
H. Kim and D. Shin: Clustered Page-Level Mapping for Flash Memory-Based Storage Devices 47

Contributed Paper

Manuscript received 01/01/15

Current version published 03/30/15

Electronic version published 03/30/15. 0098 3063/15/$20.00 © 2015 IEEE

Clustered Page-Level Mapping for Flash

Memory-Based Storage Devices

Hyukjoong Kim and Dongkun Shin, Member, IEEE

Abstract — Recent consumer devices such as smartphones,

smart TVs and tablet PCs adopt NAND flash memory as storage

device due to its advantages of small size, reliability, low power

consumption, and high performance. The unique characteristics

of NAND flash memory require an additional software layer,

called flash translation layer (FTL), between traditional file

systems and flash memory. In order to reduce the garbage

collection cost, FTLs generally try to separate hot and cold data.

Previous hot and cold separation techniques monitor the

storage access patterns within storage device, or exploit file

system hints from host system. This paper proposes a novel

clustered page-level mapping, called CPM, which can separate

hot and cold data efficiently by allocating different flash

memory block groups to different logical address regions. CPM

can reduce the FTL map loading overhead during garbage

collection and it does not require any high-cost monitoring

overhead or host hint. This paper also proposes a K-associative

version of CPM, called K-CPM, which allows different logical

address regions to share a physical block group in order to

achieve high block utilizations. Experimental results show that

CPM improves the storage I/O performance by about 54%

compared with a previous page-level mapping FTL, and K-

CPM further improves the performance by about 19.4%

compared with CPM1.

Index Terms — NAND Flash Memory, Flash Translation

Layer, Clustered Page Mapping, Embedded Storage.

I. INTRODUCTION

NAND flash memory is widely used by mobile consumer

devices such as tablet PCs and smartphones due to its several

advantages: high speed, robustness, energy efficiency, and

compact size. However, NAND flash memory is incompatible

with traditional block devices due to its unique characteristics.

A NAND flash memory chip is composed of several blocks,

and a block is composed of a bundle of pages. Whereas a

block is the unit of an erase operation, a page is the unit of

write or read operation. A page cannot be overwritten before

the corresponding block is erased. The erase operation has a

higher cost than the write and read operations. Each physical

block has a limited number of program/erase cycles. The

pages in a block should be programmed sequentially [1].

1 This work was supported by the ICT R&D program of MSIP/IITP.

[10041244, SmartTV 2.0 Software Platform].

Hyukjoong Kim and Dongkun Shin are with the College of Information &

Communication Engineering, Sungkyunkwan University, Suwon, Korea (e-

mail: wangmir, dongkun@skku.edu).

In order to provide a traditional block device interface by

hiding these unique characteristics, a software layer, called

flash translation layer (FTL), is used between traditional file

systems and flash memory. FTL translates a logical address of

file system into a physical address of flash memory chip. For

the address translation, FTL manages an address mapping

table. When a write request arrives, FTL writes the data at a

clean page, and updates the mapping table. If another physical

page has an old data for the target logical address, the page is

invalidated. When there are little free pages, FTL invokes the

garbage collection (GC) in order to reclaim the invalid pages.

The address mapping schemes of FTLs can be classified into

the block-level mapping and the page-level mapping [2]. The

block-level mapping [3] first calculates the logical block number

(LBN) and the page offset from a given logical page number

(LPN). The mapping table manages the translation between an

LBN and the allocated physical block number (PBN). An LBN

can be mapped into any PBN. However, a logical page should be

written at the same page offset within the mapped physical block,

which is called the in-place write scheme. If an update request is

sent, the block-level mapping should allocate a new clean block,

and should copy all the valid pages in the original block into the

corresponding page offsets of the new block. Therefore, its write

performance is significantly low.

In the page-level mapping [4], a logical page can be written

at any page offset within a physical block, which is called the

out-of-place write scheme. Therefore, the page-level mapping

should manage the address translation between an LPN and

the mapped physical page number (PPN). Compared with the

block-level mapping, the page-level mapping shows better

performance but requires a larger size of mapping table.

The hybrid mapping techniques [5]-[7] are intermediate

schemes. The hybrid mapping allocates a data block for each

logical block. In addition, several physical blocks are allocated

as log blocks, where incoming data are first written. Whereas

normal data blocks are managed by the in-place scheme, the log

blocks are managed by the out-of-place scheme. Therefore, the

write performance of hybrid mapping is similar to the

performance of page-level mapping. Since the number of log

blocks is small, the size of mapping table is similar to that of

block-level mapping. When a new log block should be allocated,

the hybrid mapping should copy all valid pages in victim log

blocks into the associated data blocks. This operation is called

log block merging. The block merge cost is significantly high

especially when a workload is random-write dominant.

48 IEEE Transactions on Consumer Electronics, Vol. 61, No. 1, February 2015

In the page-level mapping scheme, if hot and cold data are

written into different physical blocks, the GC cost can be

reduced. Since the hot data will be frequently updated, the

physical block allocated for hot data will have many invalid

pages and it can be a low-cost victim block for GC. However,

unless any hot/cold separation technique is used, hot and cold

data can be mixed within a physical block since the incoming

data will be written in the order of request arrival time. Then,

the GC cost will be high since many cold pages should be

copied during GC. Several previous studies have proposed the

hot/cold data separation techniques [8]-[13]. However, these

works should monitor the data access pattern to identify hot data,

or require an extended storage interface to transfer semantic

hints on the written data.

Another possible technique for hot/cold separation is to exploit

the logical addresses of data. Generally, file systems tend to

allocate different logical address regions to different file types or

directories. The blocks of the same files or directories are

allocated at adjacent logical addresses [14]. Therefore, if data are

written at different physical blocks based on the logical addresses

of the data, the hot and cold data will be stored at different

physical blocks. The block mapping and hybrid mapping schemes

allocate different physical blocks based on the logical address.

However, their in-place write schemes make too high GC costs.

This paper proposes a clustered page-level mapping, called

CPM, which allocates different flash memory block groups to

different logical address regions. CPM divides the entire

logical address space into several clusters of the same size.

Each cluster is assigned with a fixed number of physical

blocks, and only the logical pages included at the address

range of the cluster can be written at the allocated physical

blocks. The physical blocks are managed by the out-of-place

scheme. By allocating different physical blocks based on the

logical addresses, CPM can separate hot and cold data

implicitly, and thus it can reduce the map loading overhead

and page copy cost during the GC.

However, CPM can suffer from the low utilization of

physical blocks. Even when other clusters have free pages

within their allocated physical blocks, the GC should be

invoked if the target cluster has no free pages. In particular,

the clusters allocated for cold data will hold many free pages

that are not used for a long period.

To solve the problem of CPM, this paper also proposes K-

associative clustered page-level mapping, called K-CPM, which

allows a cluster to share its physical blocks with other clusters.

Since the physical block sharing can increase the GC cost, the

number of clusters which can share physical blocks with a cluster

is limited in K-CPM. Therefore, K-CPM can improve the

utilization of physical blocks without increasing the GC cost

significantly.

Experiments with a flash memory simulator show that CPM

reduces the GC cost by about 54% compared with the

previous page-level mapping. K-CPM reduces the GC cost

further by about 19.7% compared with CPM by increasing the

block utilization. Moreover, K-CPM reduces the write

latencies by delaying GCs.

II. RELATED WORKS

Several hybrid mapping FTLs have been proposed. BAST

[5] uses 1-to-1 mapping between data block and log block. It

is simple but suffers from low utilizations of log blocks, called

the log block thrashing problem. FAST [6] solved the problem

by sharing a log block among multiple data blocks, which is

called 1-to-N mapping. However, FAST has a high log block

merge cost especially when a victim log block has many

associated data blocks. KAST [7] allows only a limited

number of data blocks to be associated with a log block in

order to limit the log block merge cost.

Superblock FTL [15] is also a hybrid mapping scheme. It

groups several contiguous logical blocks into a superblock,

and allocates several physical blocks as data blocks. Several

log blocks can be allocated for each superblock to handle

write requests on the superblock. In Superblock FTL, data

blocks as well as log blocks are managed by the out-of-place

scheme. Therefore, it can alleviate the log block merge

overhead. In addition, Superblock FTL utilizes the temporal

information at log block merge operations in order to gather

cold data into data blocks. The least-recently-used (LRU) log

block is selected for a victim rather than the log block with the

maximum number of invalid pages.

However, Superblock FTL cannot completely overcome the

inherent limitation of hybrid mapping, i.e., data blocks and log

blocks should be separated. An incoming data should always

be written at a log block first, and the data blocks are used for

only the valid page copy operations during the GC. Therefore,

the utilizations of both data blocks and log blocks are low. In

the proposed CPM technique, data blocks and log blocks are

not differentiated. Therefore, the block utilization can be

improved at CPM compared with Superblock FTL. A

comparison between these two schemes will be discussed later

in detail.

DFTL [16] is a page-level mapping for resource-constrained

devices. DFTL uses the on-demand caching technique for the

page-level mapping table. Whereas the entire page-level mapping

table is stored in the NAND flash memory, only the recently

referenced map entries are loaded into RAM. For a map entry

miss, multiple logically-contiguous map entries are loaded into

RAM. Therefore, DFTL suffers from a high map loading

overhead especially when the data access pattern has little

temporal and spatial localities. In addition, if the logical addresses

of valid pages in the victim block of GC have low spatial

localities, the GC cost increases due to the map loading overhead.

There are several hot/cold separation techniques for page-

level mapping FTLs. Park et al. proposed a hot/cold separation

scheme which considers not only the frequency but also the

recency of data. The scheme should manage an additional

table for gathering the frequency and recency of each data [9].

Jung et al. proposed a process-aware hot/cold separation

technique where the data access pattern is determined by the

process that sends the write requests [10]. CAT [11] considers

the age of a physical block at the victim block selection during

GC. By avoiding selecting a young block, it can wait for the

additional invalidations of hot data in the young block.

H. Kim and D. Shin: Clustered Page-Level Mapping for Flash Memory-Based Storage Devices 49

LAST [8] is a hot/cold separation technique for the log

blocks in the hybrid mapping. It utilizes the data update

intervals to identify hot data. ComboFTL [12] uses the

hot/cold separation technique to determine the data location at

hybrid storage device, which has a multi-level cell (MLC)

region and a single-level cell (SLC) region. ComboFTL

determines the hotness of data based on the request size. The

data with small I/O sizes are considered as hot data, and they

are stored at the SLC region. Wu et al. [13] proposed a file

system-aware hot data separation technique. Since the file

system metadata are frequently updated by file system

operations, the technique handles the file system metadata as

hot data.

Most of the previous works require additional profiling cost,

or require new interfaces between host and storage in order to

transfer data semantics. However, the proposed CPM can

efficiently separate hot and cold data without any profiling

cost or new storage interface.

III. MOTIVATION

A. Locality Analysis on Real Workloads

To design a logical address-based hot/cold separation

technique, the real storage I/O workloads are observed. Fig. 1

shows the write count for each logical page in a real workload,

which is collected from a Linux-based smartphone. From the

graph, the frequently accessed regions and infrequently

accessed regions are explicitly identified. Whereas the address

regions in the area of (a) have significantly high update counts,

the address regions in the area of (b) have the update counts

less than 10. That is, different address regions have different

update frequencies. Therefore, it can be known that a hot and

cold separation technique based on logical address can be

effective.

The correlation between the hotness and the logical address

of data results from the block allocation scheme of file

systems. For example, the ext4 file system [14] separates the

metadata from user data in the logical block address. In

addition, ext4 tries to allocate adjacent blocks for a file or

multiple files under a directory to reduce the hard disk seek

time. Since current smart consumer devices tend to store the

same type of data into the same directory, it is likely that the

data in adjacent logical addresses have similar write patterns.

For a detailed analysis, the address access pattern of an

application is observed as shown in Fig. 2. The graph shows

the written logical addresses during the execution of a social

network service (SNS) application. Whereas the address range

in (a) has the average update count of 1.2, the average update

count of the range (b) is 30.4. Therefore, the address region of

(a) is cold and the address region of (b) is hot. The address

ranges of (a) and (b) correspond to the cached image folder

and the database folder, respectively. The database files are

used for managing image file information. The image files

have read-intensive data, but the database files are frequently

updated during the read or write operations on the image files.

Therefore, the storage device will receive interleaved write

requests on hot region and cold region.

Such interleaved updates on hot and cold regions are

significantly harmful to the page-level mapping. Since the page-

level mapping FTL allocates the physical block in the order of

request arrival time, the pages sent in a similar time will be

adjacent in the physical address space. Therefore, hot and cold

data are mixed within a physical block and thus the GC cost

increases. If the physical block of data is allocated considering

the logical address of the data, it is more probable that the hot

and cold data will be located at different physical blocks.

Fig. 1. Write counts on different logical pages (smartphone trace).

Fig. 2. Write pattern during SNS workload.

B. Demand Map Loading in DFTL

If logically separated pages are mixed within a physical

block in DFTL, the map loading cost as well as the page copy

cost during the GC increases. In the page-level mapping, the

mapping entry for a logical page includes the PBN and the

page index (PI) of the mapped physical page. The size of a

mapping entry for a logical page can be calculated as follows:

 (1)

 and are the number of total physical blocks and the

number of total physical pages in the storage device,

respectively. is the number physical pages per block.

If the page size is 8 KB, the size of a mapping entry is 4 bytes

for the storage whose capacity is less than 32 TB. Since read

and write operations are performed in the unit of page in flash

memory, multiple logically-contiguous map entries in a flash

memory page are loaded into SRAM at a map entry miss in

order to utilize the spatial locality on data access pattern. The

page with multiple map entries is called virtual translation page

50 IEEE Transactions on Consumer Electronics, Vol. 61, No. 1, February 2015

(VTP). The VTPs are stored in the map blocks which are

separated from normal data blocks. The global translation

directory (GTD) is the mapping table for finding the physical

locations of VTPs. Each entry in GTD has the PPN for a virtual

translation page number (VPN). Whereas the normal page map

entries are selectively loaded into the cached map table (CMT)

of SRAM, GTD resides on a fixed map table (FMT) of SRAM.

Fig. 3 shows the architecture of DFTL. It is assumed that one

block is composed of four pages, and a single VTP has the

mapping entries for four logically-contiguous pages. CMT can

cache two VTPs. The block valid page count (BVC) table

manages the numbers of valid pages in data blocks in order to

select a GC victim block based on the number of valid pages at

data blocks. denotes the physical block whose PBN is i, and

 denotes the logical page whose LPN is j. is the VTP

whose VPN is k.

SRAM (CMT) SRAM (FMT)

NAND Flash

P3

P4

P5

P6

P1

P7

P12

P13

P14

P15

P0

P2

B0 B1 B2 B3

Map block

LPN PBN PI

4

5

6

1

1

1

1

2

3

7 2 3

LPN PBN PI

12

13

14

3

3

3

0

1

2

15 3 3

V1 V3

V1

V2

V3

B4

V0

B5

Valid Invalid Clean

VPN PBN PI

0

1

2

5

4

4

0

1

2

3 4 3

GTD

PI 0

1

2

3

PBN
of valid

pages

0

1

2

2

4

2

3 4

BVC

Fig. 3. Mapping table management in DFTL.

In Fig. 3, the GC should be started since no data block has

any free pages. The physical block with the maximum number

of invalid pages is chosen as a victim block for the GC.

Therefore, and are candidates. Whereas all the map

entries of valid pages in can be found at one VTP, , the

map entries of valid pages in are scattered at two VTPs,

and . During GC, the map entries of valid pages should be

modified since the physical pages of the valid data are

changed. Therefore, more VTPs should be loaded into CMT

during GC if is selected for a GC victim.

From this example, it can be known that a low spatial

locality among the valid pages in the GC victim block can

increase the GC overhead due to the frequent map loading

operations. However, the pages in a physical block may not be

spatially adjacent in DFTL.

IV. CPM: CLUSTERED PAGE-LEVEL MAPPING

A. Architecture

This paper proposes a clustered page-level mapping (CPM)

scheme in order to increase the spatial adjacency of the pages

within a physical block. It can separate hot and cold data into

different physical blocks, and can reduce the map loading

overhead during GC. CPM divides the overall logical address

space into multiple clusters, each of which is composed of

number of logically contiguous blocks. CPM allocates several

physical blocks to each cluster, and the physical blocks are

managed by the out-of-place scheme. The physical blocks

allocated for a cluster can have the logical pages belong to the

cluster. Therefore, each physical block has logically adjacent

pages.

CPM also uses the demand map loading technique like

DFTL. Since the logical address space of the pages in a

physical block is limited, the number of VTPs to be updated

during GC is also limited. Therefore, the map loading

overhead during GC can be reduced.

CPM is similar to Superblock FTL since both of them

divide the logical space into multiple regions and use the out-

of-place scheme in all physical blocks. However, CPM does

not distinguish between data blocks and log blocks, therefore,

it can enhance the block utilization and can reduce the GC cost

compared to Superblock FTL.

Fig. 4 compares between the GC operations in Superblock

FTL and CPM. It is assumed that the size of superblock or

cluster is two logical blocks, and each superblock or cluster

can use up to 4 physical blocks. Whereas two data blocks,

and , and two log blocks, and , are allocated in the

Superblock FTL, four data blocks, to , are allocated in

the CPM FTL. The physical blocks of the two schemes are

equally filled with valid or invalid pages, and both the

schemes require the GCs since there are no free pages to write

incoming data. Since Superblock FTL cannot write incoming

data at data block, the GC should generate a free block to be

used for an update block. Therefore, the GC should select two

victim blocks to be erased, one of which will be used for an

update block and another will be used to copy the valid pages

in victim blocks. In this example, Superblock FTL selects

and as victim blocks, copies all the valid pages into a new

data block , and allocates a new log block . However,

CPM selects only one victim block, , and copies one valid

page into the newly allocated block, . The block can be

used for incoming data. Therefore, CPM can utilize the

physical blocks more efficiently, and can reduce the GC

overhead compared to Superblock FTL.

P1 P0

P7

P2

P3

P4

P5

P6

D0 D1 U0 U1

P1 P0

P7

P2

P3

P4

P5

P6

B0 B1 B2 B3

P1

P0

P7

D0

(new)

U2

P1

B4

(new)

(4) new data

(4) new data

(5) alloc

free block
(2) copy

(3) erase

(2) copy
(3) erase

(1) alloc

free block

Valid

Invalid

Clean

(a) Superblock

(b) CPM

(1) alloc

free block

Fig. 4. Comparison between GCs of Superblock FTL and CPM.

H. Kim and D. Shin: Clustered Page-Level Mapping for Flash Memory-Based Storage Devices 51

CPM allows more number of physical blocks to be

allocated than the logical size of a cluster. In this paper,

denotes the cluster whose cluster number is i, and

denotes the number of physical blocks allocated for . Since a

larger value of requires more entries for PBNs, the

maximum number of is limited to in order to

limit the size of the mapping table.

Fig. 5 describes the structure of CPM. It is assumed that

and . CPM manages two

mapping tables: one is the logical-to-physical page mapping

table (PMT) and another is the cluster-block mapping table

(CBMT). There are separated map blocks in the flash memory

for these mapping tables like DFTL. The PMT manages the

PPN (PBN and its PI) for each LPN. CBMT has the

information on physical blocks allocated for each cluster.

There are number of entries for each cluster in CBMT,

where each entry has the PBN and valid page count for an

allocated physical block.

SRAM (CMT)

NAND Flash

CBMT

2

14

32
NULL

PMT

C0

NULL

C2

B34 B3 B8 B14 B32

P6

P5

P7

P0

P1

P2

P3 P18

P17

P19 P16

Map block

Map load & flush

Cluster

number
PBN

0
34

3
8

NULL

LPN PBN PI

0

1

2

3

3

8

0

2

0

3 8 1

4

5

6

8

34

34

2

2

1

7 34 3

Valid Invalid Clean

3

1
NULL
NULL

of valid

pages

3

2
3

NULL

PI 0

1

2

3

P4

SRAM (FMT)

Cluster

number

of invalid

pages

0

2

3

4

CIC

Fig. 5. Mapping table and data management structure of CPM.

PMT and CBMT are loaded into CMT on demand, and each

table is managed by the LRU replacement policy. The

mapping entries in PMT are loaded into CMT in the unit of

VTP, i.e., multiple logically contiguous mapping entries are

loaded at a time. However, each cluster-block mapping entry

is the unit for replacement and loading in CBMT since one

entry covers a large logical address space (e.g., 16 MB).

DFTL should maintain the valid page counts for all the

physical blocks in SRAM in order to select a GC victim block.

However, CPM only needs to maintain the cluster-level

invalid page count (CIC) for each cluster since CPM first

selects a victim cluster, and then selects victim blocks within

the victim cluster using the valid page counts in CBMT.

B. Read & Write Operations

If host sends a read request, CPM searches the mapping

entry of the logical page in PMT. For example, is stored in

 and the page index is 0 in Fig. 5. If host sends a write

request, CPM should find a free page for the new data from

the physical blocks allocated for the cluster, and then should

update the corresponding mapping entry in PMT and the valid

page counts in CBMT. However, if there is no free page in the

allocated blocks, a new free block should be allocated for the

cluster. If there are no available free block, or

, CPM invokes the GC to make free blocks.

CPM can use two different GC techniques. The first one is

the intra-cluster garbage collection (IntraGC), which reclaims

invalid pages within a cluster that needs free pages. The

IntraGC operation is similar to the GC of normal page-level

mapping. Fig. 6(a) describes the procedure of IntraGC. When

a GC is invoked by the cluster of , the CPM chooses as a

victim block since it has the maximum number of invalid

pages. The number of victim blocks is always only one. CPM

copies valid pages into the free block , which is reserved for

GC operation. becomes a new physical block allocated for

, and the entry of in CBMT is updated. The erased block

 is reserved for future GCs.

(a)IntraGC

C0

Victim

block
Valid page copy

(b)InterGC

C1

Victim

blocks
Valid page copy

free block pool

free block pool

P12

P10

P11

P13

P14

P15

P12

P8

P9

P1 P0

P2

P2

P3

P4

P5

P6

P1

P8

P9

B0 B1 B2 B3

B4 B5 B6 B7

B8

B9

Valid

Invalid

Clean

Fig. 6. IntraGC and InterGC operations in CPM.

The second GC technique is the inter-cluster garbage

collection (InterGC), which reclaims invalid pages in an

external cluster (called victim cluster) rather than the target

cluster. Since CPM separates the logical address space into

clusters, the physical block allocated for a cluster cannot be

used for other clusters. Therefore, InterGC should make a whole

free block from a victim cluster in order to give the free block to

the target cluster. Fig. 6(b) shows the InterGC operation. First,

InterGC finds a victim cluster that has the maximum number of

invalid pages from the CIC table. Then, InterGC selects one or

more victim blocks from the victim cluster by scanning the

fields of valid pages in CBMT. Multiple victim blocks can be

selected in order to make a whole free block. In Fig. 6(b),

and are selected. CPM copies the valid pages (, , and

) into the free block () that is reserved for GC operation.

Two victim blocks, and , can be erased. One is allocated

for the target cluster, and the other is reserved for future GCs.

Compared with IntraGC, InterGC has a higher GC cost since it

should generate a whole free block.

If , cannot use more physical blocks.

Therefore, IntraGC should be used. Otherwise, CPM chooses

IntraGC or InterGC considering the GC efficiency, , which

is the number of generated free pages per GC cost, and can be

52 IEEE Transactions on Consumer Electronics, Vol. 61, No. 1, February 2015

represented as follows:

 (2)

, and denote the latencies for program, read,

and erase operations, respectively. is the number of free

pages generated by the GC. is the number valid pages to

be copied during the GC. represents the number of

victim blocks during the GC. CPM compares the GC

efficiencies of IntraGC and InterGC, and selects a more

efficient GC.

C. Problems of CPM

Although CPM can efficiently reduce the GC cost by

allocating separated physical blocks to different clusters, the

policy will decrease the block utilization. Therefore, the GC for

a cluster can be invoked even though there are free pages in the

physical blocks allocated for other clusters. Such an early GC

will copy the pages that will be invalidated in the near future.

In order to mitigate the low block utilization problem, a

large size of clusters will be beneficial since many logical

blocks can share a physical block. However, if the size of

cluster is too large, the hot and cold will be mixed within a

cluster. In addition, the number of VTPs required for storing

all the mapping entries for a cluster will increase, and thus the

map loading overhead during GC also will increase. Therefore,

another optimization technique is required, which can improve

the block utilization without increasing the cluster size.

V. K-CPM: K-ASSOCIATIVE CLUSTERED PAGE-LEVEL

MAPPING

A. Architecture

The K-associative clustered page-level mapping (K-CPM)

allows several clusters to share a physical block. When a

cluster needs free pages, K-CPM does not perform the GC

immediately, but it checks whether there is any other cluster

that can share its physical blocks with the target cluster. By

allowing physical block sharing, K-CPM can improve the

block utilization and can delay the GC. However, the map

loading overhead during the GC on the shared physical block

may increase. Considering this problem, K-CPM limits the

maximum number of clusters which share the physical blocks

allocated for a cluster.

When a logical page belongs to a cluster , is called

the owner cluster of the logical page, and it is represented as

. When a logical page is written at the

physical block allocated for the cluster , is called the

saved cluster of the logical page, and it is represented as

. If the owner cluster and the saved cluster of

a logical page are different, it is called an adopted page. If

 and for a certain is

called an associated cluster (AC) of , and the number of

ACs of is represented as . In the case, is called a

distributed cluster (DC) of , and the number of DCs of is

represented as .

K-CPM has a restriction on the number of associated

clusters such that for all clusters. As a larger

value of K is used, the block utilization is improved. However,

the map loading overhead during GC increases, and the

number of bits required for representing physical block index

increases. By limiting the maximum number of associated

clusters, K-CPM can manage the map loading overhead and

the mapping table size. However, there is no limit on the

number of distributed clusters of a cluster since it does not

directly affect the GC overhead.

Fig. 7 shows the overall architecture of K-CPM. The basic

assumption of the figure is the same as Fig. 5. The physical

blocks allocated for and have adopted pages. For

example, whereas the owner cluster of is , the saved

cluster of is . The associated clusters of are , ,

and (i.e.,). and , whose owner cluster is

, are saved in the physical blocks of . Therefore, is a

distributed cluster of and .

In order to manage the associated and distributed clusters, K-

CPM has the cluster association map table (CAMT) and the

cluster distribution map table (CDMT), all entries of which reside

in the FMT of SRAM. The usages of CBMT and PMT are the

same as CPM. However, each mapping entry in PMT has the

cluster number of PBN additionally. The CAMT manages the

associated cluster number (ACN) for each cluster, and it also

manages the number of adopted pages of each AC. The CDMT

manages the distributed clusters for each cluster. The distributed

clusters of each cluster are managed with a linked list since the

number of distributed clusters of a cluster is variable.

SRAM (FMT)

1
1

NULL
NULL
NULL

C0

C1

C2

C0

C1

C2

2
2
0

NULL
NULL

CAMT

CDMT

Cluster

number
ACN

0
0
1
2

NULL

C2

C0

C0

-
NULL
NULL
NULL

-
2

NULL
NULL

of adopted

pages
-
1
2

NULL

SRAM (CMT)

CBMT

PMT

LPN
Cluster

number
PBN PI

0

1

2

0

0

2

3 2

3

3

27

27

0

1

1

2

Cluster

number
PBN

0

34

3

8

NULL

NAND Flash

Map blockB34

P6

P5

P7

B3

P0

P1

B8

P4

P10

B14

P8

P9

B32

P11

P12

B61

P16

B27

P2

P3

C0 C1 C2

Valid Invalid Clean
Map load & flush

of valid

pages

3

2

4

0

PI 0

1

2

3

P20

P21

Adopted

Cluster

number

of invalid

pages

0

1

3

4

CIC

2 4

Fig. 7. Mapping table and data management structure of K-CPM.

B. Write Operation

Whereas the read operation of K-CPM is the same as CPM, the

write operation of K-CPM is quite different with that of CPM.

There are four different cases which should be handled differently

in K-CPM for a write request on the target cluster .

Case 1: If there are free pages in the physical blocks

allocated for , the write request can be handled within

. K-CPM updates the corresponding mapping entry in

PMT and the number valid pages in CBMT.

H. Kim and D. Shin: Clustered Page-Level Mapping for Flash Memory-Based Storage Devices 53

Case 2: If has no free pages, but a free physical block

can be allocated for (i.e.,), then K-

CPM allocates a free block for and the incoming data are

written at the block.

Case 3: If has no free page and a new physical block

cannot be allocated (i.e.,), K-CPM checks

whether one of DCs of has free pages. If a DC has free

pages, then the incoming data are sent to the DC. No new

entry is inserted into CAMT or CDMT. Only the field of

adopted page count in CAMT is updated.

Case 4: If there are no free pages in the DCs of , K-

CPM should find a new distributed cluster for . If has

free pages and is less than K, can be a new DC of

. Then, is inserted as an AC of in CAMT, and is

inserted as a DC of in CDMT.

If K-CPM fails to find a new distributed cluster, the GC

should be performed to reclaim invalid pages.

C. Garbage Collection

K-CPM also selects IntraGC or InterGC considering the GC

efficiency. However, the physical blocks allocated for the DCs

of the target cluster can be a victim block in the IntraGC of K-

CPM since K-CPM can send the write request to the DCs of

the target cluster.

InterGC selects a victim cluster from all clusters but the

DCs of the target cluster, and it generates a free block to be

allocated for the target cluster or its DCs. If all of the target

cluster and its DCs have been allocated with number of

physical blocks respectively, the free block generated by

InterGC cannot be allocated for the target cluster or its DCs.

In this case, K-CPM should assign a new DC that has less than

 number of allocated physical blocks and its

associativity is less than K.

As an extreme case, K-CPM cannot find a new DC if the

numbers of ACs of all clusters are K. To handle such a case,

K-CPM uses K-InterGC, which reduces the associativity of a

cluster by removing its associated clusters. K-InterGC finds a

cluster which has the minimum number of adopted pages at

one of its DCs, and moves the adopted pages to the cluster or

its other DCs. Then, K-InterGC can obtain a cluster whose

associativity is less than K. During the page migration, other

GCs can be invoked. Therefore, K-InterGC has a significantly

high GC cost. However, since K-InterGC hardly occurs, the

high cost of K-InterGC may not be a significant problem.

VI. EXPERIMENTS

To demonstrate the effectiveness of the proposed FTL

schemes, three different page-level mapping schemes, DFTL,

CPM and K-CPM, are compared with an FTL simulator.

A. Comparison on Mapping Table Size

TABLE I compares the memory sizes for mapping tables

under DFTL, CPM and K-CPM. It is assumed that the total

storage capacity is 32 GB, the page size is 8 KB, the number

of pages per block is 128, the cluster size (in CPM and K-

CPM is 16 MB, and = 32. CPM requires 192 KB of

additional memory space for CBMT compared to DFTL. K-

CPM requires 256 KB of additional space for CBMT, CAMT

and CDMT. As the amount of increased space for mapping

tables, the competition on the limited space of SRAM will be

severe and the map loading overhead will be increased.

However, the increased memory space can be negligible

compared to the size of PMT.

TABLE I

MAPPING TABLE FOR EACH SCHEME (32GB STORAGE)

 PMT CBMT CAMT CDMT

DFTL 16MB

CPM 16MB 192KB

K-CPM 16MB 192KB 32KB 32KB

B. Workloads

For experiments, real workloads are used, which are

collected at a smartphone while executing several applications.

The smartphone uses a Linux-based mobile platform, and the

file system is ext4. The blktrace is used to collect storage I/O

traces. TABLE II shows the characteristics of seven workloads.

The AppInstall trace is collected while installing top twenty

ranking applications, and the AppUpdate trace is collected

while updating the installed applications. The AppLaunch

trace is collected while executing the installed applications,

and the Browser trace is extracted during one hour of web

surfing. The SNS trace is also extracted during one hour of

browsing SNS pages, and the Map trace has 30 minutes of

map searching operations. The Mp3copy trace is collected

while copying forty MP3 files from a PC to the smartphone

via USB interface.

TABLE II

WORKING SET (WS) ANALYSIS FOR REAL WORKLOADS

No.

of

WS

Avg. WS

size

(MB)

Avg. IO

size (KB)

Avg. page

update

Write

ratio (%)

AppInstall 58 10.93 84.0 1.20 79.2

AppUpdate 34 8.15 31.8 1.90 18.5

AppLaunch 59 12.34 66.6 1.25 53.2

Browser 33 6.81 27.4 3.35 84.1

SNS 33 3.87 9.97 4.81 31.7

Map 14 8.56 10.2 2.67 84.5

Mp3copy 68 15.74 295.4 1.06 96.8

The accessed address regions in each trace are divided into

several working sets. The working set is a logically contiguous

address region that is composed of pages with similar access

patterns. In order to remove too small working sets, two small

working sets are merged into a working set, if the distance

between them is less than 512 KB.

As shown in the table, AppInstall, AppLaunch, and

Mp3copy are composed of many large working sets

respectively, and most of the working sets have cold data.

However, AppUpdate, Browser, SNS, and Map have small size

of working sets, each of which is updated frequently.

AppUpdate and SNS are read-intensive workloads whereas

others are write-intensive workloads.

54 IEEE Transactions on Consumer Electronics, Vol. 61, No. 1, February 2015

C. Experimental Environments

In order to compare the performances of DFTL, CPM and

K-CPM, a trace-driven FTL simulator is used in this paper.

The latencies for page write, page read, and block erase

operations are assumed to be 800 us, 60 us and 1.5 ms,

respectively. The size of SRAM is 128 KB. The storage is

initially aged. The 70% of the logical space is first written

with sequential write requests, and then 20% of the aged

logical space is overwritten with random write requests as the

amount of total storage capacity.

In CPM and K-CPM, the size of one cluster is determined

as 16 MB (16 blocks) considering the average working set size

in TABLE II. Under the cluster size, one VTP can cover one

cluster. One cluster can use up to 32 physical blocks (i.e.,

= 32) and K = 4. Among 128 KB of SRAM, 32 KB of

memory is assigned for mapping tables other than PMT. The

remaining 96 KB of SRAM is used for PMT. Only 96 KB of

PMT entries can be loaded on demand into SRAM.

D. GC and Map Loading Overheads

Fig. 8 shows the GC overhead and map loading overhead of

DFTL, CPM, and K-CPM. The overhead values are

normalized by the total execution times. The overheads of

CPM and K-CPM are less than those of DFTL due to the

efficient hot and cold separation. In AppUpdate and Map

workloads, the GC overheads of CPM are slightly worse than

those of DFTL. This is because these workloads have small

write requests with low temporal localities. Such workloads

magnify the block utilization problem of CPM. However, due

to the reduced map loading overhead, CPM shows better

performance than DFTL at all workloads. K-CPM improves

the GC overhead much more than CPM by enhancing the

block utilization, whereas the map loading overhead is

increased compared with CPM. During the experiments, the

average value of in K-CPM is 2.89, and K-InterGC is not

invoked.

Fig. 8. Comparison on the GC and map loading overheads.

In the read-intensive workloads such as AppUpdate and

SNS, the map loading overhead of K-CPM is much larger than

CPM. This is because K-CPM should manage more additional

mapping tables in RAM. Although DFTL has no additional

mapping table, the low spatial locality among the valid pages

in a victim block during GC makes a higher map loading cost.

Fig. 9 shows the ratios between IntraGC and InterGC in

CPM and K-CPM. It also shows the number of block erase

operations during GC. K-CPM invokes smaller number of

GCs compared to CPM. CPM often selects InterGC whereas

K-CPM rarely invokes InterGC. Since the distributed clusters

can be used for IntraGC in K-CPM, there are more chances to

select IntraGCs. The reduced number of block erase

operations of K-CPM is beneficial to the limited lifetime of

the flash storage.

Fig. 9. GCs in CPM and K-CPM.

E. I/O Latency

Fig. 10 shows the cumulative distribution function (CDF)

graphs on the I/O latencies during the executions of four

workloads. There are significant differences at top 10% of I/O

latencies. These long latencies are generated by GC and affect

the overall performance. In the AppInstall, AppLaunch, and

Browser workloads, the write latencies of CPM and K-CPM

are shorter than those of DFTL. However, in the Map

workload, CPM has a longer latency than DFTL. This results

from the block utilization problem of CPM. The low block

utilization invokes InterGCs frequently, which have higher

costs than IntaGCs.

Fig. 10. CDF graph for I/O latencies.

0

0.1

0.2

0.3

0.4

0.5

D
F

T
L

C
P

M

K
-C

P
M

D
F

T
L

C
P

M

K
-C

P
M

D
F

T
L

C
P

M

K
-C

P
M

D
F

T
L

C
P

M

K
-C

P
M

D
F

T
L

C
P

M

K
-C

P
M

D
F

T
L

C
P

M

K
-C

P
M

D
F

T
L

C
P

M

K
-C

P
M

App Install App Update App Launch Browser SNS Map Mp3Copy

O
v

er
h

ea
d

 r
at

io

GC time Map load time

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

C
P

M

K
-C

P
M

C
P

M

K
-C

P
M

C
P

M

K
-C

P
M

C
P

M

K
-C

P
M

C
P

M

K
-C

P
M

C
P

M

K
-C

P
M

C
P

M

K
-C

P
M

App

Install

App

Update

App

Launch

Browser SNS Map Mp3Copy

E
ra

se
 c

o
u

n
t

G
C

 c
o

u
n

t

IntraGC InterGC erase count

H. Kim and D. Shin: Clustered Page-Level Mapping for Flash Memory-Based Storage Devices 55

F. Effects of Cluster Size and Associativity

Fig. 11 compares the GC and map loading overheads while

varying in CPM and K in K-CPM. Four different cluster

sizes are used from 16 MB to 128 MB in CPM. Three

different values of K are used from 2 to 8 while fixing to 16

MB in K-CPM. As grows, the number of VTPs required to

cover a cluster will increase. The graph also shows the average

remaining space, which represents the average number of

remaining free pages when a GC is invoked. A low value of

remaining space represents that the block utilization is high.

Fig. 11. The GC overhead and the remaining pages while varying SC in

CPM and Nα in K-CPM.

The graph shows that the average remaining space is

reduced as is enlarged in CPM. Therefore, a large cluster

size can improve the block utilization. However, when the

cluster is large, the GC cost increases since the hot and cold

pages are mixed within a cluster. The map loading overhead

also increases at larger cluster sizes. Therefore, a large cluster

cannot be a solution on the low block utilization problem.

In K-CPM, when a larger value of K is used, the block

utilization increases, and thus the performances are improved.

However, if K is too large, the map loading overheads increase

since the sizes of CAMT and CDMT are increased.

VII. CONCLUSION

The current page-level mapping FTLs show better

performance compared to block-level mapping FTLs.

However, they do not consider the spatial locality in storage

workloads. This paper proposed the clustered page-level

mapping (CPM) technique which can efficiently and

effectively separate the hot and cold data based on the logical

address. By allocating different physical blocks to different

address ranges, the spatial locality within a physical block can

be utilized. CPM also can reduce the map loading overhead

during garbage collections compared with the previous

demand map loading FTLs. However, the block utilization

may deteriorate in CPM. To solve the problem, this paper

proposed K-associative clustered page-level mapping (K-CPM)

which allows multiple clusters to share a physical block. K-

CPM can reduce the garbage collection cost by increasing the

block utilizations.

REFERENCES

[1] P. Desnoyers, “What systems researchers need to know about NAND

flash,” in Proc. USENIX Workshop on Hot Topics in Storage and

Filesystems, 2013.

[2] T. Chung, D. Park, S. Park, D. Lee, S. Lee, and H. Song, “A survey of

flash translation layer,” Journal of Systems Architecture, 55(5-6), pp.

332-343, 2009.

[3] T. Shinohara, “Flash memory card with block memory address

arrangement,” United States Patent, no. 5,905,993, 1999.

[4] A. Ban, “Flash filesystem,” United States Patent, No. 5,404,485, 1995.

[5] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho. “A space-efficient flash

translation layer for compact flash systems,” IEEE Trans. on Consumer

Electrons., 48(2), pp. 366–375, 2002.

[6] S. Lee, D. Park, T. Chung, D. Lee, S. Park, H. Song, “A log buffer-

based flash translation layer using fully-associative sector translation,”

ACM Trans. on Embedded Computing Syst., 6(3), 2007.

[7] H. Cho, D. Shin, Y. Eom, “KAST: K-associative sector translation for

NAND flash memory in real-time systems,” in Proc. Conference on

Design, Automation and Test in Europe, 2009.

[8] S. Lee, D. Shin, Y. Kim, and J. Kim, “LAST: locality-aware sector

translation for NAND flash memory-based storage systems,” in Proc.

ACM International Workshop on Storage and I/O Virtualization,

Performance, Energy, Evaluation and Dependability, pp. 36-42, 2008.

[9] D. Park, and D. Du, “Hot data identification for flash-based storage

systems using multiple bloom filters,” in Proc. IEEE Symposium on

Mass Storage Systems and Technologies (MSST), 2011.

[10] S. Jung, Y. Lee, and Y. Song, “A process-aware hot/cold identification

scheme for flash memory storage systems,” IEEE Trans. on Consumer

Electrons., 56(2), pp. 339-347, 2010.

[11] M. Chiang, R. Chang, “Cleaning policies in mobile computers using flash

memory”, Journal of Systems and Software, 48(3), pp. 213-231, 1999.

[12] S. Im, and D. Shin, “ComboFTL: Improving performance and lifespan

of MLC flash memory using SLC flash buffer,” Journal of Systems

Architecture, 56(12), pp. 641-653, 2010.

[13] P. Wu, Y. Chang, and T. Kuo, “A file-system-aware FTL design for

flash-memory storage systems,” in Proc. Conference on Design,

Automation and Test in Europe, 2009.

[14] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier,

“The new ext4 filesystem: current status and future plans,” Linux

Symposium. Vol. 2. 2007.

[15] J. Kang, H. Jo, J. Kim, and J. Lee. “A superblock-based flash translation

layer for NAND flash memory,” in Proc. ACM and IEEE International

Conference on Embedded Software, pp.161-170, 2006.

[16] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer

employing demand-based selective caching of page-level address mappings,”

in Proc. ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 229-240, 2009.

BIOGRAPHIES

Hyukjoong Kim received the B.S. degree in electronics

and electrical engineering, the M.S. degree in computer

engineering from Sungkyunkwan University, Korea in 2011

and 2013. He is currently a Ph.D. Student in the department

of IT convergence, Sungkyunkwan University. His research

interests include embedded software, memory management,

filesystem, and flash memory.

Dongkun Shin (M’08) received the B.S. degree in

computer science and statistics, the M.S. degree in

computer science, and the Ph.D. degree in computer

science and engineering from Seoul National University,

Korea, in 1994, 2000, and 2004, respectively. He is

currently an associate professor in the Department of

Software engineering, Sungkyunkwan University

(SKKU). Before joining SKKU in 2007, he was a senior engineer of Samsung

Electronics Co., Korea. His research interests include embedded software,

low-power systems, computer architecture, and real-time systems. He is a

member of the IEEE.

0

10

20

30

40

50

60

70

80

90

100

0

0.05

0.1

0.15

0.2

0.25

0.3

1
6

3
2

6
4

1
2
8 2 4 8

1
6

3
2

6
4

1
2
8 2 4 8

1
6

3
2

6
4

1
2
8 2 4 8

1
6

3
2

6
4

1
2
8 2 4 8

CPM KCPM CPM KCPM CPM KCPM CPM KCPM

App Install App Launch SNS Mp3Copy

R
em

ai
n
ed

 p
ag

e
(x

1
0
0
0
)

O
v
er

h
ea

d
 r

at
io

GC time Map load time average remained space

