save the status register and the I/O buffer data before it 
accesses the NAND device (line 16). After the page fault 
handling, the NPDP restores the saved values of the status 
register and the I/O buffer (line 18), and the preempted task 
can finalize its NAND operation. When the erase mode is 
aborted, the NPDP should retry the preempted erase operation 
after page fault handling (line 20). 

The NPDP technique can also be used for the normal page 
faults in the preemptable region. However, NPDP imposes an 
I/O overhead because it should save and restore the status 
register as well as the I/O buffer. Moreover, the erase 
operation should be restarted after the page fault handling. The 
page fault latency (PFL) in NPDP can be expressed as follows: 

PFL = tabort + tsave + tread + tcache + tresume     (2) 

where tabort, tsave and tresume represent the command aborting 
time for the erase command (or the waiting time for 
read/program completion), the status saving time, and the time 
for resuming the aborted operation (or the status restoring time 
for read/program completion), respectively. Therefore, it is 
better to use NPDP only when a page fault occurs in NPCS. 

There is another critical problem when NPDP is used within 
a preemptable region. During the NPDP, interrupts should be 
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disabled in order to prevent task scheduling. However, the 
system is then not able to provide timely service for a time 
critical task. For example, when the page fault handling reads a 
4 KB page after aborting the erase command, the interrupt is 
disabled during at least 800 μsec (500 μsec to abort the erase 
operation and 300 μsec to read the page). If the relative 
deadline of a real-time task, triggered by an external interrupt, 
is smaller than 800 μsec, the task could miss its deadline. 

V. EXPERIMENTS

In order to estimate the effect as well as the overhead of 
demand paging, we applied the proposed demand paging 
technique to a 140 MHz ARM926EJ-based CDMA mobile 
phone. The non-preemptive page fault handling technique was 
used. The phone is equipped with a 3 Gb NAND flash memory 
and 64 MB DRAM. The total program code size is 29 MB. If 
the full shadowing technique is used, 45% of DRAM should 
be allocated for code shadowing. For demand paging, we 
allocated 5 MB of DRAM memory to the page cache (PC). 
The page size is 4 KB. Only 6 MB of the program code was 
shadowed into DRAM, and the rest of the 23 MB code was 
demand-paged into the demand paging region (DPR). The 
shadowed region (SR) includes the call processing protocol 
stack and time-critical device drivers. Consequently, 11 MB of 
the DRAM memory is allocated for code memory, and the 
memory space for application code can be reduced by 62% in 
comparison to that of the full shadowing technique. 

We compared the boot times of four different configurations 
of demand paging, as shown in Table I. The boot time is 
composed of the loading time for the shadowed program 
image and the total execution time of boot-related programs. 
While the loading time of a program image was 0.27 sec in 
configuration I, 1.35 sec were needed for configuration IV, 
which had a larger shadowing region. As a larger PC and SR 
are utilized, the execution time decreases due to the smaller 
demand paging overhead. Consequently, the total boot times 
under different demand paging configurations are similar. 

TABLE I
DEMAND PAGING DURING BOOT TIME.

Configuration (MB) Boot Time (sec) 

No. SR DPR PC Mem 
Total Load Exec. Total 

I 6 26 2 8 0.27 14.37 14.64 
II 6 26 5 11 0.26 14.18 14.44 
III 6 26 20 26 0.29 13.99 14.29 
IV 22 10 5 27 1.35 13.40 14.75 

We measured the page fault latency while executing real 
phone applications on the target platform. An MPEG4 video 
recording program and an MP3 audio player program were used, 
and both of the two applications were demand-paged and used 
the file system. In addition, in order to make the resource 
conflict situation, we executed a background program which 
repeats file reading, deleting and writing in a period of 700 msec.  
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Fig. 7 Page fault counts and total page fault overheads. 

Fig. 7 shows the number of page faults and the page fault 
overheads at various shadowing region and page cache sizes. 
As the sizes of the PC and SR increase, the number of page 
faults and the page fault overhead decrease. When the 
shadowing region was 6 MB and the page cache was 5 MB, 
the page fault overheads of the MP3 and MPEG4 applications 
were only 0.17% and 0.16% of the total application execution 
times, respectively. This means that the page fault overhead is 
too small to be noticeable for a reasonable page cache size.  

Table II shows the number of page faults in NPCS, the 
number of deadlocks and the number of non-preemptive 
demand pagings under different SR and PC configurations. We 
can know from the results that there can be frequent page 
faults in NPCS when the page cache is small, therefore, the 
NPDP scheme is indispensable for embedded systems. 

TABLE II
NUMBERS OF NPCSS, DEADLOCKS AND NPDPS

App. SR
(MB)

PC 
(MB)

PF in 
NPCS Deadlock NPDP 

1 585 8 11 6
3 1 1 0 MP3 

22 1 2 0 0 
1 1416 43 1 6
3 5 0 0 MP4 

22 1 6 0 0 

We also observed the different behaviors resulting from 
different page sizes. When we use a page size of 1 KB, instead 
of 4 KB, the number of page faults increases by 85% in the 
MPEG4 program. However, the increase in page fault count 
does not indicate an increase in page fault overhead. The total 
page fault overhead increases only 1% since the 1 KB page 
requires a small time for page transferring. 

VI. CONCLUSIONS

The NAND-based demand paging can significantly reduce 
the required memory space for consumer electronics. However, 
in order to simultaneously service both the demand paging 
request and the file system request, a resource synchronization 
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technique for NAND flash memory is needed. One simple 
technique is the exploitation of the semaphore of NAND 
storage to control the simultaneous accesses to the shared 
resource. However, using the semaphore can result in a 
preemption of the non-preemptive critical section (NPCS).  

We proposed the non-preemptive demand paging (NPDP) 
technique in order to solve the NPCS issue. With the NPDP 
technique, the flash device driver both saves and restores the 
status registers and the I/O buffer of NAND flash memory for 
resource synchronization. Experimental results showed that the 
NAND-based demand paging can reduce the memory 
requirement with a negligible timing overhead. 

Our work can be extended in several directions. Multimedia 
application requires a sustained bandwidth in order to 
guarantee the quality-of-service (QoS). Therefore, a real-time 
resource reservation scheme for NAND storage, providing 
timely and guaranteed access to system resources, is required 
for multimedia applications. Hence, there is a need to study the 
distribution of NAND storage bandwidth between demand 
paging and file systems. 
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