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Intra-Task Voltage Scheduling on DVS-Enabled
Hard Real-Time Systems
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Abstract—This paper proposes a novel intra-task dynamic volt-
age scheduling (IntraDVS) framework for low-energy hard real-
time applications. Based on a static timing analysis technique, the
proposed approach controls the supply voltage within an individ-
ual task boundary. By fully exploiting all the slack times, a sched-
uled program by the proposed technique always completes its
execution near the deadline, thus achieving a high energy reduc-
tion ratio. The problem formulation of IntraDVS is first pre-
sented and two heuristics are proposed: one based on worst-case
execution information and the other on average-case execution
information. In order to validate the effectiveness of the pro-
posed heuristics, a software tool that automatically converts a
DVS-unaware program into an equivalent low-energy program
was built. In an experiment on a DVS-enabled system, the low-
energy version of a Moving Pictures Expert Group (MPEG)-4
encoder/decoder consumed only 35%–51% of the energy con-
sumption of the original program running on a fixed-voltage
system with a power-down mode. The energy efficiency of the
IntraDVS algorithms was also compared with that of task-level
voltage scheduling algorithms. The experimental results show that
the IntraDVS algorithm can be useful in multitask environments
as well.

Index Terms—Dynamic voltage scaling, low-power design,
power management, real-time systems, variable-voltage processor.

I. INTRODUCTION

DYNAMIC voltage scaling (DVS) [1] is one of the most
effective approaches in reducing the power consump-

tion of embedded systems, where the supply voltage can be
dynamically reduced to the lowest possible extent and still
ensure a proper operation when the required performance of
the target system is lower than the maximum performance.
Since the dynamic energy consumption of CMOS circuits,
which dominates the total power consumption, is proportional
to the square of the supply voltage Vdd, a significant energy
reduction is possible with the DVS scheme. Recently, many
commercial variable-voltage microprocessors (e.g., [2]–[4])
have been introduced to the mobile embedded market, reflect-
ing the effectiveness of DVS techniques.

In the past, various voltage scheduling algorithms have been
proposed for hard real-time systems [5]–[12]. Given multiple
tasks, these algorithms assign the proper speed to each task
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dynamically while guaranteeing all their deadlines. In real-time
systems, since the real execution time of each task may be
smaller than the worst-case execution time (WCET), workload-
variation slack times [13] are generated at run time even though
the worst-case utilization of the processor is 1. However, it is
difficult to utilize the workload-variation slack times because
the exact amount of slack time before the completion of a task
cannot be known. Therefore, most DVS scheduling algorithms
[7]–[12] transfer the slack time to the following tasks that can
utilize it. These techniques exploit the “slack estimation and
distribution” strategy for supply voltage determination, which
can be summarized as follows: 1) running the current task;
2) estimating the slack time due to early completion of the
current task; 3) distributing the slack time to the next tasks and
determining the operating speed of the tasks; and 4) running the
next tasks. These techniques determine the supply voltage on
a task-by-task basis. For each task activation, only one supply
voltage is assigned to the task, and it is not changed during
the task execution. In this paper, these techniques are called as
intertask dynamic voltage scheduling (InterDVS).

While generally effective in reducing the energy consump-
tion of multitask real-time systems, InterDVS has several prac-
tical limitations. For example, since a task scheduler in an
operating system (OS) determines the supply voltage of a task,
it requires OS modifications. Furthermore, it cannot be applied
to a single-task environment because there is no other task that
can utilize the slack time generated by the completed task.
Considering many small-size embedded mobile applications
are based on a single-task model, this can be detrimental to a
wide adoption of variable-voltage processors in practice.

Even in a multitask environment, InterDVS may not be
effective in reducing the energy consumption if one task is
dominant in both the slack times and the execution times. In
this case, a dominant task (with the highest energy consump-
tion) exploits slack times from other tasks (with small slack
times), thus ineffective in reducing the energy consumption.
For example, consider a typical mobile videophone application
with four tasks shown in Table I. Using the InterDVS algorithm
of [8], only 17% energy reduction is observed while an off-
line (theoretical) optimal voltage scheduling can achieve 90%
power reduction.1

In this paper, a novel voltage scheduling framework is pro-
posed that can utilize the workload-variation slack times
within the current task, not the following tasks. The proposed

1The energy reduction by the InterDVS algorithm of [8] was estimated using
a simulation. The off-line optimal schedule was calculated by assuming that the
real execution times of tasks are known a priori.
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TABLE I
TYPICAL VIDEOPHONE APPLICATION

∗In normalizing energy consumption values, the base case of normalization is DVS-unaware systems using only power-down mode.

technique is called intra-task DVS (IntraDVS) because it ad-
justs the voltage and the clock speed within a task. The tech-
nique identifies the slack time generated from the workload
variation and adjusts the clock/voltage to utilize the slack time
at run time. To enable the run-time clock/voltage adjustment,
the application code is preprocessed based on the static timing
analysis and the profile information of program execution.

The workload-variation slack times are identified by ob-
serving the changes of the remaining execution times due to
control flow. Depending on the technique of how to predict the
remaining execution time, two kinds of IntraDVS algorithms
are described, one using worst-case execution information and
the other using average-case execution information. Although
average-case execution information is exploited in the second
algorithm, the timing constraints of a hard real-time program
are still guaranteed.

The proposed IntraDVS algorithm has the following features:
1) it fully exploits all workload-variation slack times, achieving
a significant improvement in the energy consumption; 2) it is
applicable to a single-task environment, since it controls the
supply voltage within each task2; 3) it provides an auto-
matic conversion tool that converts DVS-unaware programs
into DVS-aware ones, meaning that a programmer requires
no knowledge on DVS, making the proposed algorithm very
practical; and 4) it enables each individual task to control the
supply voltage independent of other tasks without any support
from operating systems. Therefore, it can be directly applied to
a conventional DVS-unaware OS without any modification.

Based on the proposed IntraDVS algorithm, a software tool
called automatic voltage scaler (AVS) that automatically con-
verts a DVS-unaware program into an equivalent low-energy
program has been developed. In the experiment using a real
DVS-enabled system, the low-energy version of a Moving Pic-
tures Expert Group (MPEG)-4 encoder/decoder consumed only
35–51% of the energy consumption from the original program
running on a fixed-voltage system with a power-down mode.

The rest of this paper is organized as follows. Section II sum-
marizes related works on DVS and compares them with the

2This does not necessarily mean that the proposed IntraDVS algorithm is not
applicable to multitask environments. When used under an InterDVS algorithm,
which assigns a time slot and a speed for each task at run time, the proposed
algorithm can additionally adjust the execution speed at the intra-task level. The
proposed IntraDVS algorithm forces each task to use only the time slot assigned
by the OS scheduler in multitask environments. When an InterDVS algorithm
determines a time slot for a task at run time, the IntraDVS has only to adjust the
initial start speed of the task based on the assigned time slot.

work here. While the framework and the overall descriptions
of the proposed IntraDVS are introduced in Section III, the
details of the IntraDVS algorithm are described in Section IV.
The experimental results are presented in Section V. Section VI
concludes with a summary and future works.

II. RELATED WORKS

For hard real-time systems where timing constraints must be
strictly satisfied, a fundamental energy delay tradeoff makes
it more challenging to adjust the supply voltage dynamically
while minimizing the energy consumption and guaranteeing
the timing requirements. For this reason, extensive studies have
been recently carried out on the InterDVS problems [5]–[12],
[14]–[16]. The energy efficiencies of state-of-the-art InterDVS
algorithms have been evaluated in [17].

For the IntraDVS technique, several kinds of approaches
have been introduced. An intra-task voltage scheduling where
each task is partitioned into fixed-length segments has been
proposed in [13]. After the completion of each segment, the
supply voltage is adjusted depending on the slack time made
by the previous segment. Although [13] shows a significant
improvement in the energy reduction, it provides no system-
atic methodology for developing DVS-aware intra-task appli-
cations. For example, there exists no systematic guideline of
selecting the best program locations where the voltage scaling
code is inserted. Consequently, the programmer himself should
find out proper locations based on his own knowledge. It
implies that the technique described in [13] is very difficult to
be applied to practical applications since average programmers
are generally not familiar with low-energy software issues as
well as timing analysis techniques.

To provide a systematic methodology for developing DVS-
aware intra-task applications, [18] and [19] proposed two Intra-
DVS techniques based on the program analysis. This paper
generalizes the earlier IntraDVS heuristics in a unified frame-
work and extensively evaluates their performance.

Another approach of IntraDVS is based on the stochastic
method [20], [21]. This technique is motivated by the idea that it
is usually better to “start at low speed and accelerate execution
later when needed” than to “start at high speed and reduce the
speed later when the slack time is found” in the program execu-
tion. However, it requires the probability density function of ex-
ecution times of a task to calculate the optimal speed schedule.
Furthermore, the stochastic IntraDVS requires OS modification
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TABLE II
VARIABLE VOLTAGE PROCESSORS

like InterDVS and cannot utilize all the slack times. In this pa-
per, the authors compare the energy efficiency of the stochastic
IntraDVS technique with the proposed heuristics.

A different kind of IntraDVS is also proposed in [22]. While
the IntraDVS here estimates the slack times of a task based
on the changes of the remaining execution cycles due to the
control flow, the technique in [22] finds the slack times based
on the architectural characteristic of the microprocessor. By
identifying the program regions in which the CPU is mostly
idle due to memory stalls, the technique in [22] slows down the
clock speed of the CPU in the regions for energy reduction with
negligible performance loss. However, this technique should be
carefully used in real-time systems due to performance degra-
dation. Since this technique is different from our IntraDVS in
the kind of slack times exploited, it can be used together with
our IntraDVS for better energy performance.

The DVS technique proposed for multimedia applications
in [14] uses a special technique distinguishing it from other
InterDVS techniques evaluated in [17]. Their algorithm fully
utilizes the idle intervals with buffers in a variable speed
processor and determines the minimum buffer size to achieve
the maximum energy saving. The energy performance of the
technique is strongly dependent on the available buffer size.
This technique has a limitation that it can be used only when
a system can buffer multiple input data or output results.

III. INTRA-TASK VOLTAGE SCHEDULING FRAMEWORK

A. Machine Model

Recently, many variable-voltage processors have been
announced. Table II shows the representative commercial vari-
able-voltage processors and academic trials to implement vari-
able-voltage processors. These processors provide finite
numbers of voltage and clock levels within the voltage/clock
range specified. Each processor requires a time delay to
change the voltage/clock level. Most of the variable-voltage
processors, except Transmeta’s Crusoe, provide the software
mechanisms for users to be able to control the voltage and clock
level such as TI’s Power Scaling Library [23]. Throughout this
paper, the authors make the following assumptions on a target
variable-voltage processor: 1) the processor provides a spe-
cial instruction change_f_V(fclk) that dynamically controls

the clock frequency fclk and its corresponding voltage Vdd

of the processor; 2) fclk and Vdd have continuous values
within the operational range of the processor; 3) when the
processor changes from ( fclk1, Vdd1) to ( fclk2, Vdd2), there
is a clock/voltage transition overhead (VTO) period of CVTO

cycles3; and 4) during clock/voltage transition, the processor
stops running.

Assumptions 1), 3), and 4) are valid for most variable proces-
sors. Especially, assumption 4) is conservative considering
recent variable-voltage processors such as TI’s TMS320C55x,
which stops during the clock transition but operates during the
voltage transition. Assumption 2) is not realistic because most
variable-voltage processors provide only discrete voltage/clock
levels. However, the work presented here can support the
processors with a finite number of voltage/clock levels with a
slight modification of the speed selection algorithm.

B. Basic Idea

Consider a hard real-time program P with a deadline of 2 s
shown in Fig. 1(a). The control flow graph (CFG) GP of the
program P is shown in Fig. 1(b). In GP , each node represents
a basic block of P and each edge indicates the control de-
pendency between basic blocks. The number within each node
indicates the number of execution cycles of the corresponding
basic block. The back edge from b5 to bwh models the while
loop of the program P .

In developing hard real-time systems where tasks have
strict timing constraints (i.e., deadlines), the WCETs of the
tasks are estimated in advance (prior to run time) to guarantee
that required timing constraints are met. Such WCETs can
be predicted by existing analysis tools that produce safe and
accurate prediction results [26], [27]. Using a WCET analysis
tool, the authors can find the path pworst = (b1, bwh, b3, b4,
b5, bwh, b3, b4, b5, bwh,b3, b4, b5, bwh, bif , bcall4, b8, b10, b11, b7)
as the worst-case execution path (WCEP) for the example
program P , assuming that the maximum number of while loop

3The clock/voltage transition time is different depending on the source
voltage and the target voltage. However, it was assumed that there is a fixed
voltage transition time for a simple explanation. Since the authors represent the
fixed clock/voltage transition overhead period by the number of cycles, it can
vary depending on the current clock frequency. For a simpler analysis, it was
assumed that CVTO cycles were counted under the maximum clock frequency.
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Fig. 1. Example program P : (a) an example real-time program with the 2-s deadline and (b) its CFG representation GP .

iterations is set to 3 by the user. The predicted execution cycles
of pworst are, therefore, 200 × 106 cycles, which are the worst-
case execution cycles (WCECs). If a target processor operates
at the maximal clock frequency of 100 MHz, the program P
completes its execution in 2 s, resulting in no slack time.

However, there are large execution time variations among
different execution paths. In particular, the average-case exe-
cution paths (ACEPs) complete their executions much earlier
than the WCEP(s) does [8]. For the example program shown
in Fig. 1(b), there exist 51 different execution paths. While
the WCEP pworst takes 200 × 106 cycles, 12 of 51 possible
execution paths take less than 100 × 106 cycles. For such
short execution paths, the workload-variation slack times are
generated. If we were able to identify them in the early phase of
its execution, the clock speed can be lowered substantially, thus
saving a significant amount of energy consumption. Consider
the path p1 = (b1, bcall1, b8, b9, b11, bif , bcall4, b8, b10, b11, b7)
of Fig. 1(b) whose execution takes 95 × 106 cycles. In the ideal
case, the execution can start with a clock speed of 47.5 MHz
without violating the 2-s deadline if it can be perfectly pre-
dicted that the actual execution path will be p1 before the
processor starts b1. Unfortunately, it is not generally known in
advance which execution path will be taken by the next pro-
gram execution. Therefore, it cannot start with the 47.5-MHz
clock speed, although this will improve the energy efficiency
significantly.

The solution for this problem is to adjust the clock speed
within the task depending on the workload variations. For
example, when the program control flow follows the execu-
tion path p1 of Fig. 1(b), the clock speed can be reduced at
edge (b1, bcall1) because this control flow dose not follow the
WCEP. In the proposed IntraDVS algorithm, the authors iden-
tify the appropriate program locations where the clock speed
should be adjusted and insert the clock and voltage scaling
codes to the selected program locations at compile time. The
branching edges of the CFG, i.e., branch or loop statements,

are the candidate locations for inserting voltage scaling codes
because that is where changes of the remaining execution
cycles occurred.

C. Problem Modeling

Consider a real-time task τ with the deadline D. The task τ
is represented by its CFG Gτ . If the task τ has N basic blocks,
b1, b2, . . . , bN , Gτ consists of N nodes. (It was assumed that
b1 is the entry basic block of the task τ .) Each basic block bi is
associated with its basic block information (BBI) structure. The
BBI structure BBI(bi) of the basic block bi consists of three
entries: CEC(bi), S(bi), and E(bi). CEC(bi) denotes the num-
ber of clock cycles4 needed to execute bi. S(bi) represents the
processor speed in clock frequency at which bi is executed. (It
was assumed that the supply voltage is proportional to the clock
speed.) E(bi) is defined as CEC(bi) × S(bi)2. E(bi) is the
metric for the energy consumption during the execution of bi.

Similar notations are defined for execution paths. pi denotes
an execution path of a task τ . pi can be expressed as a sequence
of basic blocks. CEC(pi) represents the number of execution
cycles when pi is executed. For paths, a notation Φbi is used,
which means the set of all the partial execution paths starting
from basic block bi.

The IntraDVS algorithm is used to find out how much the
clock speed should be changed at each edge (bi, bj) in the CFG
of a target program to minimize the total energy consumption
of the program, satisfying the timing constraint of the program.
That is, we should find the value ri,j = S(bj)/S(bi) for each
edge (bi, bj). This ratio is called the speed update ratio (SUR).

4Note that the BBI definition above is represented in execution cycles,
instead of execution time. This is because, as the clock speed is adjusted on
a variable-voltage processor, the execution time is changing for a given basic
block, but the number of execution cycles remains constant. Given the number
of execution cycles, the execution time can be computed by multiplying the
clock cycle time.
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For an execution path pm = (b1, . . . , bnm
), S(bi) can be repre-

sented as

S(bi) = S0

i∏
k=1

rk−1,k (S(bi) ≥ Smin and S(bi) ≤ Smax)

where S0 is the initial clock speed at the start of a program and
Smin (Smax) is the minimum (maximum) value of the clock
speed provided by the target variable-voltage processor. E(bi)
can also be denoted as

E(bi) = CEC(bi)S(bi)2 = CEC(bi)

(
S0

i∏
1

rk−1,k

)2

.

Then, the energy consumption during the execution of the
path pm is proportional to

E(pm) =
nm∑
i=1

E(bi) =
nm∑
i=1

CEC(bi)

(
S0

i∏
1

rk−1,k

)2
.

From this formula, the target function can be represented to
minimize as∑
∀pm∈Φb1

E(pm)prob(pm)

=
∑

∀pm∈Φb1

nm∑
i=1

CEC(bi)

(
S0

i∏
1

rk−1,k

)2
prob(pm)


(1)

where prob(pm) is the probability that the path pm is executed
among all the paths in Φb1 .

There is a timing constraint for this problem. Since the target
program τ should be completed before the deadline D, the
timing constraint can be denoted as

∀pm,

nm∑
i=1

CEC(bi)
S(bi)

=
nm∑
i=1

CEC(bi)
S0

∏i
1 rk−1,k

≤ D. (2)

Using a simple inference, it can be concluded that the optimal
solution satisfies

∀pm,

nm∑
i=1

CEC(bi)
S0

∏i
1 rk−1,k

= D

∀pm,

nm∑
i=1

CEC(bi)
D
∏i

1 rk−1,k

= S0.

So, S0 can be estimated when the ri,j for each edge (bi, bj) is
determined.

Since (1) is a nonlinear equation for ri,j , this problem is
a nonlinear program (NLP) problem. Generally, there is no
polynomial time algorithm for the NLP problem. So, a heuristic
algorithm similar to the gradient descent method is proposed.

Fig. 2 shows the heuristic search algorithm. For each ri,j , the
authors set the initial value of it to 1, which means that there
is no speed update at the corresponding edge, and constitute

Fig. 2. Heuristic search algorithm for the IntraDVS problem.

the set R that has all edges in Gτ of the target program. ri,j

is changed as the amount of ∆r, which is a very small number
between 0 and 1, during the successive iterations in Fig. 2. In
each iteration, we first find the edge (bi, bj) having the largest
∆E. ∆E means the energy gain when ri,j is changed to r′i,j =
ri,j × ∆r. From (1), ∆E be can represented as

∆E(ri,j) = S0(1 − ∆r)

×
∑

pm∈Φbj

prob(pm)
nm∑
k=j

CEC(bk)S(bk)2.

After changing the value of ri,j , it should be checked whether
the timing constraint of (2) is satisfied in spite of the increased
execution time of pm. If there is no deadline miss, the same
process is tried again.

When there is a deadline miss, two kinds of approaches
can be chosen. The first approach is to admit that there is no
speed up, that is, SURs are always smaller than 1. In this case,
the clock speed only decreases as a target program executes.
So, there is no chance to solve the deadline miss problem by
increasing the clock speed after (bi, bj). r′i,j should be restored
to ri,j and eliminate the corresponding edge (bi, bj) from the
set of candidate edges R. The second approach is to admit
that there is a speed-up. In this case, since the clock speed can
be increased by an edge after (bi, bj), ri,j can be decreased
despite the deadline miss. To maintain the selected edge (bi,
bj) in R, the authors should find the other edge, say (bh, bk),
that has the smallest ∆Ê. ∆Ê means the energy loss when rh,k

is changed to r′h,k = rh,k/∆r. After changing rh,k, the poten-
tial energy gain should be checked to see whether ∆E is larger
than ∆Ê. If there is no edge satisfying such a condition, r′i,j is
restored to ri,j and the corresponding edge (bi, bj) is eliminated
from R.

This heuristic algorithm shows the following features: 1) The
nearest edge from the entry basic block is first selected from R
because it has the largest value of ∆E. After the corresponding
SUR of the selected edge is fixed, the following edges are
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Fig. 3. RWEP-based CFG GRWEP
P .

processed; 2) The nearest edge from the exit basic block is first
selected to increase its SUR; 3) In the constraint that SURs
should be smaller than 1, S(bi) is close to the value under
which the target processor can execute MAXpj∈Φbi [CEC(pj)]
cycles until the deadline. MAXpj∈Φbi [CEC(pj)] is the remain-
ing WCEC (RWEC) of bi. Namely, the SURs are optimal to the
remaining WCEP (RWEP); and 4) Without such a constraint,
the SURs are determined so that the average energy consump-
tion is minimized, satisfying the deadline constraint. In this
case, the determined speed is near the optimal speed value for
the ACEP.

From these features, the heuristic algorithm can be modified
to a less complex algorithm. An execution path that the control
flow will follow is predicted. There can be several methods
how to predict the execution path. A simple method is to use
the WCEP. Once the execution path is predicted, the initial
clock frequency and its corresponding voltage are set, assuming
that the task execution will follow the predicted execution
path. The predicted execution path is called as the reference
path because the clock speed is determined based on the exe-
cution path.

When the actual execution deviates from the (predicted)
reference path (say, by a branch instruction), the clock speed
can be adjusted depending on the difference between the re-
maining execution cycles of the reference path and that of the
newly deviated execution path. If the new execution path takes
significantly longer to complete its execution than the reference
execution path, the clock speed should be raised to meet the
deadline constraint. On the other hand, if the new execution
path can finish its execution earlier than the reference execution
path, the clock speed can be lowered to save the energy con-
sumption. Once the actual execution takes a different path from
the reference path, a new reference path is constructed starting
from the deviated basic block.

In the actual implementation of IntraDVS, the reference path
does not need to be maintained. To implement the IntraDVS
algorithm efficiently, the appropriate program locations where
the clock speed should be raised or lowered relative to the cur-
rent clock speed are identified using a static program analysis

technique. For run-time clock speed adjustment, it inserts volt-
age scaling codes to the selected program locations at compile
time. The branching edges of the CFG, i.e., branch or loop
statements, are the candidate locations for inserting voltage
scaling codes because that is where the prediction miss for the
reference path occurred. They are called voltage scaling edges
(VSEs) because the clock speed and the voltage are adjusted at
these edges. At each VSE (bi, bj), the clock speed is determined
by the predicted remaining execution cycles (PRECs) of bi,
CPREC(bj). The value of CPREC(bj) depends on the prediction
algorithm.

There are two issues in the IntraDVS. One is how to pre-
dict the reference path. Depending on the prediction method,
the IntraDVS framework can be implemented into different
IntraDVS algorithms. In this paper, two kinds of reference paths
were adopted, i.e., RWEP and remaining ACEP (RAEP). Based
on the prediction method, there are two different algorithms,
i.e., RWEP-based IntraDVS and RAEP-based IntraDVS. In the
former, the clock speed is monotonically decreased at all the
VSEs. This corresponds to the case where speed-up is not ad-
mitted. On the contrary, in the latter, the clock speed may
be increased as well at some VSEs. In this case, VSEs are
classified into up-VSEs and down-VSEs. The clock speed is
increased at an up-VSE while it is decreased at a down-VSE.
Another issue is how to select VSEs. In selecting VSEs, the
timing overhead due to voltage transition and the inserted
codes should be considered. The solutions for these issues are
provided in Section IV.

IV. DETAILS OF THE PROPOSED INTRADVS ALGORITHMS

A. RWEP-Based IntraDVS Algorithm

In the RWEP-based IntraDVS, CRWEC(bi) was used for
the PRECs. Fig. 3 shows an augmented CFG GRWEP

P with
CRWEC(bi) values for the RWEP-based IntraDVS. Using the
static timing analysis tools, CRWEC(bi) can be computed for
each basic block bi and the graph GRWEP

P can be constructed
statically. For the basic blocks related to the while loop (i.e.,
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Fig. 4. Changes of CRWEC(t) over different speed scaling algorithms: (a) no IntraDVS and (b) RWEP-based IntraDVS.

bwh, b3, b4, b5), the corresponding nodes are associated with
multiple CRWEC(bi) values, reflecting the maximum three iter-
ations of the while loop.

With the graph GRWEP
P , VSEs that drop RWECs faster than

the current execution rate can be identified. For example, in
Fig. 3, five VSEs are identified, i.e., (b1, bcall1), (bwh, bif ),
(bif , b7), (b3, b5), and (b8, b9). In Fig. 3, these edges are marked
by the symbol •. When the thread of execution control branches
to the next basic block through one of the VSEs, say (b1,
bcall1), the clock speed can be lowered because the remain-
ing work is reduced by the difference between CRWEC(bwh)
and CRWEC(bcall1). By reducing the clock speed so that
CRWEC(bcall1) cycles can be completed exactly at the deadline,
the proposed technique always meets the required timing con-
straint. Since the voltage scaling decisions are made at compile
time, there exists no run-time overhead directly related to the
selection of VSEs. In addition, the compile-time static analysis
procedure does not require special programmer interventions
other than the ones typically required in developing normal
hard real-time programs (e.g., the maximum number of loop
iterations).

At the entry basic block b1, the starting speed is set to
CWCEC/D, where CWCEC is the WCEC of the whole program.
When CRWEC(t) is denoted as the RWEC at time t, CRWEC(t)
is linearly decreased at the rate of clock speed along with
the program execution, as far as the execution follows the
WCEP pworst. However, if the execution deviates from the
basic block bi in the WCEP pworst to other basic block bj not
included in pworst, CRWEC(t) drops by the difference between
CRWEC(bi) − CEC(bi) and CRWEC(bj) after the execution of
bi is completed.

Fig. 4 shows how CRWEC(t) dynamically changes as
the path p1 = (b1, bcall1, b8, b9, b11, bif , bcall4, b8, b10, b11, b7)
of the example program P shown in Fig. 3 is executed. In
Fig. 4(a), where no speed scheduling is used, CRWEC(t) drops
at two edges, (b1, bcall1) and (b8, b9). Since no speed sched-
uling is used, CRWEC(t) is decreased at a rate of 100 MHz,
resulting in a slack time interval of 1.05 s. Fig. 4(b) shows
the effect of speed scheduling for the same execution path
assuming that there is no voltage transition overhead. When
RWEC drops, the minimum processor speed that can complete
the remaining program execution before the deadline also
drops. Thus, processor speed is changed from 100 to 53
MHz when CRWEC(t) drops right after the execution of b1

is completed. When CRWEC(t) drops right after b8, speed is
also changed due to the same reason. CRWEC(t) is dropped
vertically at VSEs in Fig. 4. The number of the reduced cycles
of CRWEC(t) at VSEs is denoted as Csaved.

Theoretically, since IntraDVS can fully exploit all workload-
variation slack times, all of the task executions are completed
exactly at the deadline. However, some slack time can be
generated in real variable-voltage processors even though the
IntraDVS technique is used. This is because variable-voltage
processors provide only finite numbers of clock/voltage levels
and require voltage transition times to change the clock/voltage
level. These two factors prevent IntraDVS from adjusting
the clock/voltage level at all VSE candidates (i.e., branching
edges).

Fig. 5 compares how the speed and the voltage change de-
pending on whether the IntraDVS is used or not. Assume that
no energy is consumed in an idle state. When the execution
follows the path p1, the energy consumption ratio of Fig. 5(b) to



SHIN AND KIM: INTRA-TASK VOLTAGE SCHEDULING ON DVS-ENABLED HARD REAL-TIME SYSTEMS 1537

Fig. 5. Speed and voltage changes: (a) without IntraDVS and (b) with the RWEP-based IntraDVS.

Fig. 5(a) is 0.288. With the IntraDVS, the energy consumption
is reduced by 71.2%.

B. The Selection of VSEs and Code Transformation

To adjust the clock speed and voltage at run time, the VSEs
should be selected at compile time considering the saved cycles
and the overhead cycles. Considering its behavior, VSEs are
classified into B-type VSEs and L-type VSEs.
1) B-Type VSEs: A B-type VSE corresponds to the CFG

edge between two basic blocks that are part of conditional
statements such as the if statement. For the if statement, the
WCET is predicted to be the larger of two execution times, one
for the then path and the other for the else path. Assume
that the condition of the if statement is evaluated in bcond,
the then path starts from bthen and the else path starts from
belse. If the condition of the if statement is evaluated to be true
and the then path is shorter than the else path, CRWEC(t)
is decreased by [CRWEC(belse) − CRWEC(bthen)]. In this case,
the speed can be decreased before the bthen block is executed by
a ratio of CRWEC(bthen)/CRWEC(belse). This value is a SUR
and is represented by r(bcond, bthen).

In adjusting the clock/voltage at VSEs, several instruc-
tions are required other than the voltage-changing instruction
[change_f_V(fclk)]. The authors denote the number of cycles
needed for these extra instructions at a B-type VSE as CVSOB

.
The total number of overhead cycles CoverheadB

for a B-type
VSE, therefore, is given by CVTO + CVSOB

. The SUR r(bi, bj)
for a B-type VSE (bi, bj) is calculated as

r(bi, bj) =
CRWEC(bj)

CRWEC (succworst(bi)) − CoverheadB

(3)

where succworst(bi) is the basic block bk that is an immediate
successor of bi and has the largest CRWEC(bk) among all
the successors of bi. If CRWEC(bj) ≥ CRWEC[succworst(bi)] −
CoverheadB

, that is, r(bi, bj) ≥ 1, the edge (bi, bj) is not se-
lected as a VSE. For a VSE between bi and bj , a SUR r(bi, bj)
is multiplied to the current speed before bj starts its execution.
For example, assuming CoverheadB

as 0, S(bcall1) in Fig. 3
is changed from 100 to 53 MHz [= 100 MHz (100 × 106/
190 × 106)].
2) L-Type VSEs: Although WCEC is predicted assuming

that a loop will be iterated by the user-provided maximum
number of loop iterations, the loop is generally iterated smaller
times than the maximum loop bound. In this case, slack time
occurs and clock speed can be scaled down. The authors call
this type of scaling L-type scaling. L-type VSEs correspond to
the loop-exit edges in a CFG. In the L-type scaling, the number
of saved cycles Csaved for a loop l is given by

Csaved(l) = CWCEC(l) (Nworst(l) − Nexec(l)) (4)

where CWCEC(l) is the number of WCECs to execute the loop l
once, Nworst(l) is the number of user-provided maximum loop
bound value for the loop l, and Nexec(l) is the number of actual
loop iterations measured at run time. Consider the edge (bwh,
bif ) in Fig. 3. Assuming Nexec(l) = 1, and CoverheadL

= 0,
S(bif) is updated as

S(bif) =S(bwh)
CRWEC(bif)

CRWEC(bif) + Csaved(l) − CoverheadL

=S(bwh)
60 × 106

60 × 106 + 40 × 106 × (3 − 1)

=S(bwh)r(bwh, bif). (5)
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When S(bwh) is 100 MHz, S(bif) is reduced to 43 MHz before
executing bif .

Unlike a B-type VSE, calculating the SUR for an L-type VSE
requires the run-time information such as Nexec(l).5 The SUR
may be larger than 1 depending on the value of Nexec(l) and
CoverheadL

. To avoid this problem, the authors select an L-type
VSE in two phases. First, a loop-exit edge of a loop l is selected
as an L-type candidate VSE if CWCEC(l) > CoverheadL

, which
means that if Nexec(l) < Nworst(l), the SUR is always smaller
than 1. When Nexec(l) = Nworst(l), the speed is not changed
but the timing behavior of an original program is changed due
to the code inserted to check whether Nexec(l) = Nworst(l)
or not. Among the L-type candidates, the final L-type VSEs
are chosen by the algorithm explained in Section IV-B-5.
Although L-type VSEs are more complicated than B-type
VSEs, the contribution of L-type VSEs on the overall energy
reduction is much bigger since slack times from loop execu-
tions are generally much larger than those from conditional
statements.
3) VSEs in Loops or Functions: The RWECs of nodes in

loops or functions are changed depending on the iteration
number of the loop or the location from which the function is
called. So, the SUR of a VSE in loop or function cannot be
represented as a fixed value. Instead, the SUR is represented
by a formula using the run-time information as variables. For
example, in Fig. 3, the SUR of (b3, b5) is represented as that
shown at the bottom of the page, where l is the loop in Fig. 3.
r(b3, b5) is 0.957 at the first iteration but 0.947 at the second
iteration of the loop l.

For a basic block bi in the function f , the authors define
CRWEC(bi) by the RWECs of bi in the scope of the function
f because the remaining execution cycles of bi in the overall
program are changed depending on where the function f is
called. Therefore, CRWEC(bj) is needed to get the SUR of bi,
where bj is the return point of the function f . For example, the
SUR of (b8, b9) in Fig. 3 can be calculated as

r(b8, b9) =
CRWEC(b9) + CRWEC(bif)
CRWEC(b10) + CRWEC(bif)

when the function is called from bcall1.
However, denoting the SUR as the formula using the run-

time information is an obstacle to select VSEs statically and
insert the voltage scaling code. To avoid this problem, the
authors propose a simple solution. All the possible SUR values
of edge (bi, bj) are denoted as r1

i,j , . . . , r
n
i,j . For example, the

VSE candidate (b3, b5) in Fig. 3 has three possible SUR values,
r1
3,5, r2

3,5, r3
3,5, because it can be executed three times in the

5Note that the selection of L-type VSEs is done in compile time. The run-
time information such as Nexec(l) is necessary when calculating the SUR.

loop. If any rk
i,j is smaller than 1, all other rh

i,j are also smaller
than 1. This is based on the simple formula

a + l

b + l
< 1 and

a − l

b − l
< 1 if

a

b
< 1, a > l, and b > l.

If the authors represent any SUR rk
i,j of a VSE candidate in

loop or function as a/b, the other SUR rh
i,j of the VSE can be

denoted by (a + l)/(b + l) or (a − l)/(b − l), where l is the
execution cycles between two instances of the VSE candidate.
Since (a + l)/(b + l) or (a − l)/(b − l) is also smaller than 1
if (a/b) < 1, the authors can say that rh

i,j is also smaller than
1 if rk

i,j < 1. This means that it is sufficient to check only one
instance of the VSE candidate to know whether an edge in loop
or function can be selected to a VSE.
4) Code Transformation: Since the SUR value of a VSE

may not be determined as a fixed value at compile time as
mentioned, the target program should calculate the SUR using
the VSE information at run time. The VSE information consists
of five elements, i.e., Type, preRWEC, postRWEC, loopWCEC,
and MI. preRWEC and postRWEC are CRWEC(bi) − CEC(bi)
and CRWEC(bj) for a VSE (bi, bj), respectively. These values
are used to calculate the SUR. For B-type VSEs, the SUR is
postRWEC/prePWEC. For L-type VSEs, loopWCEC and MI are
used additionally. loopWCEC is the WCECs of the L-type VSE’s
corresponding loop [CWCEC(l) in (4)]. MI is the maximum
number of loop iteration.

Fig. 6 shows the code examples for VSEs. Voltage scaling
codes for VSE include a code segment that calculates the SUR
and updates the current speed by multiplying with the SUR
(code B and code L in Fig. 6). These voltage scaling codes
are different in B-type VSE and L-type VSE. In L-type VSE,
the voltage scaling codes calculate the SUR using the itera-
tion number [LoopIterNum(bwh)] of the corresponding loop.
Therefore, several codes are needed to maintain the iteration
number of the loop (codes 2 and 3 in Fig. 6).

To calculate CRWEC(bi), where bi is in the loop l, a code is
needed to transfer the Cpost(l) (the remaining execution cycles
after a loop l) to the loop (code 1 in Fig. 6). The same code is
inserted for functions (code 5 in Fig. 6). As the loop or function
can be nested, Cpost(l) is saved at a stack. When the loop or
function is completed, the stack index (top) is decreased (codes
4 and 6 in Fig. 6).
5) Overall Selection Algorithm: While voltage scaling

codes for B-type VSEs do not increase the CWCEC of a
given program, those for L-type VSEs can increase CWCEC

depending on the number of loop iterations executed. If a loop
iterates its maximum number of iterations (i.e., the maximum
number of loop iterations given by user) and the loop exit
edge was selected as a candidate L-type VSE, CWCEC of the
program will increase by the number of cycles to execute the
code checking the number of loop iterations. This increase,

r(b3, b5) =
CEC(b5) + CEC(bwh) + CWCEC(l) (Nworst(l) − Nexec(l)) + CRWEC(bif)

CEC(b4) + CEC(b5) + CEC(bwh) + CWCEC(l) (Nworst(l) − Nexec(l)) + CRWEC(bif)
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Fig. 6. Code generation for VSEs.

if accumulated, may make the modified program violate the
timing constraint of the original program.

To avoid this problem, the final L-type VSEs are selected
from the candidate L-type VSEs by the algorithm shown in
Fig. 7. Assuming that the target processor can execute M cycles
at its full speed within the given deadline interval, the authors
first select the candidate VSEs using the selection algorithms in
the previous section. Then the increase of WCECs is calculated.
To calculate the increase, it should be known how much cycles
are needed for voltage scaling codes. The authors denote these
values as Cinc(B) and Cinc(L). If the total WCECs CWCEC

are larger than M , some candidate VSEs are excluded until
the increase in CWCEC will be smaller than M . How many
candidate VSEs should be excluded is easily known with the
values of Cinc(B) and Cinc(L). The VSE with little effect on
energy reduction is preferred to be excluded. CRWEC(bi)’s are
recomputed after some candidate VSEs are excluded. When
CWCEC < M is satisfied, the final VSEs are determined.

Since the voltage scaling codes need several registers to
determine the processor speed, the authors should know which
registers are free at the VSE. If there is no free register, the
voltage scaling codes should spill some live registers. This
overhead is added to Cinc. Another simple method is to assign

some dedicated registers only for voltage scaling codes, but it
is inefficient when the number of registers is not sufficient.

C. RAEP-Based IntraDVS Algorithm

Although the RWEP-based IntraDVS reduces the energy
consumption significantly while guaranteeing the deadline, this
is a pessimistic approach because it always predicts that the
longest path will be executed. A more optimistic approach
is to use ACEP as a reference path. ACEP is defined to be
an execution path with the largest possibility to be executed.
The ACEP can be decided by observing the execution profile
information.

It is easily understood that using ACEP instead of WCEP
is more energy efficient. For a typical program, about 80% of
the program execution occurs in only 20% of its code, which is
called the hot paths [28]. To achieve high energy efficiency, an
IntraDVS algorithm should be optimized so that these hot paths
are energy efficient. If one of the hot paths is used as a reference
path, the speed change graph for the hot paths will be a near flat
curve with little changes in the clock speed, which gives the
best energy efficiency under a given amount of work [29]. In
this case, even other paths (that are not the hot paths) become
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Fig. 7. Overall VSE selection algorithm.

more energy efficient because they can start with a lower clock
speed than when the WCEP is used as a reference path.

In RAEP-based IntraDVS, ACEP is taken as the reference
path since it is the best representative of the hot paths. Fig. 8
shows an RAEP-based CFG GRAEP

P with CRAEC(bi) values
that represent the remaining average-case execution cycles
(RAECs) among all the paths that start from bi. The bold
edges in GRAEP

P mean that it has a higher probability to be
followed between either branching edges. In Fig. 8, the initial
reference path is (b1, bcall1, b8, b9, b11, bif , bcall4, b8, b9, b11, b7).
With the reference path, CRAEC(bi) is computed. For example,
CRAEC(bif) = CEC(bif) + CRAEC(bcall4). At RAEP-based In-
traDVS, there are up-VSEs (marked by ◦ in Fig. 8) as well as
down-VSEs (marked by • in Fig. 8). Fig. 9 shows how the speed
and the voltage change in a RAEP-based scheduling. The speed
changed from 40 to 64 MHz at the edge (b8, b10) because this
is an up-VSE with an SUR value of 1.6 [= (40 × 106)/(25 ×
106)]. Compared to the RWEP-based IntraDVS algorithm, the
RAEP-based IntraDVS algorithm can achieve more energy
reduction if the execution path follows the reference path.

Although the RAEP-based scheduling is more energy effec-
tive than the RWEP-based scheduling, the pure RAEP-based
approach cannot meet the timing requirements of hard real-
time applications. This is because it does not satisfy the timing
constraints for all the execution paths if ACEP is used as
reference path. For example, consider the case when WCEP
and ACEP take significantly different number of execution
cycles. When the execution takes the WCEP at the middle of
program execution, it is possible that the program fails to meet

its deadline even if the processor runs at its maximum speed
during the remaining paths.

To overcome the deadline miss problem of the pure RAEP-
based IntraDVS algorithm, the reference path is modified when-
ever the deadline miss situations are recognized. Assume that
the reference path is pref = (b1, . . . , bi, bi+1, . . . , bN ), bi is a
branching node whose child basic blocks are bi+1 and bmiss,
and the current clock speed at bi is S. If the clock speed at
bmiss, given by S × r(bi, bmiss), is larger than the maximal
clock speed (Smax) of the processor, it indicates that the
deadline will be missed if the current execution branches to
bmiss. This is because the remaining time TR to the deadline
is TR = (CRAEC(bi+1)/S) and Smax × TR < CRAEC(bmiss).
There are M = [CRAEC(bmiss) − Smax × TR] cycles that miss
the deadline. In order to avoid the deadline miss, the authors
increment CRAEC(bk) by M for all k ≤ i. That is, the authors
modify the reference path by adding a new virtual basic block
bv between bi and bi+1 where CEC(bv) is set to M . The virtual
basic block is used only to prevent the deadline miss during the
speed assignment step at compile time and is not executed at
run time.

Fig. 10(a) and (b) illustrates how the reference path modifi-
cation works. Given an original GRAEP

P , the ACEP (b1, b3, b4)
is used as the reference path. The bold edges indicate higher
probability edges to be selected at run time. With the 100-MHz
maximal clock frequency, the path (b1, b3, b5) misses the
0.5-µs deadline because the speed at (b3, b5) should be raised to
120 MHz (i.e., 60 MHz × 2). Because 10/3 cycles6 are missed
from the deadline, a virtual block bv is added between b3 and
b4, as shown in Fig. 10(b). CEC(bv) is set to 4 (= �10/3�).
With the added bv , CRAEC(b1) and CRAEC(b3) are modified
to 34 and 24, respectively, and the SURs are recalculated. For
example, r(b3, b5) is modified to 1.43 (= 20/14) from 2.

Fig. 10(c) and (d) shows the speed changes for the paths
(b1, b3, b4) and (b1, b3, b5), respectively, where the RWEP-
based IntraDVS, the RAEP-based IntraDVS, and the mod-
ified RAEP-based IntraDVS are compared. The modified
RAEP-based scheduling is significantly more efficient than the
RWEP-based scheduling for the hot paths [Fig. 10(c)], which
dominates the overall energy efficiency. Moreover, it also sat-
isfies the deadline requirement [Fig. 10(d)], while the pure
RAEP-based scheduling algorithm does not.

D. Comparisons of RWEP-Based IntraDVS and
RAEP-Based IntraDVS Algorithms

Two kinds of IntraDVS algorithms were proposed. The
RAEP-based IntraDVS outperforms the RWEP-based Intra-
DVS in energy efficiency because the scheduled speed does not
fluctuate much. However, the RAEP-based IntraDVS algorithm
needs the reference path modification to guarantee the timing
constraint as shown in the previous subsection, which is very
complicated and time consuming. It also inevitably needs the
profiling information, while the RWEP-based IntraDVS only
requires the WCET analysis.

620 cycles − 100 MHz × (10 cycles/60 MHz) = 10/3 cycles.
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Fig. 8. RAEP-based CFG GRAEP
P .

Fig. 9. Speed and voltage changes by the RAEP-based IntraDVS.

Fig. 10. Modified RAEP-based IntraDVS: (a) an original GRAEP
P , (b) a modified GRAEP

P , and (c) and (d) the speed change graphs for three IntraDVS algorithms
for the paths (b1, b3, b4) and (b1, b3, b5), respectively.

Another problem of the RAEP-based IntraDVS is that the
time slot between the release time and the deadline of a
task should be determined statically. This does not matter in
single-task environments. However, it is a serious problem
in multitask environments since the time slot for a task is

changed depending on the release time. Unfortunately, it pro-
hibits from processing reference path modification at compile
time. One solution for this problem is to prepare multiple
configurations at each VSE for different values of the task’s
time slots.
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E. Comparisons of Off-Line IntraDVS and
On-Line IntraDVS Algorithms

In the proposed IntraDVS algorithm, there are some unse-
lected VSEs because VSE is selected or neglected by consider-
ing the transition time overhead of speed change. Unfortunately,
the slack times generated by these unselected VSEs cannot be
exploited by the IntraDVS algorithm. This limitation comes
from the fact that the proposed algorithm does not use the
run-time timing information. The authors call such a speed
assignment an off-line speed assignment method.

The described IntraDVS can be improved if the authors can
get an elapsed time at run time. In order to reclaim these slack
times, the new clock speed should be set to the remaining cycles
divided by the remaining time (= deadline–elapsed time). This
method is called an on-line speed assignment method. For
the on-line speed assignment method, a target system should
support efficient real-time counter accesses to get the elapsed
time at run time.7

When the voltage transition overhead is small and the
number of unselected VSEs is small, the off-line assignment
method works relatively well compared to the on-line assign-
ment method. On the other hand, when the voltage transition
overhead is large, the on-line speed assignment becomes more
effective than the off-line speed assignment because the number
of unselected VSEs increases.

V. EXPERIMENTAL RESULTS

A. AVS

Based on the proposed IntraDVS algorithm, the authors
have developed the AVS, a software tool that automates the
development of hard real-time programs on a variable-voltage
processor. AVS takes a DVS-unaware (thus regular) program
P and its timing requirements as inputs, and produces a
DVS-aware low-energy program PDVS that satisfies the same
timing requirements. The converted program PDVS contains
a voltage scaling code that handles all the idiosyncrasy of
scaling clock/voltage on a variable-voltage processor. Using
AVS, DVS-unaware hard real-time programs can be converted
to DVS-aware low-energy programs in a completely transparent
fashion to software developers.

Fig. 11 shows the overall structure of the AVS. It imports
a high-level language program (such as source codes) and
timing requirements (such as a deadline), and converts them
into a DVS-aware program. The converted program satisfies
the same functional and temporal requirements of P , but it
consumes much less energy than P . The AVS consists of four
main modules, i.e., compiler, timing analyzer, VSE selector,
and code transformer. The compiler surveys the input program
structure and generates the inputs for the timing analyzer. The
timing analyzer analyzes the timing behavior of the program
and estimates the PRECs of all the basic blocks in the input
program. To estimate the predicted execution cycles, the timing

7Although many embedded processors for real-time applications have an on-
board real time clock (RTC), the resolution of RTC can be too low to use
for IntraDVS. Moreover, the system call to access an RTC may incur a large
overhead. So, the authors specify this assumption.

Fig. 11. AVS.

analyzer uses the user-provided information (e.g., the maxi-
mum number of loop iteration) and the profile information (for
RAEP-based IntraDVS). A modified version of timing tools
developed by Lim et al. [27] was employed. Their original
timing tools estimate the WCET of a whole program traversing
the program’s syntax tree. Since AVS needs the RWEC of each
basic block, the authors have modified the original timing tool
to satisfy the purpose. The timing analyzer transfers the results
to the VSE selector.

The VSE selector is responsible for the speed setting of
the DVS. This module determines the locations for voltage
scaling. For this work, it requires the deadline of a program
and the processor’s scaling information, i.e., voltage scaling
overhead. The code transformer modifies the original program
and generates the DVS-aware program. It inserts the voltage
scaling codes at the selected voltage scaling locations. These
codes were described in Section IV in detail.

B. Experiments of RWEP-Based IntraDVS

To evaluate the energy reduction performance of IntraDVS
algorithms, the authors have experimented with an MPEG-4
video encoder and decoder. They experimented with both a
simulation system and a real DVS-enabled system. The exper-
imental results on a real DVS-enabled system are described
in Section V-D. For a simulation, an energy simulator for the
simulation experiments was developed. The energy simulator
takes an assembly program and its execution trace as inputs
and calculates the total energy consumption by emulating the
program execution on the target variable-voltage processor. It
was assumed that both DVS-aware and DVS-unaware systems
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Fig. 12. Normalized energy consumption and the number of voltage transitions of the AVS-converted MPEG-4 encoder and decoder programs: (a) MPEG-4
encoder and (b) MPEG-4 decoder.

enter into a power-down mode when the system is idle. The
supply voltage for a given clock frequency is obtained from
fclk = 1/TD ∝ (Vdd − VT )α/Vdd [30], where Vdd, VT , and
α are assumed to be 2.5 V, 0.5 V, and 1.3, respectively.
Since recent frequency synthesizers and DC–DC converters
achieve a clock/voltage transition time of less than 200 µs,
the clock/voltage transition overhead CVTO is assumed to be
0–20 000 cycles, corresponding to 0–200 µs of transition time
with 100 MHz of clock frequency. For nonzero CVTO values,
the processor stops its execution and enters into a power-down
mode during the clock/voltage transition.

Fig. 12(a) and (b) shows the energy consumption of the
AVS-converted MPEG-4 encoder and decoder programs, re-
spectively. Simulated results were normalized over the energy
consumption of the original program running on a DVS-
unaware system with the power-down mode. It was assumed
that the power-down mode consumes 5% of the energy con-
sumed in a normal mode [8]. The AVS-converted MPEG-4
encoder and decoder programs consume less than 25% and
7% of the original program, respectively. The large difference
of energy efficiencies between the two programs is due to the
different timing behaviors of the two programs. There is a large
difference between WCET and average-case execution time
(ACET) of the MPEG-4 decoder while WCET of the MPEG-4
encoder is relatively close to ACET. Fig. 12(a) and (b) also
shows the number of voltage transitions that represents how
many times voltage scaling codes were executed during the
program execution. When CVTO < 3000 cycles (= 30 µs) in
the MPEG-4 encoder, the number of voltage transitions de-
creases sharply and the energy consumption increases rapidly.
When CVTO > 5000 cycles (= 50 µs) in both the MPEG-4
encoder and decoder, the energy consumption does not increase
rapidly. This is because the number of discarded VSEs (due to
clock/voltage transition overhead) is small.

The number of VSEs, which represents how many copies of
voltage scaling codes were inserted into the AVS-converted pro-
gram, indicates the degree of code size increment by inserting
voltage scaling codes using in-line expansions. For the AVS-
converted MPEG-4 encoder and decoder programs, about 20

VSEs are inserted when CVTO > 5000 cycles, meaning that
insertion of voltage scaling code hardly increases the total code
size. This is because a small number of VSEs occupy quite a
large portion of the total power reduction.

C. Experiments of RAEP-Based IntraDVS

To compare the power reduction performance of the RAEP-
based IntraDVS algorithm with the RWEP-based IntraDVS
algorithm, the authors have experimented with an MPEG-4
video encoder. In the RAEP-based IntraDVS, the probability
of branch edges and the average number of loop iterations in
a CFG of the MPEG-4 video encoder are estimated using the
profiled information. A probability of 0.5 is assigned to the
branch edges for which the authors cannot collect the execution
profiles with sample test bit streams.

Fig. 13(a) shows how the normalized starting speed changes
over various slack factor values. The slack factor, defined
by (deadline − WCET/deadline), represents the fraction of
time that a processor becomes idle after WCET. The execu-
tion times of modified ACEPs (by the procedure described in
Section IV-C) for the MPEG-4 encoder are up to 35% smaller
than the WCET. This means that the processor can start initially
35% more slowly than the speed required by the RWEP-based
IntraDVS algorithm.

Fig. 13(b) compares the energy consumption of two
IntraDVS scheduling algorithms, varying the slack factor. All
the results were normalized over the energy consumption of the
original program running on a DVS-unaware system. For the
MPEG-4 encoder, the modified RAEP-based IntraDVS algo-
rithm reduces the energy consumption up to 34% over the
RWEP-based IntraDVS algorithm.

Note that there is a large gap between the energy consump-
tion of RWEP-based and RAEP-based IntraDVS algorithms,
even when the slack factor is 0 (i.e., deadline = WCET). This is
because, although the starting speed is set to the same speed as
in the RWEP-based IntraDVS, there are many execution paths
that can still take advantage of the RAEP-based speed settings.
That is, in order to meet the timing constraint, virtual blocks are
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Fig. 13. Normalized starting speed and energy consumption of the RWEP-based IntraDVS and the RAEP-based IntraDVS versus the slack factor: (a) starting
speed and (b) energy consumption.

Fig. 14. Normalized energy consumptions of the on-line and off-line speed assignment methods (varying the threshold value).

added so that the initial speed is set to the same speed as in the
RWEP-based IntraDVS algorithm. However, the (partial) paths
following the virtual blocks can take advantage of the RAEP-
based speed settings. As the slack factor increases, the energy
consumption gap decreases because the supply voltages of both
IntraDVS algorithms get lower. Since the energy consumption
is proportional to V 2

dd, the lower voltage values result in a
smaller difference in the energy consumption.

Fig. 14 shows the energy consumption of the off-line speed
assignment and the on-line speed assignment described in
Section III-B.The authors assumed that on-line speed assign-
ment does incur additional 40 overhead cycles. When the
voltage transition time is small, there are little differences in
energy consumption between the on-line and the off-line speed
assignment methods. However, the difference increases up to
10% as the voltage transition time increases because a large
voltage transition time deselects more VSE candidates.

D. Experiments on a Real DVS-Enabled System

For experiments on a real DVS-enabled system, the authors
used Itsy pocket computer v2.6 from Compaq [24] as their

experimental platform. The platform is equipped with a Stron-
gARM SA-1100 processor as the main processor. The SA-1100
processor uses the phase-locked loop (PLL), allowing to change
the CPU core frequency to one of 11 levels between 59.0 and
226.4 MHz. Furthermore, Itsy v2.6 has a programmable core
voltage regulator; the supply voltage can scale to one of 30
levels between 1.00 and 2.00 V. To change the clock and the
voltage level, there is an overhead time during change. The
overhead time is different depending on the current and target
values of clock level and is 189 µs at maximum. Itsy runs
the Linux operating system (ver. 2.0.30) with a kernel support
for dynamic voltage scaling. Applications can access the DVS
function by the ioctl system call to the “/dev/clkspeed” device
file.

The RWEP-based IntraDVS algorithm was used for this
experiment. Since it is difficult to establish the execution time
model of a StrongARM SA-1100 for the timing analyzer
module in AVS, the authors analyzed the timing behavior of a
target application by the hybrid method that uses both the static
analysis technique and the execution time profiling on the Itsy
platform. Fig. 15 shows the flow of experiment for the Itsy plat-
form. The target application (e.g., mpeg4dec.c) is compiled into
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Fig. 15. Flow of experiment for the Itsy platform.

an assembly code (mpeg4dec.s) by the arm-linux-gcc compiler.
The static analyzer selects the execution time profiling points by
the static timing analysis technique. It enables efficient profiling
for the execution time by choosing only a small number of
candidate VSEs from the target application. The static analyzer
uses the assumption of one cycle for each instruction for the
timing analysis. The profiler generates the annotated assembly
code (mpeg4dec-profile.s) that has the execution time profiling
code at the location specified by the static analyzer. The profile-
enabled assembly code is compiled and executed at the Itsy
platform. During the execution, the target application outputs
the profile data that has the timing information of the candidate
VSEs. Using these data, AVS analyzes the timing information
of candidate VSEs, selects the VSEs, and generates the DVS-
aware assembly code (mpeg4dec-dvs.s). At VSEs in the DVS-
aware assembly code, the DVS function is called to adjust the
clock speed and voltage. The digital multimeter measures the
power consumption of the Itsy system while the DVS-aware
code is executed at the Itsy platform.

The authors experimented with the same MPEG-4 programs
used at the simulation experiments. It was assumed that each
task processes ten frames (IPPPPIPPPP) before deadline.8

Table III shows the comparison between DVS-aware programs
and DVS-unaware programs. The energy reductions are 49%
and 65% for the decoder and the encoder, respectively. The ex-
ecution times of DVS-aware programs are shorter than WCETs
because there are unselected VSEs and the Itsy platform pro-
vides discrete clock and voltage levels. Especially, when the

8Due to the low resolution of the multimeter, the authors increased the size
of the task artificially for a better observation.

adjusted clock speed reaches 54 MHz, which is the lowest clock
speed, the speed adjustments at VSEs do not occur. For DVS-
aware programs, Table III also shows the number of selected
VSEs and the number of functions and loops where manage-
ment codes (such as codes 1–6 in Fig. 6) are inserted. Since
these numbers are small, it can be concluded that the additional
overhead for IntraDVS is little. It can also be known that each
VSE and management code requires very small instructions in
the Itsy platform as shown in Table IV.9 The AVS does not
significantly increase the code size of target programs as shown
in Table III.

Fig. 16(a) and (b) shows the graphs of power consumption
measured during the executions of the DVS-aware MPEG-4
program and the DVS-unaware MPEG-4 program. The digital
multimeter sampled the power consumption at the period of 20
ms. The DVS-aware programs set the clock and voltage to the
maximum level at the start of the execution and reduce the clock
and voltage at VSEs. The DVS-unaware programs execute at
full speed (and the maximum power) until completion and have
an idle interval. These experiments verify the effectiveness of
the IntraDVS technique on a real variable-voltage system.

E. Comparisons of IntraDVS Algorithms

The energy efficiency of the reference path-based IntraDVS
algorithm (IntraDVS− P) and the stochastic IntraDVS algo-
rithm (IntraDVS− S) [20], [21] has been evaluated using
an MPEG-4 video decoder and an MPEG-4 video encoder.

9Since the number of instructions for VSEs is different depending on the
location, the average values are shown.
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TABLE III
DVS EXPERIMENTS ON Itsy

TABLE IV
MANAGEMENT CODE OVERHEAD

Fig. 16. Power estimation of MPEG-4 program: (a) MPEG-4 decoder and (b) MPEG-4 encoder.

The execution times of both the MPEG-4 decoder and en-
coder were assumed to follow a normal distribution No =
N [m1, (m2/6)2], where m1 = (1/2) × WCET and m2 =
(9/10) × WCET.

Since the energy efficiency of IntraDVS− S largely depends
on the slack ratio10 given in the on-line phase and the ac-
curacy of the execution time distribution used in the off-line
profiling, the authors performed experiments varying these two
factors. Fig. 17 shows the relative energy consumption ratio
of IntraDVS− S over IntraDVS− P. If the ratio is larger
(smaller) than 1, IntraDVS− S performs better (worse) than
IntraDVS− P. In Fig. 17, the No line represents the case when
the actual execution times follow the assumed No distribution.

10The slack ratio is defined as the ratio of WCET to the assigned execu-
tion time.

The Nc line indicates the case where the actual execution times
follow different normal distributions from the assumed No,
where Nc = N [1.5m1, (m2/7)2].

When the slack ratio is less than 1.2, IntraDVS− P out-
performs IntraDVS− S because IntraDVS− P spends more
time in the lower speed region than IntraDVS− S. When the
slack ratio is increased, IntraDVS− S spends more time in
the lower speed region than IntraDVS− P. Fig. 17 also shows
that IntraDVS− P works better than IntraDVS− S when the
distribution of actual execution times is significantly different
from the assumed distribution, as shown in the Nc line.

Another comparison between two IntraDVS algorithms has
been presented in [31]. Since the energy performance of the
proposed IntraDVS algorithm is dependent on the internal task
structure, two IntraDVS algorithms were compared by varying
the unawareness factor, which represents how early the authors
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Fig. 17. Energy consumption ratio of IntraDVS− P and IntraDVS− S: (a) MPEG-4 decoder and (b) MPEG-4 encoder.

Fig. 18. Comparison of InterDVS and IntraDVS in multitask environments.

can know the exact value of the execution cycles of a task
during the task execution. When the unawareness factor is small
(large) (i.e., VSEs are located close to the entry (exit) block),
the performance of the proposed IntraDVS is better (worse)
than that of the stochastic IntraDVS.

F. Comparisons of InterDVS and IntraDVS

Although the IntraDVS algorithm is mainly proposed for
single-task environments, it is also useful for multitask envi-
ronments. To evaluate the feasibility of the IntraDVS algorithm
in multitask environments, the authors compared the energy
performance of the IntraDVS algorithm with several InterDVS
algorithms. Fig. 18 shows the normalized energy consumptions
of two typical InterDVS algorithms, i.e., lppsEDF [32] and DRA
[10], over the RWEP-based IntraDVS algorithm. The video-
phone task set shown in Table I and the randomly generated task
sets with 2, 3, 4, and 5 tasks were used in the experiment. Note
that the randomly generated task sets do not represent normal
program execution. Also note that they are not favorable to the
IntraDVS because they do not have a dominant task as in the
videophone task set.

As shown in Fig. 18, IntraDVS outperforms InterDVS in
the videophone task set. In the randomly generated task sets,
IntraDVS defeats lppsEDF, but it shows similar or worse
performance with DRA when it has three or more tasks. This is
because DRA uses a more sophisticated algorithm to utilize the
slack time. Especially, when the number of task is five, the DRA
algorithm shows a better performance than IntraDVS. From the
above results, the authors can know that IntraDVS outperforms
InterDVS even in multitask environments regardless of the
existence of dominant tasks when the number of tasks is small.
However, it could be better to use InterDVS when the real-time
system has many tasks.

To observe the effect of the task set characteristics, the
conventional InterDVS algorithms and the proposed IntraDVS
algorithm were simulated with two different task sets. Two
tasks sets, task sets A and B, have six tasks but the characteristics
are quite different. Task set A is homogeneous (i.e., the tasks
in A have similar periods and WCETs) while task set B is
heterogeneous (i.e., the tasks in B have large variations in their
periods and WCETs). Fig. 19 shows the normalized energy
consumption of several InterDVS algorithms such as lppsEDF
[32], ccEDF [11], laEDF [11], and DRA [10] over IntraDVS.
Except for DRA, the IntraDVS algorithm outperforms most
InterDVS algorithms tested.

It was also observed that InterDVS algorithms show poor
energy performance when the worst-case processor utilization11

(WCPU) is small. This is because the following tasks cannot
fully exploit all the slack times generated by past and cur-
rent tasks when the WCPU is too small. Some slack times
disappeared before the following tasks are released. In this
case, IntraDVS performs much better than InterDVS because
it utilizes all the slack times.

The performance of the DRA algorithm is significantly dif-
ferent in the two task sets. As shown in Fig. 19(a), DRA

11WCPU means the total WCETs of all task instances divided by the
hyper period.
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Fig. 19. Comparison of InterDVS and IntraDVS in different task sets: (a) task set A and (b) task set B.

outperforms both laEDF and IntraDVS when the task set A is
used. However, when the task set B is used, DRA is inferior to
IntraDVS, as shown in Fig. 19(b). This is because the slack
estimation method in DRA does not work well with nonuniform
task utilizations. From these results, it can be known that
IntraDVS is better than InterDVS especially when the WCPU
is small and the task set is heterogeneous.

VI. CONCLUSION

In this paper, the authors proposed an intra-task voltage
scheduling framework for low-energy hard real-time applica-
tions. By statically analyzing the timing behavior of a dynamic
voltage scheduling (DVS)-unaware real-time program, the
proposed technique automates two time-consuming and com-
plicated steps of applying intra-task voltage scheduling to DVS-
unaware programs. First, the proposed technique automatically
selects appropriate program locations where the supply voltage
can be changed to minimize the energy consumption, satisfying
the timing constraint. Second, the proposed technique inserts
to the selected program locations a voltage scaling code in a
completely transparent fashion to programmers. By automating
these two steps, the proposed algorithm makes it possible for
programmers without any knowledge on DVS to develop DVS-
aware programs on a variable-voltage processor. The converted
program by the proposed scheduling algorithm has a unique
characteristic in that it always completes its execution near
the deadline, thus resulting in no slack time. By lowering the
execution speed and corresponding voltage to the maximum
allowable extent, the proposed algorithm achieves a significant
energy reduction ratio.

Two kinds of implementations of the intra-task DVS (In-
traDVS) algorithm have been described, i.e., remaining worst-
case execution path (RWEP)-based IntraDVS and remaining
average-case execution path (RAEP)-based IntraDVS. While
the worst-case timing information was used in the former, the
average-case timing information was used for a better energy
performance in the latter.

Based on the proposed intra-task voltage scaling framework,
the authors have built an automatic voltage scaling tool, the
automatic voltage scaler (AVS). AVS automatically transforms

a DVS-unaware program to a DVS-aware low-energy program
with the same functional behavior and timing requirements.

The experimental results using simulations with a Moving
Pictures Expert Group (MPEG)-4 video encoder and decoder
showed that AVS using RWEP-based IntraDVS improves the
energy efficiency of the programs by a factor of 4–14 over
the programs running on a non-DVS system with a power-
down mode. The RAEP-based IntraDVS improved the energy
efficiency by up to 34% over the RWEP-based IntraDVS. In
the experiment using a real DVS-enabled system providing a
finite number of clock/voltage levels, the low-energy version
of an MPEG-4 encoder/decoder consumed only 35–51% of the
energy consumption from the original program running on a
fixed-voltage system with a power-down mode. The energy ef-
ficiencies of the IntraDVS algorithm and intertask DVS (Inter-
DVS) algorithms were also compared. Although the IntraDVS
algorithm generally outperformed the InterDVS algorithms,
the relative energy efficiency was dependent on the task set
characteristics.

Work in this paper can be extended in several directions.
The execution time of an application depends on the run-time
events (e.g., cache hit and miss) as well as the control flow. The
authors plan to integrate such run-time information into the pro-
posed framework so that the energy efficiency could be further
improved. The energy efficiency of the InterDVS algorithms
and the IntraDVS algorithm has been compared in this paper.
Since none of them always outperforms the other, the energy
efficiency of a DVS technique may be further improved by inte-
grating the IntraDVS algorithm with the InterDVS algorithms.
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