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Flash-Based Storage Systems

Sungjin Lee, Dongkun Shin Member, IEEE, and Jihong Kim Member, IEEE

Abstract—NAND flash-based storage device is becoming a viable storage solution for desktop systems and mobile systems.
Because of the erase-before-write nature, flash-based storage devices require garbage collection that causes significant performance
degradation, incurring a large number of page migrations and block erasures. In order to improve I/O performance, therefore, it is
important to develop an efficient garbage collection algorithm. In this paper, we propose a novel garbage collection technique, called
buffer-aware garbage collection (BAGC), for flash-based storage devices. BAGC improves the efficiency of two main steps of garbage
collection, a block merge step and a victim block selection step, by taking account of the contents of a buffer cache which is used to
enhance I/O performance. The buffer-aware block merge (BABM) scheme eliminates unnecessary page migrations by evicting dirty
data from a buffer cache during a block merge step. The buffer-aware victim block selection (BAVBS) scheme, on the other hand,
selects a victim block so that the benefit of the buffer-aware block merge is maximized. Our experimental results show that BAGC
improves I/O performance by up to 43% over existing buffer-unaware schemes for various benchmarks.

Index Terms—NAND Flash Memory, Flash Translation Layer (FTL), Buffer Management, Garbage Collection
✦

1 INTRODUCTION

NAND flash memory is widely used as a storage
device, replacing hard disk drives, because of its

low-power consumption, high performance, and high
reliability [3]. Unlike hard disk drives, NAND flash
memory operates differently in two aspects. First, the
“erase-before-write” architecture of NAND flash mem-
ory requires that previous data has to be erased before
new data is written to it. Second, the unit size of an
erasure operation is not the same as that of reading and
writing data. Read and write operations are performed
in a unit of a page whose size is typically 2-8 KB [4], but
erasure operations are performed in a unit of a block
consisting of multiple pages.

In order to handle these unique characteristics and
to emulate the functionality of a normal block device,
a special software layer, called a flash translation layer
(FTL), is usually employed between the file system and
flash memory [5-13]. In designing the FTL, there are
two kinds of important issues: address translation and
garbage collection. Because of the erase-before-write con-
straint, the FTL uses an out-place update policy that writes
up-to-date data to a new free page instead of updating
the original page. For this purpose, the FTL provides
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an address translation policy which maps a logical page
address to a physical page address. An out-place update
policy generates invalid pages with out-of-date data that
must be reclaimed by garbage collection later.

There are a variety of FTL schemes, including page-
level FTLs [5, 6, 7] and block-level FTLs [8], but hybrid-
level FTLs [9, 10, 11] are widely used in many flash
devices, including USB sticks [12] and solid-state drives
(SSDs) [13, 14]. The popularity of the hybrid-level FTLs
is mainly due to the fact that they enable to maintain a
small mapping table while providing good performance.
In the hybrid-level FTLs, physical blocks are grouped
into log blocks or data blocks. Log blocks are used for
storing incoming data temporarily and are managed by
a page-level mapping table. Data blocks are used as
ordinary storage space with a block-level mapping table.
When all free log blocks are exhausted, the FTL performs
garbage collection to make a free log block. This garbage
collection involves two main steps: victim block selection
and block merge. The victim block selection step finds a
victim log block with invalid pages to be reclaimed. All
valid pages in the victim log block are copied to a free
block during the block merge step. The victim log block
is then erased and becomes a new free block.

Garbage collection incurs significant overhead because
it requires many page migrations as well as block era-
sures. One of the promising approaches to reduce the
garbage collection overhead is to use a buffer cache
on top of the FTL. By using a buffer cache, we can
reduce a large number of page writes to the FTL, which
in turn incur garbage collection, and can improve the
sequentiality of writes so that less migration overhead is
required. Many flash devices thus employ a buffer cache
as one of the essential components.

However, with a simple combination of a buffer cache
and the FTL, it is difficult to take full advantage of using
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a buffer cache. In our observation, with a buffer cache,
the FTL performs unnecessary page migrations frequently
that move obsolete pages during garbage collection. This
unnecessary page migration occurs when a page in a
buffer cache is newly updated, but the FTL is not aware
of its update because the page is not actually written
to the FTL. In this case, the FTL can move out-of-date
pages in flash memory for garbage collection, incurring
lots of unnecessary page migrations.

These useless page migrations can be avoided if a
buffer cache manager lets the FTL know which pages in
flash memory are out-of-date so that obsolete pages are
not copied during garbage collection [7, 18]. However,
this approach seriously degrades reliability of data stor-
age. This is because, after garbage collection, the obsolete
pages are erased in the flash memory and the up-to-date
data of those pages is kept only in a buffer cache. If a
critical reliability-affecting event (e.g., a sudden power
failure) occurs, the system cannot be recovered or roll-
backed to the previous status. Therefore, a more sophisti-
cated strategy is required which eliminates useless page
migrations while ensuring high data reliability.

In this paper, we propose a novel garbage collection
scheme, called buffer-aware garbage collection (BAGC).
The proposed BAGC scheme identifies and eliminates
unnecessary page migrations by means of examining the
contents of a buffer cache. Our BAGC scheme consists of
two techniques, the buffer-aware block merge (BABM)
technique and the buffer-aware victim block selection
(BAVBS) technique. The BABM technique eliminates
useless page migrations by writing up-to-date pages in
a buffer cache to flash memory during block merges.
By doing so, BABM not only reduces the number of
future page writes to flash memory, but also lowers a
future block merge cost, while providing a high degree
of data reliability. BAVBS chooses a victim log block to
maximize the benefit of buffer-aware block merges. For
this purpose, BAVBS exploits the locality of pages in a
buffer cache for a better decision in selecting a victim
block. We have evaluated the proposed BAGC scheme
in the context of several state-of-the-art FTL and buffer
management schemes using a trace-driven simulator.
Our experimental results show that BAGC improves the
I/O performance by up to 43% over buffer-unaware
schemes for various workloads.

This paper is organized as follows. After reviewing
previous works in Section 2, we explain the motiva-
tion of our work in Section 3. We describe our target
system architecture in Section 4. The proposed BABM
and BAVBS schemes are described in Sections 5 and
6, respectively. Experimental results are presented in
Section 7, and Section 8 concludes with a summary.

2 RELATED WORK

There has been a considerable amount of research on a
flash translation layer and a buffer management layer.
However, little attention has been paid to approaches
that consider two layers simultaneously.

Existing research on the FTL has focused on reducing
the garbage collection overhead with a small mapping
table. Thus, the hybrid-level FTLs have received se-
rious attention. The hybrid-level FTLs can be catego-
rized into three types depending on a block association
policy: block-associative sector translation (BAST) [9],
fully-associative sector translation (FAST) [10], and set-
associative sector translation (SAST) [11]. A block asso-
ciation policy determines how many data blocks share a
log block, but gives no consideration to the correlation
between a buffer cache and flash memory. With regard
to victim selection, both BAST and FAST use the round-
robin policy that chooses the least recently written log
block as a victim block. The SuperBlock scheme [11],
which is based on SAST, uses the utilization-based pol-
icy that selects the block with the fewest valid pages.
However, none of them consider the contents of a buffer
cache in selecting a victim block.

There also have been a lot of studies on a buffer
cache of a flash device. The FAB scheme [15] is based
on a block-level LRU buffer management (BLRU) policy,
which evicts all pages in the same logical block to flash
memory at the same time to improve the sequentiality of
writes. FAB further improves the sequentiality of writes
by evicting the block with the largest number of dirty
pages from a buffer cache. The BPLRU scheme [16] is
also based on the BLRU policy, but it eliminates random
writes to flash memory by using the page padding tech-
nique. All these schemes reduce the garbage collection
cost by lowering the number of writes or by improv-
ing the sequentiality of writes, but they consider nei-
ther useless page migrations nor victim block selection.
A recently-evicted-first (REF) buffer replacement policy
takes account of log blocks to reduce the cost of block
merge operations. However, REF has the same limitation
in that it does not consider useless page migrations.

More recently, Li et al. [7] propose a duplication-aware
garbage collection (DA-GC) technique for a virtual mem-
ory system with a flash device. DA-GC detects pages
that reside on both main memory and flash memory, and
then prevents them from being moved during garbage
collection to avoid useless page migrations. The ignored
pages containing duplicate data are erased from flash
memory after garbage collection, leaving only the copies
in main memory. Ji et al. [18] propose a locality and
duplication-aware garbage collection (LDA-GC) tech-
nique, which improves DA-GC for the hybrid-level FTLs.
Similar to BAGC, both DA-GC and LDA-GC eliminate
unnecessary page migrations. However, they are not
suitable for a buffer cache which is used as a cache
for a storage device; if a system failure occurs before
duplicate data is written to flash memory, the data is
inevitably lost. BAGC removes useless page migrations
by flushing duplicate data to flash memory. Thus, BAGC
does not adversely affect reliability of data storage.

3 MOTIVATION
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Fig. 1: An example of unnecessary page migrations.

We first explain the benefit of making a garbage collector
buffer-aware using a simple scenario. When a garbage
collector selects a victim log block and performs a block
merge operation, many page migrations are necessary.
Our primary observation is that many of them would be
unnecessary if a garbage collector could take into account
the contents of a buffer cache.

Fig. 1 shows an example of a block merge in the FAST
FTL [10]. The buffer cache has eight pages and two of
them, p2 and p4, are dirty pages. In the flash memory,
B0 and B1 are data blocks and L0 and L1 are log blocks.
Each block is composed of four pages. Because of the
updates on the pages p0, p1, p6, and p7, the log blocks
L0 and L1 have the most recent version of these pages,
thus making the original pages in B0 and B1 invalid. If
the log block L0 is selected as a victim block, two new
data blocks N0 and N1 are allocated and then the valid
pages in B0, B1, L0, and L1 are moved to N0 and N1.
After the page migrations, the blocks B0, B1, and L0 are
erased. This type of a block merge is called a full merge.
In order to reclaim L0, there were eight page migra-

tions. However, p2 (in B0) and p4 (in B1) were moved
uselessly because p2 (in N0) and p4 (in N1) are invalidated
soon when the dirty pages p2 and p4 in the buffer cache
are evicted to the flash memory. If p2 and p4 in the
buffer cache were moved to N0 and N1 instead of p2
and p4 in B0 and B1, N0 and N1 have the most recent
version without the useless page migrations for p2 and
p4. To decide that p2 and p4 in the buffer cache should
be moved, we need to take account of the contents of the
buffer cache. This is the main motivation of our buffer-
aware garbage collection technique.

Making garbage collection buffer-aware has two posi-
tive impacts on FTL performance. First, it can reduce dirty
page writes to flash memory. Since dirty pages p2 and p4
are written to the data blocks when L0 is being merged,
these pages become clean and do not need to be written
to the flash memory when they are evicted from the
buffer cache. Second, it can eliminate or delay a block merge
that will occur in the near future. If p2 and p4 are moved
from B0 and B1, instead of from the buffer cache, these
pages must be written to the log block (e.g., L1) when
they are evicted from the buffer cache. The log block
L1 is merged with the corresponding data blocks (e.g.,
N0 and N1) in the near future when all the free pages

Fig. 2: An architectural overview of a target flash device.

in L1 are exhausted. However, if p2 and p4 in the buffer
cache are directly written to N0 and N1 when L0 is being
merged, the block merge for L1 can be delayed with
more free pages. These positive impacts of buffer-aware
garbage collection are called potential benefits because
they are obtained at a later time.

If p2 and p4 in Fig. 1 are updated in the buffer cache
after being written to flash memory, they must be rewrit-
ten to flash memory when they are evicted from the
buffer cache later. In that case, the buffer-aware garbage
collection for p2 and p4 becomes useless, limiting its
positive effects on performance. Furthermore, if buffer-
aware garbage collection is often performed for pages
frequently updated in a buffer cache, it could negatively
impact performance because it causes a lot of useless
page writes to flash memory. For this reason, buffer-
aware garbage collection must be carefully performed by
considering the update probabilities of pages in a buffer
cache. This is the motivation of our buffer-aware victim
block selection technique.

In our experimental analysis, we found that 4.7% -
85.4% of the total page migrations were useless for
various benchmark traces. On average, about 19.6% of
the total page migrations were unnecessary. The perfor-
mance of a storage device is thus improved greatly if
useless page migrations are eliminated effectively.

4 TARGET SYSTEM ARCHITECTURE

Fig. 2 shows an architectural overview of our target
flash device. Our target storage device interacts with
a host system through a standard interface such as
SATA and eMMC. On the storage side, the main storage
processor is connected to the flash chips through the
flash bus (e.g., an 8-bit serial bus) and executes the buffer
management layer and the flash translation layer (FTL).
The buffer management layer manages the buffer cache
in the storage device. In many flash devices, the buffer
cache is usually used for write buffering [16, 19] because
a write operation is much slower than a read operation.
Thus, in this work, the buffer cache is used as a write
buffer. The FTL emulates the functionality of a normal
block device, providing an interface between the upper
layer and the flash chips. The FTL maintains a small
internal buffer for use in internal operations such as
garbage collection.
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The flash chip is divided into several blocks, each of
which consists of multiple pages. It has on-chip registers
that are used as temporary storage for data transfers
between the FTL buffer and the flash chip. The size of
an on-chip register is the same as that of a page. A set
of pages that share the same on-chip register is called a
plane and there are usually 2-4 planes in a chip [4].

Writing a page from the buffer cache to the flash chip
requires several data transfers. A page in the buffer cache
is first moved to the internal buffer of the FTL through
a system bus. Then, it is sent to the on-chip register of
the flash chip via the flash bus. The page data is finally
written to the target flash page. The time taken to write
a page from the buffer cache to the flash chip is (Tb +
Tt+Tw), denoted by Tb→f , where Tb is the time to move
a page between the FTL and the buffer cache, Tt is the
time to transfer a page through the flash bus, and Tw

is the time to write a page to the flash chip from the
on-chip register. The time taken to read a page from the
flash chip to the FTL is (Tr +Tt), where Tr is the time to
read a page from the flash chip to the on-chip register.
Note that if there is a host read request, data loaded into
the FTL buffer is directly transferred to the host interface
because the buffer cache is used as a write buffer [19].
Typical values of Tr, Tw, and Tt are 25 μs, 200 μs, and
100 μs [4], respectively. Tb is assumed to be 0 because
data is transferred using a high-speed system bus.

A page migration also involves several data transfers.
Suppose that the page pk in Fig. 2 is moved to the page
pnewk . The page pk is first moved to the on-chip register
and then is sent to the FTL buffer. The data is returned
to the on-chip register and written to the destination
page pnewk . The total time required to move the page
pk to its new location pnewk is (Tr + Tt) + (Tt + Tw),
which is also denoted by Tf→f . To reduce the cost of
a page migration, most flash chips employ a specialized
page copy operation, called a copy-back operation. With
a copy-back operation, the page pk loaded in the on-chip
register is directly written to the destination page pnewk .
Thus, the time taken for a page migration is reduced to
(Tr + Tw) because data transfers between the processor
and the flash chip are eliminated. Note that a copy-back
operation can be used only when both the source and
destination pages belong to the same plane.

For the FTL to be buffer-aware, it should be able to
access the contents of a buffer cache. In our target device,
the buffer management layer and the flash translation
layer run on the same system, so it is easy to share
information between two layers. Many flash devices
such as embedded flash devices (e.g., CF cards) and
solid-state drives satisfy our target architecture.

5 BUFFER-AWARE BLOCK MERGE

The proposed BAGC scheme consists of two schemes,
one for a block merge step and the other for a victim
block selection step, respectively. The first approach is to
write data in a buffer cache to flash memory directly if
a buffer cache has data for pages that are moved during

1: Buffer Aware Full Merge (Li) {
2: for Dj ∈ D(Li) {
3: get a new data block Dnew

j from a free block list;
4: for pk ∈ Dj {
5: if pk exists in a buffer cache {
6: write pk in a buffer cache to pnew

k in Dnew
j ;

7: make pk in a buffer cache clean if it is dirty;
8: } else {
9: if pk is valid in Dj {
10: move pk from Dj to pnew

k in Dnew
j ;

11: } else { /∗ pk is invalid ∗/
12: find a log block Lj with a valid pk ;
13: move pk in Lj to pnew

k in Dnew
j ;

14: invalidate pk in Lj ;
15: }
16: }
17: }
18: erase a data block Dj ;
19: insert an erased block Dj into a free block list;
20: }
21: erase a log block Li;
22: insert an erased block Li into a free block list;
23: } /∗ end of function ∗/

Fig. 3: A buffer-aware full merge algorithm.

a block merge. By doing so, useless page migrations can
be eliminated. The second one is to decide a victim block
during a victim selection step so that the potential ben-
efits of buffer-aware block merges is to be maximized.
We first introduce the buffer-aware block merge (BABM)
scheme in this section and then explain the buffer-aware
victim block selection (BAVBS) scheme in Section 61.

5.1 Buffer-aware block merge algorithm

There are two different types of block merges in the FAST
FTL: a full merge and a partial merge. We develop the
buffer-aware versions of these block merge operations.

Fig. 3 shows how a buffer-aware full merge works in
detail. Suppose that a log block Li is selected as a victim
log block. The FTL identifies a set, D(Li), of data blocks
that are involved in the block merge operation of Li. A
data block, Dj , whose updated pages are stored in Li is
included in D(Li). For example, D(L0) in Fig. 1 is {B0,
B1}. For each page pk in Dj , the FTL sees if pk exists
in a buffer cache. If a buffer cache has pk and it is dirty
(e.g., p2 and p4 in Fig. 1), it means that pk in Dj is out-
of-date. Copying pk in Dj to a new data block Dnew

j is
thus useless. To prevent useless page migration, the FTL
writes pk in a buffer cache to pnewk in Dnew

j , and then
makes it clean. Note that if the cleaned page pk is not
updated before it is evicted from a buffer cache, a dirty
page write for pk is eliminated. If a buffer cache has pk
and it is clean (e.g., p3 in Fig. 1), the FTL writes it to flash
memory, instead of moving pk in Dj to Dnew

j , because a
buffer cache already has the up-to-date data for pk. If pk
is not in a buffer cache and is valid in Dj (e.g., p5 in Fig.
1), it is moved from Dj to Dnew

j . However, if pk is not in
a buffer cache and is invalid in Dj (e.g., p0, p1, p6, and
p7 in Fig. 1), the FTL searches a log block Lj holding
the valid version of pk. Then, pk in Lj is moved to Dnew

j

and is invalidated. Finally, the FTL erases Dj and Li and
inserts them to a free block list.

The partial merge is the different type of a merge
operation, optimized for sequential writes [10]. In the

1. Our description is based on the FAST FTL [10]. However, it can be
easily extended to other FTLs. For more detailed descriptions, see [2].
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partial merge, only one log block, called a sequential
log block, is associated with one data block. The FTL
performs the partial merge by copying valid pages in
a data block to a sequential log block. The data block
is then erased, and the sequential log block becomes the
new data block. The difference between the partial merge
and the buffer-aware partial merge is that the FTL copies
pages to the sequential log block from a buffer cache if
these pages exist in a buffer cache.

The buffer-aware full merge is more general and has
a higher impact on FTL performance because the cost
of the full merge is much higher than that of the partial
merge. In this paper, therefore, we explain the buffer-
aware full merge in detail. A detailed description of the
buffer-aware partial merge can be found in [2].

5.2 The effect of the buffer-aware block merge

By eliminating useless page migrations, the buffer-aware
block merge performs a block merge operation at a
lower cost than the buffer-unaware block merge. To
understand the effect of the buffer-aware block merge on
performance, we first compare the buffer-unaware block
merge cost and the buffer-aware block merge cost.

The buffer-unaware and buffer-aware block merge
cost: In the buffer-unaware block merge, the block merge
cost is determined by the number of pages that are
moved between flash blocks during a block merge.

Definition 1. Let M(Li) be a set of flash pages that are moved
during a block merge of a log block Li and let |M(Li)| be
the number of pages in M(Li). If the time taken to move a
single page is Tf→f , the buffer-unaware block merge cost of
Li, denoted by CBU

merge(Li), is defined as follows:

CBU
merge(Li) = |M(Li)| · Tf→f . (1)

In the example of Fig. 1, M(L0) is {p0, p1, p2, p3, p4,
p5, p6, p7} and |M(L0)| is 8. As pointed out in Section 4,
Tf→f is (Tr + Tt) + (Tt + Tw).

In order to eliminate useless page migrations, if a
buffer cache has pages for flash pages that are moved
during a block merge, the buffer-aware block merge
directly writes them to flash memory. This not only
eliminates useless page migrations, but also reduces the
number of flash read operations because the FTL does
not need to read pages that are already stored in a buffer
cache. Therefore, the buffer-aware block merge cost is
defined as follows:

Definition 2. Let Bd(Li) be a set of flash pages that are moved
during a block merge of Li and have dirty data in a buffer
cache. Let Bc(Li) be a set of flash pages that have clean data in
a buffer cache. F(Li) is a set of flash pages that do not have
any data in a buffer cache. |Bd(Li)|, |Bc(Li)|, and |F(Li)|
refer to the number of pages in each set. If the time taken to
write a page to flash memory from a buffer cache is Tb→f , the
buffer-aware block merge cost of Li, denoted by CBA

merge(Li),
is defined as follows:

CBA
merge(Li) =(|Bd(Li)|+ |Bc(Li)|) · Tb→f + |F(Li)| · Tf→f . (2)

(a) Buffer-unaware block merge

(b) Buffer-aware block merge

Fig. 4: A comparison of buffer-aware and buffer-unaware
block merges.

Tb→f is also denoted by Tb+(Tt+Tw). In the example
of Fig. 1, Bd(L0) and F(L0) are {p2, p4} and {p0, p1,
p5, p6, p7}, respectively. Bc(L0) is {p3}. In Eqs. (1) and
(2), |F(Li)| + |Bd(Li)| + |Bc(Li)| is |M(Li)|. Therefore,
CBA

merge(Li) ≤ CBU
merge(Li) because Tb→f < Tf→f . In Fig. 1,

three read operations for p2, p3, and p4 are not required
with the buffer-aware block merge.

As shown in Eq. (2), as a buffer cache has many pages
for flash pages that are moved during a block merge, the
buffer-aware block merge cost becomes smaller because
many read operations can be avoided. This is true even
for clean pages in a buffer cache. If there are clean pages
in a buffer cache for flash pages to be moved (e.g., p3
in Fig. 1), those clean pages can be directly written to
flash memory, without additional read operations from
flash memory. The benefit of buffer-aware block merges,
however, mainly comes from dirty pages that are cleaned
by buffer-aware block merges (e.g., p2 and p4 in Fig. 1).
This is because these cleaned pages potentially reduce
future dirty page writes and future block merges.

The potential benefits of the buffer-aware block merge:
The buffer-aware block merge has two potential benefits
that reduce the future eviction cost and the future merge
cost. As discussed above, the first one comes from the
reduction in future page writes and the other one comes
from the reduction in future block merge operations.

For better understanding of the potential benefits,
we compare the behaviors of the buffer-unaware block
merge and the buffer-aware block merge using examples
shown in Fig. 4. This figure illustrates the contents of
the buffer cache, the log block Li, and the data block
Dj , respectively. The numbers in circles as well as in
rectangles represent a logical page number. The shaded
circles indicate dirty pages while the shaded rectangles
represent invalid pages. Initially, the buffer cache has
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four dirty pages, p0, p1, p4, and p5. There are also four
pages in the log block Li. One page p0 out of the four
log block pages is invalid because the new version of p0
is in Li. The data block Dj also has four pages, p0, p1, p2,
p3, and three pages, p0, p1, p2, are invalid because there
are new pages in the log block.

• The reduction in the future eviction cost: Suppose that
Li is merged to make free pages. Here, Bd(Li) is {p0,
p1}; hence |Bd(Li)| is 2. Bc(Li) is φ and |Bc(Li)| is 0.
If the buffer-unaware block merge is used as shown in
Fig. 4(a), two dirty pages, p0 and p1, remain dirty in the
buffer cache, whereas they become clean with the buffer-
aware block merge as depicted in Fig. 4(b). After the
block merge, the FTL obtains four new free pages. The
new log block is denoted by L′

i to differentiate it from the
old one. The former data blockDj becomes the free block
and is inserted into the free block list. Finally, the former
free block becomes the new data block Dj . Further
suppose that p0 and p1 in Bd(Li) are evicted from the
buffer cache by a buffer replacement policy without any
updates. In the buffer-unaware block merge, they must
be written to the new log block L′

i. The eviction cost,
CBU

evict(Li), of the buffer-unaware block merge is thus
|Bd(Li)| · Tb→f , which is 2 · Tb→f in Fig. 4. On the other
hand, the eviction cost, CBA

evict(Li), of the buffer-aware
block merge is 0. This is because both p0 and p1 become
clean when the old log block Li is merged and there
are no further updates on them before they are evicted
from the buffer cache2. With the buffer-aware block
merge, therefore, two page writes can be eliminated.
This benefit that comes from the elimination of future
page writes is called an eviction-cost benefit. The eviction-
cost benefit is expressed as CBU

evict(Li)−CBA
evict(Li), which

is 2 · Tb→f in the example of Fig. 4. Note that the
number of dirty page writes eliminated is denoted by
(CBU

evict(Li)− CBA
evict(Li)) / Tb→f .

• The reduction in the future merge cost: The buffer-aware
block merge requires a smaller number of future block
merges because it writes fewer pages to log blocks over
the buffer-unaware block merge. For example, consider
the case in Fig. 4 where two pages, p4 and p5, in the
buffer cache are evicted to L′

i by a buffer replacement
policy. With the buffer-unaware block merge in Fig. 4(a),
the FTL should invoke a block merge operation because
there are no free pages in L′

i. On the other hand, with the
buffer-aware block merge in Fig. 4(b), it is not necessary
to perform a block merge because there are still two
free pages. This benefit that comes from the reduction
of future block merges is called a merge-cost benefit.
In order to estimate the merge-cost benefit, the cost

of a block merge induced by a single page write is to
be estimated first. A block merge operation occurs when
free pages in an empty log block have been entirely used
up. If the number of pages per block is Nppb, a block
merge operation is invoked every Nppb page writes to

2. If there are updates on the cleaned pages, our assumption that
CBA

evict(Li) is equal to 0 is no longer true. We discuss this issue at the
end of this subsection.

a log block. This means that if Nppb dirty page writes
are reduced, one block merge operation is eliminated.
Assuming that the average cost of the buffer-aware block
merge is given by CBA

avg , the block merge cost eliminated
by the reduction of one dirty page write is (CBA

avg / Nppb)
on average. In this work, CBA

avg is calculated using a
moving average of recent block merge costs. The number
of dirty page writes reduced by the buffer-aware block
merge is (CBU

evict(Li) − CBA
evict(Li)) / Tb→f . The potential

merge-cost benefit of Li is thus expressed as (CBU
evict(Li)−

CBA
evict(Li)) · α, where α is (CBA

avg / Nppb) / Tb→f .
The following definition formalizes the potential ben-

efits of the buffer-aware block merge.

Definition 3. Let CBU
evict(Li) be the eviction cost after a

log block Li is merged with the buffer-unaware block merge
and let CBA

evict(Li) be the eviction cost of Li with the buffer-
aware block merge. The eviction-cost benefit and the merge-
cost benefit of Li are CBU

evict(Li)−CBA
evict(Li) and (CBU

evict(Li)−
CBA

evict(Li)) · α, respectively. Thus, the total potential benefits
of Li, denoted by BBA

benefit(Li), are defined as follows:

BBA
benefit(Li) = (CBU

evict(Li)− CBA
evict(Li)) · (1 + α). (3)

Since CBU
evict(Li) is larger than or equal to CBA

evict(Li),
BBA

benefit(Li) ≥ 0. As explained in Eqs. (1) and (2),
CBA

merge(Li) is also smaller than or equal to CBU
merge(Li).

Thus, the buffer-aware block merge at least performs
better than the buffer-unaware block merge.

If pages cleaned by the buffer-aware block merge are
updated later, there are no potential benefits because up-
to-date data must be written to flash memory. The poten-
tial benefits, BBA

benefit(Li), are thus changed depending
on the update probability of pages in Bd(Li) after the
buffer-aware block merge. For example, in Fig. 4(b), if
p0 and p1 in Bd(Li) are updated before they are evicted,
CBA

evict(Li) increases by 2 · Tb→f because the new version
of data must be written to flash memory. In this case,
BBA

benefit(Li) is 0. That is, as many pages in Bd(Li) are
modified before they are evicted, the potential benefits
become less significant. In Section 6, we discuss the way
to maximize the potential benefits by considering the
update probability of pages in a buffer cache.

5.3 The effect of a copy-back operation

In order to reduce the block merge cost, most flash chips
support a specialized page migration operation, called a
copy-back operation. As noted in Section 4, a copy-back
operation eliminates expensive data transfers between a
processor and a flash chip by using an on-chip register
in a flash chip. Note that a copy-back operation can be
performed for pages that share the same on-chip register.

With a copy-back operation, the cost of a single page
migration is reduced to Tr + Tw (i.e., 225 μs) from
Tr + 2 · Tt + Tw (i.e., 425 μs). On the other hand, the
cost of a single page migration of the buffer-aware
block merge is Tt + Tw (i.e., 300 μs) when the potential
benefits, BBA

benefit(Li), are assumed to be 0. In that case, a
copy-back operation requires lower merge costs than the
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buffer-aware block merge. If BBA
benefit(Li) is high enough,

however, using the buffer-aware block merge is a better
choice. To minimize the garbage collection overhead,
therefore, we must carefully choose a proper operation
for block merges depending on their benefits. In this
section, we analyze the effect of a copy-back operation
on the buffer-aware block merge. Our strategy that takes
advantage of both of a copy-back operation and the
buffer-aware block merge is presented in Section 6.

We first look at the case where only a copy-back
operation is used without the buffer-aware block merge.

Definition 4. Let M
p(Li) be a subset of M(Li), which

only includes pages that can be copied back, and let Tp→p

be the time taken to move a page using a copy-back opera-
tion. The buffer-unaware block merge cost of Li, denoted by
CBU.CB

merge (Li), is derived from Eq. (1) as follows:

CBU.CB
merge (Li) = |Mp(Li)| · Tp→p + (|M(Li)| − |Mp(Li)|) · Tf→f .

(4)

Tp→p in Eq. (4) is also denoted by (Tr + Tw).
In the buffer-aware block merge, all the pages that can

be copied back are moved using a copy-back operation
because of its lower cost. For the pages that have dirty
pages in a buffer cache, however, dirty data in a buffer
cache is directly written to flash memory, so as to take
advantage of the potential benefits.

Definition 5. Let Fp(Li) be a subset of F(Li) of a log block
Li, which only includes pages in flash memory that can be
copied back. Let Bp

c(Li) be a subset of Bc(Li), which has clean
pages in a buffer cache and has valid pages in flash memory
that can be copied back. The buffer-aware block merge cost
of Li, denoted by CBA.CB

merge (Li), is derived from Eq. (2) as
follows:

CBA.CB
merge (Li) = (|Fp(Li)|+ |Bp

c (Li)|) · Tp→p+

(|F(Li)| − |Fp(Li)|) · Tf→f+

(|Bd(Li)|+ |Bc(Li)| − |Bp
c (Li)|) · Tb→f .

(5)

When a copy-back operation is used, it is no longer
true that the buffer-aware block merge is always more
efficient than the buffer-unaware block merge. That is,
in Eqs. (4) and (5), CBA.CB

merge (Li) can be larger than
CBU.CB

merge (Li). For example, suppose that all pages to be
moved during a block merge can be copied back. (i.e.,
|M(Li)| − |Mp(Li)| = 0 in Eq. (4)). Further suppose that
all those pages have dirty pages in a buffer cache (i.e.,
|F(Li)| = |Fp(Li)| = |Bc(Li)| = |Bp

c(Li)| = 0 in Eq. (5)) and
there are no potential benefits (i.e., BBA

benefit(Li) = 0). In
this case, CBA.CB

merge (Li) > CBU.CB
merge (Li) because |Bd(Li)| ·

Tb→f > |M(Li)| ·Tp→p. Thus, it is better to use the buffer-
unaware block merge. However, if the potential benefits
are high enough, the buffer-aware block merge can out-
perform the buffer-unaware block merge. Suppose that
the potential benefits are the maximum in the example
above (i.e., CBU

evict(Li)−CBA
evict(Li) = |Bd(Li)| · Tb→f ). The

FTL takes advantage of the potential benefits, |Bd(Li)| ·
Tb→f ·(1+α) according to (CBU

evict(Li)−CBA
evict(Li))·(1+α)

in Eq. (3). These potential benefits are high enough to
compensate for its high block merge cost.

6 BUFFER-AWARE VICTIM BLOCK SELECTION

Selecting a victim block affects the performance of
garbage collection in a significant fashion. Many pre-
vious studies thus have used a victim block selection
policy to meet various design goals [5, 6]. In buffer-
aware garbage collection, the cost of the buffer-aware
block merge needs to be taken into account in selecting
a victim block. In addition, the potential benefits of the
buffer-aware block merge and the benefit of a copy-
back operation should be considered. We first present an
example that shows the need for better victim selection
and then explain buffer-aware victim block selection
(BAVBS) in detail.

6.1 Example of buffer-aware victim selection

Consider the snapshot of the flash memory and the
buffer cache in Fig. 5. The buffer cache has four dirty
pages, p0, p1, p8, and p9. p0 and p1 are hot pages that are
updated frequently while p8 and p9 are cold pages that
are not updated before its eviction. There are two data
blocks, B0 and B1, and two log blocks, L0 and L1. We
assume that each block is composed of eight pages.

Suppose that the log block L0 is selected as a victim
block and none of the pages can be moved using a copy-
back operation. The FTL copies six pages, p2, ..., p7, from
L0 and B0 to a new data block and copies p0 and p1 from
the buffer cache. Therefore, the cost, CBA.CB

merge (L0), of the
buffer-aware block merge of L0 becomes 6 · Tf→f + 2 ·
Tb→f = 6 · 425 μs+ 2 · 300 μs = 3150 μs. If the log block
L1 is selected instead as a victim block, the block merge
cost, CBA.CB

merge (L1), is 3150 μs as well because two pages
p8 and p9 are copied from the buffer cache.

However, when L0 is chosen as a victim, moving
the pages p0 and p1 from the buffer cache to the flash
memory is wasted because they will be updated shortly
and then be written to the flash memory. Thus, the
benefit of the buffer-aware block merge, BBA

benefit(L0),
becomes 0. If L1 is selected as a victim, p8 and p9 will not
have to be written to the flash memory because it will
remain clean. Therefore, BBA

benefit(L1) is 2 · Tb→f · (1+α).
In this case, even if the value of α is assumed to be 0 (i.e.,
the potential merge-cost benefit is 0), BBA

benefit(L1) is 600
μs. That is, BBA

benefit(L1) is at least larger than 600 μs. This
benefit is potential in that it reduces the future write cost
by eliminating the evictions of p8 and p9, but it is possible

Fig. 5: An example of victim block selection.
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to estimate the garbage collection cost of L1 when it is
being merged by subtracting the potential benefits from
the block merge cost. Thus, the garbage collection cost
of Li can be estimated as 3150 μs−600 μs = 2550 μs. As
a result, considering the potential benefits, it is better to
choose L1 as a victim block.

The situation becomes more interesting if some pages
can be moved by a copy-back operation. For example,
if eight pages, p0, ..., p7, can be copied back, then the
cost, CBU.CB

merge (L0), of the buffer-unaware block merge of
L0 is 8 ·Tp→p = 1800 μs. Therefore, even considering the
benefit of the buffer-aware block merge, L0 is a better
choice. However, if all the pages p0, ..., p15 can be copied
back, then CBA.CB

merge (L1) reduces to 6·(Tp→p)+2·(Tb→f ) =
1950 μs. Accounting for BBA

benefit(L1), the cost of garbage
collection is 1950 μs− 600 μs = 1350 μs.
This example illustrates that both the potential benefits

of the buffer-aware block and the benefit of a copy-
back operation are significant factors that determine
the garbage collection cost. Thus, we should carefully
consider them in deciding a victim log block.

6.2 Victim log block selection algorithm

In BAGC, the garbage collection cost of a log block Li is
determined by 1) the block merge cost, 2) the potential
benefits of the buffer-aware block merge, and 3) the
benefit of a copy-back operation. Our victim selection
strategy is to choose a log block whose garbage collection
cost is the smallest among all available log blocks.

For each log block Li, we first calculate the garbage
collection costs for different types of merge operations.
The garbage collection cost, GCBA(Li), of Li with the
buffer-aware block merge is defined as follows:

GCBA(Li) = CBA.CB
merge (Li) + Cerase(Li)−BBA

benefit(Li),

where Cerase(Li) = (|D(Li)|+ 1) · Te,
(6)

where Te is the time taken to erase a block and Te is
1.5 ms according to [4]. Cerase(Li) is the time spent
to erase all the blocks involved in garbage collection.
CBA.CB

merge (Li) + Cerase(Li) is the cost for reclaiming Li.
This cost is compensated by the potential benefits,
BBA

benefit(Li). In the example of Fig. 5, if the pages p0, ...,
p15 can be copied back, GCBA(L0) and GCBA(L1) are
4950 μs and 4350 μs, respectively, because Cerase(L0) =
Cerase(L1) = 2 · Te = 3000 μs.
The garbage collection cost, GCBU (Li), of Li with the

buffer-unaware block merge is defined as follows:

GCBU (Li) = CBU.CB
merge (Li) + Cerase(Li). (7)

In Fig. 5, GCBU (L0) = GCBU (L1) = 4800 μs.
For each log block Li, the block merge operation that

requires the smaller cost is chosen for garbage collection.
Therefore, the garbage collection cost, GC(Li), of Li is
formally expressed as follows:

GC(Li) = min(GCBA(Li), GCBU (Li)). (8)

In the example of Fig. 5, for the log block L0, the
buffer-unaware block merge requires the smallest merge

1: Buffer Aware Garbage Collection () {
2: (Li, op typei) := Buffer Aware Victim Selection(Nlb); /* Nlb is the

number of log blocks available */
3: if (op typei is buffer-unaware block merge)
4: Buffer Unaware Full Merge(Li); /* original full merge */
5: else
6: Buffer Aware Full Merge(Li); /* buffer-aware full merge */
7: }
8: Buffer Aware Victim Selection (Nlb) {
9: costmin := ∞;
10: Lmin := null;
11: op typemin := null;
12: for (i := 0; i <Nlb; i++) { /* check all available log blocks */
13: (cost, op type) := Get Garbage Collection Cost(Li);
14: if (cost < costmin) {
15: costmin := cost;
16: Lmin := Li;
17: op typemin := op type;
18: }
19: }
20: return (Lmin, op typemin);
21: }
22: Calculate Garbage Collection Cost (Li) {
23: op type := null;

/* get the GC cost with the potential benefits of Li */
24: costBA := GCBA(Li); /* Eq. (6) */

/* get the GC cost with the benefit of a copy-back operation of Li */
25: costBU := GCBU (Li); /* Eq. (7) */

/* choose the smaller one */
26: if (costBA < costBU ) {
27: op type := buffer-aware block merge;
28: return (costBA, op type);
29: } else {
30: op type := buffer-unaware block merge;
31: return (costBU , op type);
32: }
33: }

Fig. 6: A buffer-aware victim block selection algorithm.

cost because GCBU (L0) = 4800 μs < GCBA(L0) =
4950 μs. On the other hand, for the log block L1, the
buffer-aware block merge requires the smallest merge
cost because GCBA(L1) = 4350 μs < GCBU (L1) =
4800 μs. Finally, the log block with the smallest merge
cost is chosen as a victim block. In the example of Fig. 5,
L1 with the buffer-aware block merge is the best choice.
Fig. 6 describes the buffer-aware victim block se-

lection algorithm. For all log blocks, GC(Li) is first
obtained. The total number of log blocks in the FTL
is denoted by Nlb. The FTL selects the log block
with the smallest GC(Li) as a victim block using Eqs.
(6) and (7). The FTL then performs a block merge
for the victim block using the corresponding block
merge operation. Buffer_Unaware_Full_Merge(Li)
in Fig. 6 is the original block merge of the FAST
FTL [10], except that it uses a copy-back operation.
Buffer_Aware_Full_Merge(Li) is the same as the
algorithm in Fig. 3. Since a copy-back operation is en-
abled, in lines 10 and 13 of Fig. 3, pk is copied back to
pnewk if they belong to the same plane.
To calculate the garbage collection cost, GC(Li), of Li,

the potential benefits of the buffer-aware block merge as
well as the benefit of a copy-back operation should be
accurately estimated. First, in order to know how a copy-
back operation affects the cost of garbage collection, the
values of |Mp(Li)|, |Fp(Li)|, and |Bp

c(Li)| in Eqs. (4) and
(5) should be known. These values can be easily obtained
by looking at source planes where source pages are
placed and destination planes where source pages will
be written. Second, the value of (CBU

evict(Li)−CBA
evict(Li))

in Eq. (3) should be estimated to know the potential
benefits of the buffer-aware block merge. We know that
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Fig. 7: A 3-region LRU buffer.

CBU
evict(Li) is |Bd(Li)| · Tb→f . However, CBA

evict(Li) is not
easily estimated because it depends on the future update
probability of pages in |Bd(Li)|.

6.3 Locality-aware potential benefit prediction

The estimation of the potential benefits: To estimate
the potential benefits, we should know in advance how
many pages in Bd(Li) are updated before they are
evicted from a buffer cache. Suppose that Bd(Li) is
divided into two subsets, Btbe

d (Li) and B
tbu
d (Li), where

B
tbe
d (Li) is a set of pages to be evicted from a buffer

cache without further updates after the buffer-aware
block merge, and B

tbu
d (Li) is a set of pages to be updated

and to be dirty again before their eviction. For instance,
in Fig. 5, Btbe

d (Li) = {p8} and B
tbu
d (Li) = {p0}.

If pages in a log block Li are mostly associated
with dirty pages in B

tbu
d (Li), the potential benefits,

CBA
benefit(Li), are close to 0 because CBA

evict(Li) approaches
CBU

evict(Li). Thus, CBA
evict(Li) can be written as follows:

CBA
evict(Li) = |Btbu

d (Li)| · Tb→f . (9)

Since |Btbu
d (Li)| depends on the frequency with which

each page will be updated, the value of |Btbu
d (Li)| can

be approximated as follows:

|Btbu
d (Li)| �

∑

pk∈Bd(Li)

P (Upk ), (10)

where Upk
is the event that a page pk is updated before

its eviction, and P (Upk
) is the probability that Upk

occurs.
However, the exact value of P (Upk

) is not available at
garbage collection time because the future behavior of
a buffer cache is unknown. We therefore predict P (Upk

)
by exploiting temporal locality of I/O references. It is
probable that a recently-updated page will be updated
again. Therefore, if pk is written more frequently in
recent times, we assign a larger value to P (Upk

).

3-region LRU buffer management: In order to deter-
mine temporal locality of each page pk, we employ a
novel buffer architecture called a 3-region LRU buffer,
which is depicted in Fig. 7. The 3-region LRU buffer is
divided into three regions: an initial region, a TBU (to-be-
updated) region, and a TBE (to-be-evicted) region. Each
region is a normal buffer cache, which is managed by
an LRU replacement policy. When data is first written
to a buffer cache, it is placed in the initial region. The
initial region is used to separate write-once data, which
is not updated after being written to a buffer cache,
from frequently updated data. If data is subsequently
updated, it is promoted to the TBU region. Otherwise, it

Fig. 8: A state transition diagram of the 3-region buffer.

is evicted to the TBE region in the order of its arrival in
the initial region. If data is updated in the TBE region,
it is promoted to the TBU region. If data is not updated
for a long time, it is evicted to TBU from TBE.

The benefit of using the 3-region LRU buffer is that it
helps us to categorize pages in a buffer cache depending
on their update probabilities. For example, if a page is
placed in the TBU region, it will be updated soon. Thus,
assigning a higher update probability to that page is
probable. Through a series of experiments, we found that
assigning an extreme probability value to each region
is generally useful. That is, we assign P (Upk

) of 1.0 to
pages in the TBU region. All pages in the TBE region
have P (Upk

) of 0.0. The initial region may contain both
hot and cold pages. Thus, P (Upk

) for the initial region is
dynamically adjusted by the ratio of the TBU region size
to a buffer cache size because it indicates a proportion
of hot pages in a buffer cache.

The size of each region has an effect on deciding
|Btbu

d (Li)|. For example, if the TBU region size is much
larger than the actual number of hot pages in a buffer
cache, the TBU region holds many cold pages and all
of them are regarded as hot pages. Therefore, the value
of |Btbu

d (Li)| becomes high even though there are many
cold pages in the TBU region. To avoid this problem,
the 3-region LRU buffer adjusts the size of each region
depending on I/O access patterns, by considering the
rate at which pages move between three regions.

Fig. 8 shows a finite state machine (FSM) correspond-
ing to a page in a buffer cache. This FSM has six states
(Init, TBE0, TBE1, TBU0, TBU1, and Evicted) and two
inputs (update and evict). The update input means that
a page is to be updated in response to a write request.
The evict input means that a page is to be evicted from
a region by the LRU replacement policy. Whenever the
four transitions (i.e., TBU0 → TBE1, TBE1 → TBU0, TBE0 →
TBU0, and TBE0 → Evict) of FSM occur, the size of each
region is adjusted. First, if there are many pages whose
states change from TBU0 to TBE1 (i.e., TBU0 → TBE1), it
means that there are many pages with a low update
probability in the TBU region. Thus, we need to decrease
the TBU region size, w1, and increase the TBE region size,
w2. Second, if there are many transitions from TBE1 to
TBU0 (i.e., TBE1 → TBU0), we increase w1 and decrease w2

because many pages with a high update probability exist
in the TBE region. Third, if there are many transitions
from TBE0 to TBU0 (i.e., TBE0 → TBU0), it means that
many pages that had to be sent from the initial region
to the TBU region were actually sent to the TBE region.
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Trace Description Written Data

Bonnie++
Create and delete files in sequential

0.78 GBand random orders, while performing
different types of file system operations.

Tiobench Create 8 × 120 MB files from eight threads. 1.11 GBEach thread generates 4K random writes.

Postmark Create 30 K files whose sizes are 4-16 KB, 4.45 GBwhile generating 200 K transactions.

Iozone
Execute writes/re-writes and reads/re-reads

3.46 GBon a 1 GB file with 2 KB records. The stripped
access was disabled and the flush was enabled.

PC
Collect I/O activities from a desktop PC

4.78 GBfor 1 day while running several
applications such as document editors,

web browsers, messenger, and photoshop.

Mobile Create and delete several multimedia files 4.42 GBincluding movies, pictures, and MP3s.

TABLE 1: Descriptions of benchmark programs.

Therefore, we increase the Initial region size, w0, and
decrease w2. Finally, if many pages are evicted from a
buffer cache in the TBE0 state (i.e., TBE0 → Evict), we
decrease w0 and increase w2 to reduce the time that a
page stays in the initial region.

The size of each region in the 3-region LRU buffer
is initially set to the same and is adjusted at page
granularity whenever the transition occurs. For example,
when a page is evicted from TBU0 to TBE1, the TBU region
size decreases by a page, whereas the TBE region size
increases by a page.

6.4 Reducing computational complexity

Whenever the FTL selects a victim log block, it is re-
quired to compute the value of |Btbu

d (Li)| for each log
block Li, so as to estimate the potential benefits. For all
the pages to be moved during the block merge of each
log block Li, BAVBS needs to examine the region where
each page is placed. To reduce the computational over-
head required for obtaining |Btbu

d (Li)|, the 3-region LRU
buffer is managed at the granularity of a block, instead
of a page. That is, all the pages belonging to the same
logical block stay in the same region of a buffer cache
and move together when they are promoted to or evicted
from another region. This means that all the pages in the
same logical block have the same P (Upk

). Therefore, the
value of |Btbu

d (Li)| can be obtained at a lower cost by
using the number of dirty pages in a buffer cache for
logical blocks (which are involved in the block merge
of a log block Li) and the regions where those logical
blocks are placed. This approach sacrifices the accuracy
of detecting the update probability of an individual page,
but it reduces the computational overhead greatly3.
If a processor and a memory module in a storage

device have limited performance, the computational
overhead could be high even if the 3-region LRU buffer
is managed at the granularity of a block. To reduce this
computational overhead, we propose a limited version
of BAGC which examines a limited number, N limit

lb , of
log blocks starting from the least-recently written (LRW)
log block. The intuition behind this approach is that
log blocks close to the LRW log block tend to have a

3. A more detailed analysis of the computational overhead of the 3-
region LRU buffer can be found in Appendix (which is available from
our on-line supplemental material.)

relatively low merge cost because they are likely to have
few valid pages. Since the goal of BAVBS is to choose a
victim log block with both the low block merge cost and
the high potential benefits, it is reasonable to estimate
the potential benefits of those log blocks if it is difficult
to examine all available log blocks. There is a trade-
off between performance and computational overhead in
the limited version of BAGC. If the value of N limit

lb is set
to 1, BAVBS works like BABM and there is a negligible
overhead in choosing a victim. AsN limit

lb approachesNlb,
better performance is achieved at a cost of computation.

7 EXPERIMENTAL RESULTS

7.1 Experimental setup

In order to evaluate the performance of BAGC, we devel-
oped a trace-driven simulator that models a flash device
depicted in Fig. 2. We compared BAGC with three buffer
management schemes, BLRU [15, 16], FAB [15], and
BPLRU [16], running on top of various FTLs, including
BAST [9], FAST [10], and SuperBlock [11]. For BAGC, the
block merge and victim selection modules were modified
as described in Sections 5 and 6. The 3-region LRU
buffer was managed at the granularity of a block because
the page-level buffer management requires too much
computation.

In our evaluation, a buffer cache was used as a write
buffer. Using a write buffer in a storage device inevitably
lowers data reliability because all dirty data in a buffer
cache will be lost when a power failure occurs or the
system suddenly stops working. To prevent data loss
from such exceptional events and provide a high degree
of data reliability, any dirty pages staying in a buffer
cache for more than 30 seconds were flushed to flash
memory.

The flash parameters were based on Samsung’s
NAND flash memory with 64 2 KB pages in a block [4].
The page read time, the page write time, and the block
erasure time were set to 25 μs, 200 μs, and 1.5 ms,
respectively, and the page transfer time through the flash
bus was 100 μs. The value of α was dynamically decided
by taking the average block merge cost using a moving
average algorithm. The value of Tb was assumed to be 0.
The values of P (Upk

) for the TBU and TBE regions were
set to 1.0 and 0.0, respectively. The value of P (Upk

) for
the initial region was dynamically adjusted as described
in Section 6.3. The flash simulator was configured with
9 flash chips, each of which is 1 GB with four planes.
For evaluation with aged devices, all blocks except for
log blocks were initially filled with valid data.

7.2 Benchmarks

Our evaluation was conducted with six benchmark pro-
grams, which are listed in Table 1. We used four well-
known benchmarks, Bonnie++, Tiobench, Postmark, and
Iozone, to assess performance under I/O intensive envi-
ronments where I/O performance really matters. We also
evaluated BAGC with a real-world trace recorded from
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Trace I/O Times (seconds)
BUBM BABM BABM+BAVBS

Bonnie++ 160 154 142
Tiobench 391 347 316
Postmark 4,617 3,180 2,688
Iozone 1,434 1,214 1,063
PC 1,635 1,513 1,394

Mobile 788 763 763

TABLE 2: I/O time (seconds) of BUBM, BABM, and
BABM+BAVBS.

real-user activities on a desktop PC. Finally, we used the
Mobile trace that captures the workload of a portable
media player, which is one of the representative mobile
applications. Microsoft Windows XP was used for our
trace collection, and all the traces were extracted from a
disk driver using the Diskmon utility [20].

The benchmark programs have distinctive character-
istics in terms of data locality and I/O reference pat-
terns. Bonnie++ and Postmark are small-file-oriented
and metadata-intensive workloads. Iozone is designed
to measure streaming performance for large files, but it
also incurs many updates to metadata and data. There-
fore, they exhibit relatively high locality. Tiobench incurs
many random writes, so it exhibits quite low locality.
Mobile incurs many sequential writes for multimedia
files with small metadata updates. PC is a real-life trace,
containing many sequential writes for large files, repet-
itive updates for small files, and many random writes.
PC exhibits higher locality than Tiobench and Mobile.

7.3 Performance analysis

In this section, we evaluate two main techniques of the
BAGC scheme, BABM and BAVBS, so as to understand
their effects on performance. We use the FAST FTL as our
default FTL scheme and employ the 3-region LRU buffer
for buffer management. The buffer cache size is set to 32
MB and 512 log blocks are used. The evaluation results
with other FTL and buffer management schemes are
given in Section 7.4. To know the maximum performance
that BAGC can achieve, N limit

lb is set to 512. We evaluate
the limited version of BAGC in Section 7.6.

7.3.1 Overall performance

Table 2 shows the I/O time under the different con-
figurations. The I/O time is the total amount of time
taken to perform all I/O operations, including page
reads, page writes, and block erasures. We analyze the
performance of the following three schemes: BUBM,
BABM, and BABM+BAVBS. BUBM employs the buffer-
unaware block merge (BUBM) scheme and selects a
victim block using the round-robin policy [10], which is
a default victim selection policy used in the FAST FTL.
BABM employs the buffer-aware block merge (BABM)
scheme with the round-robin victim selection policy.
BABM+BAVBS is the same as BABM except that it uses
the buffer-aware victim block selection (BAVBS) scheme.

It is clear from Table 2 that BABM+BAVBS shows
the best performance among all the schemes evaluated.
BABM improves performance by 12.1%, on average,
over BUBM. This benefit comes from the elimination

Trace Dirty Clean
BUBM BABM BABM+ BABM BABM+

BAVBS BAVBS
Bonnie++ 65,625 56,335 56,655 16,338 37,230
Tiobench 89,297 76,670 76,241 13,667 17,008
Postmark 1,889,516 1,348,280 1,260,648 560,755 647,634
Iozone 652,461 580,503 498,841 152,774 288,725
PC 710,036 625,436 572,872 88,978 150,304

Mobile 48,342 9,230 9,230 36,566 36,566

TABLE 3: A comparison of dirty page writes of BUBM, BABM,
and BABM+BAVBS. This table also shows the number of pages
cleaned by buffer-aware block merges.

of unnecessary page migrations during block merges.
BABM+BAVBS chooses a victim log block to maximize
the benefit of the buffer-aware block merge, so it further
reduces I/O time by 19.4%, on average, over BUBM.

The performance of buffer-aware garbage collection
varies from one benchmark to another. Thus, we inves-
tigate some of the factors that might affect performance.
We first look at how many page writes are removed
by eliminating unnecessary page migrations and then
explain how this affects the garbage collection cost.

7.3.2 Reduction in page writes
Since a buffer cache is used as a write buffer, all the
pages that are written to a buffer cache are initially dirty.
These dirty pages can be cleaned by buffer-aware block
merges. If there are no further updates on them, they are
evicted as clean pages from a buffer cache, and thus the
number of dirty page writes is reduced. As expected,
as many useless page migrations are eliminated, more
clean pages are evicted from a buffer cache.

Table 3 compares the numbers of dirty page writes ac-
cording to three different schemes, which are denoted by
Dirty. We only consider dirty pages written to random
log blocks because they incur expensive full merges. For
BABM and BABM+BAVBS, we show the numbers of
pages that become clean by buffer-aware block merges
and then be evicted from a buffer cache without further
updates. These numbers are denoted by Clean in Table 3.
As shown in Table 3, BABM reduces the number of

dirty page writes by 11-80% over BUBM. BABM+BAVBS
further reduces the number of dirty page writes by 0.6-
15% over BABM because it eliminates more useless page
migrations, thereby increasing clean pages evicted from
a buffer cache. The increase in the number of the clean
pages with BABM+BAVBS also shows that the proposed
BAVBS technique effectively chooses a victim log block
that has cold pages in a buffer cache. In our observation,
on average, only 1.3% of the clean pages are updated
before being evicted from a buffer cache.

In the cases of Bonnie++ and Tiobench, dirty page
writes do not decrease as much as the increase in clean
pages. This is because many dirty pages that are to be
written to a sequential log block are changed to clean
pages by buffer-aware block merges. Thus, the number
of dirty pages written to random log blocks is not
changed greatly. In the case of Mobile, a large number of
dirty pages are eliminated by BABM and BABM+BAVBS,
but its performance is not greatly improved as shown
in Table 2. In the Mobile benchmark, almost all write
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Trace BABM BABM+BAVBS
Switch Partial Full Switch Partial Full

Bonnie++ 97.9% 115.6% 71.7% 91.8% 111.0% 72.7%
Tiobench 100.0% 89.5% 78.1% 100.0% 86.5% 76.9%
Postmark 99.9% 82.1% 70.8% 100.2% 81.9% 66.1%
Iozone 95.0% 97.0% 88.3% 90.2% 90.7% 75.2%
PC 100.0% 99.0% 87.5% 100.1% 95.4% 79.7%

Mobile 100.1% 100.1% 0% 100.1% 100.1% 0%

TABLE 4: A percentage of block merges by type, normalized
to BUBM.

requests are sent to a sequential log block, so the garbage
collection overhead is very low. This is the reason why
the effect of buffer-aware garbage collection on perfor-
mance is trivial.

7.3.3 Reduction in garbage collection overhead
The buffer-aware garbage collection technique not only
reduces the number of dirty page writes to flash memory,
but also decreases the number of block merge operations.
Table 4 shows the percentage of block merge operations
by type, which are normalized to BUBM. BABM and
BABM+BAVBS eliminate lots of full merges and partial
merges that require many page migrations, whereas the
proportion of switch merges is not changed greatly.

For Bonnie++, full merge operations performed with
BABM+BAVBS are slightly increased in comparison to
those with BABM. However, the number of pages moved
during full merges is reduced to 84% of BABM, and thus
the garbage collection overhead is accordingly lowered.
In the case of Mobile, full merges are not observed
with BABM and BABM+BAVBS. The Mobile benchmark
writes only a small number of pages to random log
blocks, and many of them become clean in a buffer cache
by buffer-aware partial merges. As a result, a full merge
operation is not invoked because random log blocks are
not fully filled with data.

7.3.4 Reduction in block erasure operations
Fig. 9 shows the number of block erasure operations,
normalized to BUBM. BABM+BAVBS shows the small-
est erasure operations among all the schemes. This is
because BABM+BAVBS eliminates a large number of
useless page migrations during garbage collection, de-
creasing the number of blocks involved in block merges.

7.3.5 Impact of a copy-back operation
We finally analyze the effect of a copy-back operation
on performance. Table 5 attributes the performance im-
provement achieved by BABM+BAVBS over BUBM to
the elimination of unnecessary page migrations and the
use of a copy-back operation. We can see that a copy-
back operation improves the overall performance by
16%, on average. In the cases of Bonnie++ and Mobile,
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Fig. 9: Block erasure operations, normalized to BUBM.

Trace Utilizing Removing
a copy-back operation unnecessary migrations

Bonnie++ 3.0% 97.0%
Tiobench 29.1% 70.9%
Postmark 22.9% 77.1%
Iozone 15.5% 84.5%
PC 23.9% 76.1%

Mobile 1.2% 98.8%

TABLE 5: An attribution of performance improvement to
processes within BABM+BAVBS.

there are not many chances to exploit a copy-back oper-
ation when moving pages, and thus the benefit of using
copy-back operations is limited.

We evaluate the performance of BABM+BAVBS when
it chooses a victim log block without consideration of the
benefit of a copy-back operation. In our observation, the
number of useless page migrations eliminated increases
by up to 5% because it always chooses a log block
with many dirty pages in a buffer cache. The overall
performance, however, is reduced by up to 10% due to
a high page transfer time.

7.4 Performance comparisons with existing buffer
management and FTL schemes

After the evaluation of several sub-techniques that com-
pose BAGC, we compare the performance of BAGC with
three buffer management schemes, BLRU, BPLRU, FAB
running under three FTL schemes, BAST, FAST, and
SuperBlock. The buffer cache size is set to 32 MB and
512 log blocks are used. N limit

lb is set to 512.
Fig. 10 shows our evaluation results. In this figure,

the block-level LRU scheme (BLRU), the BPLRU scheme,
and the FAB scheme are referred to as BUGC(BLRU),
BUGC(BPLRU), and BUGC(FAB), respectively. All those
schemes do not use any buffer-aware techniques, so
they use the original FTL schemes. The proposed buffer-
aware garbage collection scheme is the one labeled
as BAGC in Fig. 10. For BAGC, the underlying FTL
schemes are modified to support buffer-aware block
merge (BABM) and buffer-aware victim block selection
(BAVBS) operations. BAGC uses the 3-region LRU buffer
scheme for buffer management because it must know
the update probabilities of pages in a buffer cache to
determine a victim log block. Note that BAGC is the same
configuration to BABM+BAVBS in Section 7.3. The re-
sults shown in Fig. 10 are normalized to BUGC(BPLRU).
BUGC(BPLRU) always shows the same performance for
each benchmark, regardless of the underlying FTL algo-
rithm, because of the page padding technique [17].

In BAST with 512 log blocks, BAGC has 11% and 21%
shorter I/O time than BUGC(BLRU) and BUGC(FAB),
on average, respectively. However, the performance of
BAGC is somewhat worse than that of BUGC(BPLRU).
This problem is due to the log block thrashing prob-
lem [10], which is typically observed when available
log blocks are smaller than a working set size. Un-
like other schemes, BUGC(BPLRU) is unaffected by the
block thrashing problem because it does not utilize log
blocks for its page padding technique [16]. This is the
reason why BUGC(BPLRU) shows better performance
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(b) BAST (2048 log blocks)
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(d) SuperBlock (512 log blocks)

Fig. 10: Performance comparisons of buffer management and FTL schemes. These results are normalized to BUGC+BPLRU.

than BAGC. To examine what happens with enough log
blocks, we evaluate performance with 2048 log blocks.
As expected, BAGC exhibits the best performance be-
cause the block thrashing problem disappears; it out-
performs BUGC(BLRU), BUGC(FAB), and BUGC(BPLRU)
by 20%, 31%, and 23%, respectively. The FAST FTL
is designed to prevent the log block thrashing prob-
lem by increasing associativity between log blocks and
data blocks [10]. Therefore, with 512 log blocks, BAGC
achieves 21%, 40%, and 43% shorter I/O time than
BUGC(BLRU), BUGC(BPLRU), and BUGC(FAB), on aver-
age, respectively. Using the SuperBlock FTL, BAGC runs
11%, 29%, and 6% faster, on average, than BUGC(BLRU),
BUGC(FAB), and BUGC(BPLRU) respectively, but the
performance improvement is less significant than the
change in BAST and FAST. This is due to the inflexibility
of victim selection in SuperBlock FTL. Unlike BAST and
FAST that choose the most cost-effective victim among
all available log blocks, SuperBlock allows us to select a
victim from a small number of log blocks (e.g., 8 blocks)
within a superblock [11].

An important observation shown in Fig. 10 is that with
BAGC, FAST exhibits the best performance among all
the FTL schemes evaluated; it outperforms BAST and
SuperBlock by 19% and 37%, respectively, on average.
Therefore, we can conclude that the combination of
the FAST FTL and BAGC is the most effective way to
minimize the garbage collection cost.

7.5 The effect of the buffer cache size

Fig. 11 shows the performance of BAGC when a buffer
cache size varies from 8 MB to 512 MB. We use the FAST
FTL and the number of log blocks is 512. Overall, BAGC
exhibits the best performance, regardless of a buffer
cache size. It improves the effective hit ratio of writes
by eliminating some writes to flash memory, and thus
its performance is maintained when the buffer cache
is small. For example, in Postmark, BAGC achieves the
write hit ratio of 2.1% with the buffer cache of 8 MB, but
it requires 18% fewer page writes than other schemes.

BUGC(FAB) gives the worst performance on some
benchmarks (e.g., Bonnie++, Iozone, and PC) when the
size of a buffer cache is small. BUGC(FAB) selects the
block with the largest number of valid pages in a buffer
cache as a victim block. However, it often evicts blocks
with high locality, thus increasing the number of writes
to flash memory [17]. BUGC(BPLRU) performs poorly
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Fig. 11: I/O time against the buffer cache size.

on some benchmarks (e.g., Tiobench, Postmark, and PC)
where the utilization of a block (i.e., the number of pages
belonging to a block) evicted from a buffer cache is
relatively low. Due to its page padding technique [17],
poorly utilized blocks incur many extra I/Os to flash
memory, increasing the garbage collection overhead.
Both BAGC and BLRU are free from these side-effects
because they use the pure block-level LRU policy.

In some benchmarks (e.g., including Iozone, PC, and
Mobile), the I/O performance is not greatly improved
even when the buffer cache size is relatively large. This
is mainly due to the effect of a flush policy, which writes
dirty pages staying in a buffer cache for a long time to
flash memory. This flush policy is essential to a write
buffer for ensuring a high degree of data reliability. How-
ever, with a flush policy, hot pages must be written to
flash memory, in spite of their high localities. Therefore,
the impact of using a large buffer cache on performance
is less effective.

7.6 The effect of the number of log blocks examined

We evaluate the performance of the limited version of
BAGC while varying the number, N limit

lb , of log blocks
examined from 1 to 1024. The FAST FTL is used as
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Fig. 12: An evaluation of the limited version of BAGC.

the FTL scheme and 1024 log blocks are available in
the FTL. The buffer cache is set to 32 MB. The results,
shown in Fig. 12, demonstrate that increasing N limit

lb

generally reduces the I/O time. For the Bonnie++, the
performance saturates somewhere between 128 and 256
log blocks. The performance of BAGC on Tiobench,
Postmark, Iozone, and PC continues to improve asN limit

lb

increases. The performance of Mobile is not changed
much because the garbage collection overhead itself is
trivial. These results clearly indicate that it is necessary
to determine the value of N limit

lb with great consideration
of a characteristic of a workload.

8 CONCLUSION

We have presented a new buffer-aware garbage collec-
tion scheme called BAGC, which combines two princi-
pal techniques: buffer-aware block merge (BABM) and
buffer-aware victim block selection (BAVBS). BABM im-
proves the efficiency of a block merge by eliminating
unnecessary page migrations. BAVBS improves I/O per-
formance by selecting a victim block in a way that takes
account of the potential benefits of the buffer-aware
block merge. Experimental results show that BAGC im-
proves I/O performance by up to 43% compared to
existing buffer-unaware schemes.
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