
1110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 7, JULY 2014

Adaptive Paired Page Prebackup Scheme
for MLC NAND Flash Memory

Jaeil Lee and Dongkun Shin, Member, IEEE

Abstract—Multilevel cell (MLC) NAND flash memory is more cost
effective compared with single-level cell NAND flash memory as it can
store two or more bits in a memory cell. However, in MLC flash memory,
a programming operation can corrupt the paired page under abnormal
termination. In order to solve the paired page problem, a backup scheme
is generally used, which inevitably causes performance degradation and
shortens the lifespan of flash memory. In this paper, we propose a
more efficient paired page prebackup scheme for MLC flash memory.
It adaptively exploits interleaving, copyback operations, and parity data
to reduce the prebackup overhead. In experiments, the proposed scheme
reduced the backup overhead by up to 78%.

Index Terms—Adaptive LSB prebackup, flash translation layer,
multilevel cell (MLC), NAND flash memory, storage.

I. Introduction

NAND flash memory has several advantages, such as non-
volatility, shock resistance, and low power consumption. Thus,
it is widely used for mobile devices, such as digital cameras,
tablet PCs, and smartphones. However, it has several features
that must be carefully handled. First, the I/O unit of a read
or write operation is a page, which is typically 4 KB or 8 KB;
an erase operation is performed by a block that consists of
several pages. Second, a page cannot be overwritten before
the corresponding block is erased. This characteristic is called
the erase-before-write constraint. Therefore, flash memory
does not permit in-place update and requires a logical-to-
physical address mapping scheme. Third, there is a limit
on the maximum number of program/erase (P/E) cycles. If
a block is programmed and erased more than the specified
maximum number of P/E cycles, the block becomes worn-out
and unreliable. To handle the idiosyncrasies of flash memory,
special software, called a flash translation layer (FTL) [3], is
embedded within the NAND flash memory-based systems such
as the embedded multimedia card (eMMC) and solid state disk
(SSD). Generally, an FTL provides several functions such as
logical-to-physical address mapping, garbage collection, and
wear leveling.

NAND flash memory can be classified into two types: single-
level cell (SLC) and multilevel cell (MLC) NAND flash mem-
ory. SLC flash memory can store one bit per memory cell,
whereas MLC flash memory can store two or more bits. In
2-bit MLC flash memory, the cells of one wordline can store
two paired pages and can be programmed twice for the two
paired pages, called the least significant bit (LSB) page and
the most significant bit (MSB) page. The LSB page should be

Manuscript received October 9, 2013; revised January 7, 2014; accepted
February 19, 2014. Date of current version June 16, 2014. This work was
supported by the Basic Science Research Program through the National
Research Foundation of Korea funded by the Ministry of Education under
Grant 2013R1A1A2A10013598. This paper was recommended by Associate
Editor J. Henkel.

J. Lee is with Samsung Electronics, Hwasung 445-330, Korea (e-mail:
ji007.lee@samsung.com).

D. Shin (corresponding author) is with the Department of Computer Science
and Engineering, Sungkyunkwan University, Suwon 440-746, Korea (e-mail:
dongkun@skku.edu).

Digital Object Identifier 10.1109/TCAD.2014.2309857

Fig. 1. Changes in threshold voltage (Vth) distribution during the page
programming of MLC NAND flash memory. (a) LSB program. (b) MSB
program.

programmed first and then the MSB page can be programmed.
The program time for the MSB page is longer than that of the
LSB page. On a same-sized die, MLC flash memory provides
higher density than SLC flash memory does, and thus most
of the recent flash memory-based systems adopt MLC flash
memory. Throughout this paper, MLC flash memory represents
2-bit MLC as 3-bit MLC flash memory is generally called
triple-level cell (TLC) memory.

Although MLC flash memory affords higher capacity, SLC
memory achieves higher program speed and endurance. More-
over, MLC flash memory suffers from the paired page inter-
ference problem. As the paired pages share the same memory
cells, if a program operation for the MSB page is abnormally
aborted by power failure, reset, or program failure, the paired
LSB page can be damaged as well as the MSB page [6].
Therefore, the FTL for MLC NAND flash memory should
provide data recovery methods for preventing data corruption
by the paired page interference problem. One simple technique
is to back up the LSB page before the write operation of the
MSB page. Considering that NAND flash memory is usually
used in mobile devices, which are exposed to sudden power-
off, the data recovery method is crucial for system safety.
However, the backup-based power crash recovery schemes
inevitably cause write performance degradation.

In this paper, we propose an efficient prebackup scheme
to minimize the LSB page backup overhead. The proposed
scheme exploits the features of flash memory-based systems,
such as interleaving and copyback operations. In addition, it
also utilizes the parity data to reduce the backup overhead.

II. Backgrounds

A. MLC NAND Flash Memory

Fig. 1 shows the process of a paired page program in MLC
NAND flash memory. The memory cell is initially in the erased
state with a 2-bit value of 11. From the erased state, the
LSB of the memory cell is programmed first, followed by
programming of the MSB of the memory cell. In the LSB
program, if the LSB to be programmed is the logical value
0, the cell state moves from the erased state (11) to the
temporary state (x0, P0 transition in Fig. 1), which will be
further programmed by the MSB program step [5]. Otherwise,
the memory cell remains in the 11 state. The x0 state will
output the logical value 0 for an LSB page read operation.

In the MSB program, if the MSB to be programmed is the
logical value 0, the cell state is changed from the 11 state to
the 01 state by the P1 transition, or, depending on the previous
state of the memory cell, the cell state is changed from the
temporary state (x0) to the 00 state by the P2 transition. If
the MSB to be programmed in the memory cell is the logical

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



LEE AND SHIN: ADAPTIVE PAIRED PAGE PREBACKUP SCHEME FOR MLC NAND FLASH MEMORY 1111

Fig. 2. Paired page problem in MLC NAND flash (π = 2).

value 1, the cell state is changed from the temporary state
(x0) to the 10 state by the P3 transition, or, depending on the
previous state of the memory cell, remains in the 11 state.
Eventually, the memory cell has one of four distinct threshold
voltage distributions: the states of 11, 01, 00, and 10. The
MSB pages are more than three times slower than the LSB
pages in program time [2]. As the MSB programming modifies
the state of the memory cells, the LSB can be corrupted if
the MSB programming is abnormally terminated, and thus,
the memory cells are not programmed into one of four
distinct states [5]. This phenomenon is called retroactive data
corruption in [6].

In this paper, we designate the paired page interval by π,
which means the nth page and (n + π)th page in a block are
associated as paired pages. The paired page intervals of flash
chips vary depending on the manufacturing technology.

B. LSB Backup in MLC Flash Memory

To prevent data corruption of the paired LSB page during
the programming of an MSB page, current MLC flash devices
use the LSB page backup scheme [4]. Before the MSB page
programming, the paired LSB page is copied to a backup
block. The LSB page can then be recovered even when it is
corrupted during the MSB page programming. Generally, the
backup MLC block is programmed by the SLC mode, where
only the LSB pages are used to minimize the backup overhead
as the MSB page program time is significantly longer than the
LSB page program time.

Fig. 2 shows the pattern of paired pages in MLC flash blocks
and the LSB page backup scheme assuming that the paired
page interval is 2. In this example, a host system sends two
requests, A and B. The MLC flash device writes the five pages,
A0 to A4, of request A, and then it writes the three pages, B0

to B2, of request B. Before writing page B1, page A4 must be
backed up to prevent data corruption during the programming
of B1, as A4 and B1 are located at the paired pages.

Note that the paired page problem can occur only between
distinct write requests. For the other paired pages, (A0, A2),
(A1, A3), and (B0, B2), there is no need to perform the LSB
backup operation as the paired pages are included within the
same requests. If there is a sudden power-off or program fail-
ure during the handling of a write request, then the incomplete
write request is terminated, and all the written data of the
request will be handled as invalid by the FTL. Therefore, the
LSB backup overhead decreases proportional to the increasing
size of write request. The maximum number of LSB pages to
be backed up during the handling of a write request is π.

Another case in which the LSB backup is not required is
when the LSB page is invalidated before the write operation
on the paired MSB page. Considering such a case, current

MLC devices use the post-backup scheme, which copies the
paired LSB page to the backup block just before writing the
corresponding MSB page. Therefore, it can avoid the backup
operation if the paired LSB page is invalidated before the write
request on the corresponding MSB page. However, it degrades
the latency of the write operation, as the MSB page write
operation must wait until the completion of the paired LSB
page backup operation.

This paper proposes the prebackup scheme, which performs
the LSB page backup at the same time or just after the LSB
page is written in the data block. Therefore, the prebackup
scheme does not increase the write latency of the MSB page.
The prebackup also needs to copy at most the last π pages of
a write request. As the program latency of an MSB page is
significantly larger than that of an LSB page, the prebackup
is a better solution for reducing the maximum write latency.

There are few solutions on the paired page problem in
MLC NAND flash memory. Lee et al. [4] proposed a block
allocation algorithm to avoid paired LSB page backup in MLC
NAND flash-based database systems. The algorithm allocates a
physical block to a transaction only when the physical block
has no valid transaction data. Therefore, there are no LSB
pages to be backed up. In addition, within a transaction, the
LSB page backup is not required as a transaction can be
recovered by the DBMS. This algorithm, however, can only
be applied to database systems.

III. Adaptive Paired Page Prebackup

Our scheme uses the prebackup technique to reduce the
backup overhead and the maximum write latency. We propose
an adaptive paired page prebackup scheme, which selects one
of three prebackup techniques depending on the data size:
interleaving prebackup, copyback prebackup, and parity page
prebackup.

A. Prebackup Schemes

1) Interleaving Prebackup: Recent flash memory-based
storage systems, such as eMMC and SSD, contain multiple
NAND flash chips to increase the I/O bandwidth by accessing
them in parallel. For this purpose, multichannel and multiway
architecture are used. The multiple I/O channels can inde-
pendently issue read or write operations and transfer data.
By writing to multiple NAND flash chips simultaneously via
concurrent channels, the write performance can be improved.
In the multiway architecture, multiple chips can share a single
channel in an interleaved manner, wherein the program opera-
tions at different chips sharing one channel can be overlapped
although the flash chips cannot use the channel simultaneously.
The total number of the pages concurrently programmable via
the multiple channels and ways is denoted by λ in this paper.
We utilize the parallel I/O architecture to hide the LSB page
backup latency.

If ω ≤ λ/2, where ω represents the page size of write
request, and there are idle channels and ways for writing
2ω pages, the interleaving prebackup scheme writes both the
original data and backup data for the LSB page simultaneously
by using different channels and ways. The interleaving pre-
backup invokes no backup overhead as the backup operation
is overlapped with the normal data write operation. However,
the interleaving scheme can increase the channel utilization
degrading the performance, and it can be used only when



1112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 7, JULY 2014

Fig. 3. Proposed prebackup schemes. (a) Interleaving prebackup scheme.
(b) Copy-back prebackup scheme. (c) Parity page prebackup scheme.

there are idle channels and ways not occupied by previous
requests. After completing the MSB page program in the data
block, the data of the paired LSB page in the backup block
are immediately invalidated.

Fig. 3(a) shows the interleaving prebackup scheme. The
original data and the backup data are programmed simulta-
neously via channel 0 and channel 1, respectively. As shown
in Fig. 3, recent NAND flash memory chips have two internal
data buffers, known as the cache buffer and page buffer, to
enable pipelined operations. The data are first written in the
cache buffer by the FTL, and then it is programmed into the
flash block via the page buffer. During the program operation
for the data in the page buffer, the FTL can send the next
page to the cache buffer. Therefore, with the pipeline scheme,
the data transfer time and the data program time of the two
different pages can be overlapped.

2) Copyback Prebackup: If λ/2 < ω ≤ λ or there are
no idle channels and ways for the interleaving backup even
when ω ≤ λ/2, the copyback prebackup is used, which copies
the original data of the LSB page into a backup block just
after the original data is written in the data block. Therefore,
it cannot hide the backup operation latency unlike the inter-
leaving scheme. However, the copyback prebackup operation
can quickly copy the original data without reloading data
to the page buffer. While the post-backup requires one read
operation and one write operation for the LSB page backup,
the copyback prebackup requires only one write operation.

Fig. 3(b) presents the copyback prebackup scheme. The data,
D0 and D1, are programmed into the data block first. After
writing the data, they still remain in the internal page buffers of
flash memory chips. Therefore, the backup operation can reuse
these data. They can be programmed into the backup block
without the page read time. Although the copyback scheme
can reduce the backup overhead when the size of write request
is large, it can reduce only one data loading time; therefore,
the performance improvement is insignificant.

3) Parity Page Prebackup: If ω > λ, the copyback scheme
cannot be used as the internal buffer is overwritten during the
write operations. In such a case, the parity page prebackup
scheme can be used, which writes only one backup page for
each two LSB pages by utilizing the parity data generated
from them. Therefore, the number of backup pages in each
chip is �π/2� at most. We call the two LSB pages associated
via the parity parity-paired LSB pages. Fig. 3(c) shows the
parity page prebackup scheme. The host sends four pages;
D0, D1, D2, and D3. The FTL first writes D0 and D1, and
then it writes D2 and D3, in the LSB pages via two channels.
After programming D2 and D3, the data still remain in both
the page and the cache buffers. To get the parity data, the
FTL reads D0 and D1 from the data block into the page
buffer. The cache buffers then have D2 and D3, and the page
buffers have D0 and D1. The device calculates the parity
data, D0 ⊕ D2 and D1 ⊕ D3, with the XOR circuit embedded
in the NAND flash memory. Most of the current flash memory
chips have an XOR circuit to generate the signature data. The
FTL writes the generated parity data into the backup block.

In MLC NAND flash memory, the latency of write operation
is more than ten times longer than that of read operation.
As the parity page prebackup scheme replaces one write
operation with one read operation, the LSB page backup
overhead is significantly reduced. In addition, the parity page
prebackup scheme can reduce the number of programs in the
backup blocks, and thus the lifespan of the backup blocks
is improved. In this scheme, when a power failure occurs
during the MSB page write operation, only one additional
read operation is required to recover the paired LSB page
data, as will be explained in Section III-B. However, as the
read response time is short and power failures are rare, the
recovery cost is negligible.

4) Worst-Case Overhead of Prebackup Schemes: When
no LSB backup scheme is used, the total write latency for an
MLC flash memory block can be modeled as follows:

Tnobackup = Npage × (Txfr + 0.5 × (Tw,lsb + Tw,msb)) (1)

where Npage is the number of pages in a block, and Txfr is the
data transfer time between the host and flash memory chip.
The variables Tw,lsb and Tw,msb are the write latencies of an
LSB page and an MSB page, respectively. We should use the
average value of them as there is the same number of LSB
and MSB pages in an MLC block.

For the post-backup scheme, we can formalize the worst-
case LSB page backup overhead as follows:

T
post
overhead = 0.5 × Npage × (Tr + Tw,lsb) × (1 − Pinvalid) (2)

where Tr is the page read latency and Pinvalid is the probability
that the target LSB will be invalidated before the paired MSB
page is programmed. The worst case is when the LSB backup



LEE AND SHIN: ADAPTIVE PAIRED PAGE PREBACKUP SCHEME FOR MLC NAND FLASH MEMORY 1113

is required for every MSB page programming. In the worst
case, the post-backup scheme requires one read operation and
one LSB page write operation for each MSB write operation,
except when the LSB page is invalidated before the write
operation.

For the copyback prebackup scheme, we can formalize the
worst-case LSB page backup overhead as follows:

T cb
overhead = 0.5 × Npage × Tw,lsb. (3)

If we assume that Npage, Tr, Tw,lsb, Tw,msb, and Txfr are
128, 60 μs, 600 μs, 2 ms, and 30 μs, respectively, Tnobackup

is 170.24 ms. The overhead ratio, T
post
overhead/Tnobackup, is (1 −

Pinvalid) × 42.24 ms/170.24 ms = (1 − Pinvalid) × 25%, and
T cb

overhead/Tnobackup is 23% (= 38.4 ms/170.24 ms). Therefore,
the copyback prebackup is better than the post-backup when
Pinvalid < 8% (= 1−23/25).

For the maximum write latency of a page, the post-backup
requires 2.69 ms (= Txfr + Tw,msb + Tr + Tw,lsb) when an MSB
page is written with a backup operation, while the prebackup
requires 2.03 ms (= Txfr + Tw,msb) since no backup operation
is required for an MSB page programming. The write latency
of an LSB page in the prebackup scheme is 1.23 ms (= Txfr +
2 × Tw,lsb).

Under the parity page prebackup scheme, the LSB backup
overhead is as follows:

T
parity

overhead = 0.25 × Npage × (Tr + Tw,lsb). (4)

As the scheme writes only one page in the backup block for
every two LSB pages, we need only one-fourth of the Npage

backup operations. The backup overhead ratio is only 12% (=
21.12 ms/170.24 ms) for the real latency values.

B. Paired Page Data Recovery

When the LSB page is corrupted during the paired MSB
page write operation, our recovery scheme finds the original
data from the backup block. A page in the backup block stores
the logical page number (LPN) and physical page number
(PPN) of the original data, and the parity flag (PF) in the
spare area, which is a region reserved for the FTL meta-
data and error correcting code (ECC). The LPN is the logical
address given by the host, and the PPN is the physical address
used in NAND flash memory. Generally, the FTL maintains the
LPN-to-PPN (L2P) mapping table to support address transla-
tion. In our recovery scheme, the LPN and PPN in the backup
block’s spare area are used to find the corresponding backup
data for the corrupted data. The PF is used to distinguish the
parity page from the normal backup data.

For a sudden power-off, the FTL performs the crash recov-
ery during the system initialization phase. The FTL scans all of
the pages in the data blocks and finds corrupted LSB pages by
checking the ECC data in the spare area of each page. Fig. 4
shows the recovery process. For example, the data A for LPN
1 is written at PPN 11 as shown in the L2P mapping table. If
the page with PPN 11 is corrupted, the FTL first finds the PPN
from the page mapping table. If the PPN cannot be found, the
corrupted page has invalid data, and thus the recovery process
is not required. Otherwise, the FTL scans the backup blocks to
find the corresponding backup page which has the same PPN
and LPN in the spare area (PPN 30 in Fig. 4). The found

Fig. 4. Paired page data recovery.

backup page is copied into a free page of the data block.
Finally, the FTL updates the mapping table.

If the PF field of the found backup page is set (PPN 33
in Fig. 4), the recovery process reads the parity-paired LSB
page data (B at PPN 14) from the data block, and calculates
the parity value to get the original data of the corrupted page.
Since only one LSB page can be corrupted by abnormal MSB
page programming, we can always get the noncorrupted parity-
paired LSB page for corrupted data.

IV. Experiments

In order to evaluate the performance of the proposed
adaptive paired page prebackup scheme, we implemented a
flash memory-based storage system simulator and a page-level
FTL algorithm similar to the demand-based map loading FTL
(DFTL) [3]. We also added the proposed LSB page backup
schemes to the FTL algorithm. In order to target smartphone
workloads, the flash memory simulator is configured to simu-
late the current eMMC devices, which are used as the internal
storage device of smartphones. We assumed that the target
eMMC is equipped with four 8-GB, 2-bit MLC NAND flash
memories. We used the timing parameters for the MLC NAND

flash memory in [1], where the paired page interval, π, is 3.
The target eMMC uses 2-way×2-channel architecture, where
four 32-KB pages can be read/written simultaneously. In the
simulation, we reserved two backup blocks in each flash chip;
one is used for the interleaving backup and the other is for
the copyback/parity backup.

We compared the performances of four different backup
schemes: 1) no-backup where the backup operation is not
performed; 2) post-backup; 3) prebackup; and 4) adaptive
prebackup where all the proposed schemes are applied de-
pending on the request size. The prebackup scheme simply
copies the target LSB page to the backup block without
using any proposed optimization technique. We first used syn-
thetic workloads to observe the performance under different
I/O sizes. We collected six Iozone traces with different I/O
sizes in an Android-based smartphone: Iozone 4, Iozone 8,
Iozone 32, Iozone 64, Iozone 128, and Iozone 512. The
Iozone n trace is generated by running the Iozone pro-
gram with the option “-s 128m -r nk -i 2,” which performs
random write operations with n KB of record size for an
128-MB file.

We compared the average write latencies of four different
backup schemes. Fig. 5(a) shows the average write latencies of
the post-backup, prebackup, and adaptive prebackup schemes



1114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 7, JULY 2014

Fig. 5. Comparisons of average write latency normalized by no-backup
scheme. (a) Iozone. (b) Real workload.

normalized by the no-backup scheme. post-backup and pre-
backup, at a maximum, represent 10% and 13.8% of the
backup overhead, respectively. These values are smaller than
the worst-case overhead ratios calculated in Section III-A4.
As (1) does not consider the garbage collection overhead, the
average write latencies in the experiments are larger.

In the post-backup and prebackup schemes, as the I/O
size increases, the backup overhead generally decreases. This
is because the total number of required backup operations
decreases in large write requests. Compared with post-backup,
prebackup reduces the backup overhead for the I/O sizes larger
than 8 KB, as prebackup avoids one read operation for the LSB
page to be backed up. However, when the I/O size is 4 KB or
8 KB, post-backup outperforms prebackup. For the I/O sizes
of 4 KB and 8 KB, Pinvalid, the probability of invalid paired
LSB pages, is significantly large. As Pinvalid > 8%, there are
many cases when post-backup can skip the backup operation,
as commented on in Section III-A4.

The proposed adaptive prebackup scheme dramatically im-
proves the write performance in all of the write patterns.
This is especially the case when the I/O size is not larger
than 32 KB; the backup overhead is less than 2% due to the
effect of the interleaving prebackup scheme. As the target
eMMC device can write 128 KB at once with the two-channel
and two-way architecture, the original data and the backup
data can be programmed simultaneously when the I/O size is
smaller than 64 KB. Therefore, most of backup operation time
was hidden by the interleaving prebackup scheme. (When the
I/O size is 64 KB, the interleaving backup cannot be fully
used as some requests are not aligned to 64 KB.) For an
I/O size of 128 KB, adaptive prebackup shows the maximum
backup overhead as the copyback prebackup scheme is mainly

applied. The copyback prebackup scheme cannot significantly
reduce the backup overhead. For an I/O size of 512 KB, the
parity page prebackup scheme may be frequently applied.
Therefore, the backup overhead in Iozone 512 is less than
that of Iozone 128. Nevertheless, adaptive prebackup outper-
forms both post-backup and prebackup for all I/O sizes, as
the interleaving, copyback, and parity page backup schemes
are adaptively applied according to the size of the write
request.

We also collected real-world workloads from a smartphone
while executing different applications: web surfing, social
networking service (SNS), video recording, application install,
and P2P download. While the write patterns for web surfing
and SNS workloads are small and random, the write patterns
for the remaining workloads are large and sequential.

Fig. 5(b) compares the backup overhead for different
backup schemes under each smartphone workload. Adaptive
prebackup significantly outperforms other schemes for all
workloads. In the random I/O dominant workloads, post-
backup is better than prebackup. Adaptive prebackup reduces
the backup overhead by up to 78% compared with post-
backup, and by up to 82% compared with prebackup.

The adaptive prebackup scheme can also improve the reli-
ability of MLC NAND flash memory. Fig. 5(b) also compares
the erase counts of the backup blocks under prebackup and
adaptive prebackup schemes. The values are normalized by
those of the post-backup scheme. The erase counts are reduced
by 31–78% in the proposed scheme. As the parity page
prebackup scheme can reduce the number of writes in the
backup blocks, adaptive prebackup reduces the erase count
of the backup blocks and thus improves the lifespan of the
backup blocks.

V. Conclusion

The paired page backup operation is the main reason for
the slow performance of MLC flash memory. In this paper,
we proposed an adaptive paired page prebackup scheme for
MLC flash memory, which adaptively uses the interleaving,
copyback operation, and parity page to reduce the backup
overhead. The proposed prebackup schemes can also reduce
the maximum write latency and can improve the lifespan of
MLC flash memory by reducing the number of write opera-
tions on the backup blocks. Experimental results show that the
adaptive prebackup scheme outperforms the existing backup
schemes, imposing less than 4% of the backup overhead.

References

[1] Samsung Electronics Company, Ltd., 32 Gb MLC NAND Flash Memory,
Tech. Rep. K9GBG08U0A, 2009.

[2] L. M. Grupp et al., “Characterizing Flash memory: Anomalies, obser-
vations, and applications,” in Proc. MICRO’09, pp. 24–33.

[3] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash translation
layer employing demand-based selective caching of page-level address
mappings,” in Proc. ASPLOS’09, pp. 229–240.

[4] K. Y. Lee et al., “Design and implementation of MLC NAND flash-
based DBMS for mobile devices,” J. Syst. Software, vol. 82, no. 9,
pp. 1447–1458, 2009.

[5] K.-T. Park et al., “A zeroing cell-to-cell interference page architecture
with temporary LSB storing and parallel MSB program scheme for MLC
NAND flash memories,” IEEE J. Solid-State Circuits, vol. 43, no. 4,
pp. 919–928, Apr. 2008.

[6] H.-W. Tseng, L. Grupp, and S. Swanson, “Understanding the impact of
power loss on flash memory,” in Proc. DAC’11, pp. 35–40.


