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Abstract — Recent consumer devices such as smartphones, 

smart TVs and tablet PCs adopt NAND flash memory as storage 

device due to its advantages of small size, reliability, low power 

consumption, and high performance. The unique characteristics 

of NAND flash memory require an additional software layer, 

called flash translation layer (FTL), between traditional file 

systems and flash memory. In order to reduce the garbage 

collection cost, FTLs generally try to separate hot and cold data. 

Previous hot and cold separation techniques monitor the 

storage access patterns within storage device, or exploit file 

system hints from host system. This paper proposes a novel 

clustered page-level mapping, called CPM, which can separate 

hot and cold data efficiently by allocating different flash 

memory block groups to different logical address regions. CPM 

can reduce the FTL map loading overhead during garbage 

collection and it does not require any high-cost monitoring 

overhead or host hint. This paper also proposes a K-associative 

version of CPM, called K-CPM, which allows different logical 

address regions to share a physical block group in order to 

achieve high block utilizations. Experimental results show that 

CPM improves the storage I/O performance by about 54% 

compared with a previous page-level mapping FTL, and K-

CPM further improves the performance by about 19.4% 

compared with CPM1. 

 
Index Terms — NAND Flash Memory, Flash Translation 

Layer, Clustered Page Mapping, Embedded Storage. 

I. INTRODUCTION 

NAND flash memory is widely used by mobile consumer 

devices such as tablet PCs and smartphones due to its several 

advantages: high speed, robustness, energy efficiency, and 

compact size. However, NAND flash memory is incompatible 

with traditional block devices due to its unique characteristics. 

A NAND flash memory chip is composed of several blocks, 

and a block is composed of a bundle of pages. Whereas a 

block is the unit of an erase operation, a page is the unit of 

write or read operation. A page cannot be overwritten before 

the corresponding block is erased. The erase operation has a 

higher cost than the write and read operations. Each physical 

block has a limited number of program/erase cycles. The 

pages in a block should be programmed sequentially [1]. 
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In order to provide a traditional block device interface by 

hiding these unique characteristics, a software layer, called 

flash translation layer (FTL), is used between traditional file 

systems and flash memory. FTL translates a logical address of 

file system into a physical address of flash memory chip. For 

the address translation, FTL manages an address mapping 

table. When a write request arrives, FTL writes the data at a 

clean page, and updates the mapping table. If another physical 

page has an old data for the target logical address, the page is 

invalidated. When there are little free pages, FTL invokes the 

garbage collection (GC) in order to reclaim the invalid pages. 

The address mapping schemes of FTLs can be classified into 

the block-level mapping and the page-level mapping [2]. The 

block-level mapping [3] first calculates the logical block number 

(LBN) and the page offset from a given logical page number 

(LPN). The mapping table manages the translation between an 

LBN and the allocated physical block number (PBN). An LBN 

can be mapped into any PBN. However, a logical page should be 

written at the same page offset within the mapped physical block, 

which is called the in-place write scheme. If an update request is 

sent, the block-level mapping should allocate a new clean block, 

and should copy all the valid pages in the original block into the 

corresponding page offsets of the new block. Therefore, its write 

performance is significantly low. 

In the page-level mapping [4], a logical page can be written 

at any page offset within a physical block, which is called the 

out-of-place write scheme. Therefore, the page-level mapping 

should manage the address translation between an LPN and 

the mapped physical page number (PPN). Compared with the 

block-level mapping, the page-level mapping shows better 

performance but requires a larger size of mapping table.  

The hybrid mapping techniques [5]-[7] are intermediate 

schemes. The hybrid mapping allocates a data block for each 

logical block. In addition, several physical blocks are allocated 

as log blocks, where incoming data are first written. Whereas 

normal data blocks are managed by the in-place scheme, the log 

blocks are managed by the out-of-place scheme. Therefore, the 

write performance of hybrid mapping is similar to the 

performance of page-level mapping. Since the number of log 

blocks is small, the size of mapping table is similar to that of 

block-level mapping. When a new log block should be allocated, 

the hybrid mapping should copy all valid pages in victim log 

blocks into the associated data blocks. This operation is called 

log block merging. The block merge cost is significantly high 

especially when a workload is random-write dominant. 
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In the page-level mapping scheme, if hot and cold data are 

written into different physical blocks, the GC cost can be 

reduced. Since the hot data will be frequently updated, the 

physical block allocated for hot data will have many invalid 

pages and it can be a low-cost victim block for GC. However, 

unless any hot/cold separation technique is used, hot and cold 

data can be mixed within a physical block since the incoming 

data will be written in the order of request arrival time. Then, 

the GC cost will be high since many cold pages should be 

copied during GC. Several previous studies have proposed the 

hot/cold data separation techniques [8]-[13]. However, these 

works should monitor the data access pattern to identify hot data, 

or require an extended storage interface to transfer semantic 

hints on the written data. 

Another possible technique for hot/cold separation is to exploit 

the logical addresses of data. Generally, file systems tend to 

allocate different logical address regions to different file types or 

directories. The blocks of the same files or directories are 

allocated at adjacent logical addresses [14]. Therefore, if data are 

written at different physical blocks based on the logical addresses 

of the data, the hot and cold data will be stored at different 

physical blocks. The block mapping and hybrid mapping schemes 

allocate different physical blocks based on the logical address. 

However, their in-place write schemes make too high GC costs. 

This paper proposes a clustered page-level mapping, called 

CPM, which allocates different flash memory block groups to 

different logical address regions. CPM divides the entire 

logical address space into several clusters of the same size. 

Each cluster is assigned with a fixed number of physical 

blocks, and only the logical pages included at the address 

range of the cluster can be written at the allocated physical 

blocks. The physical blocks are managed by the out-of-place 

scheme. By allocating different physical blocks based on the 

logical addresses, CPM can separate hot and cold data 

implicitly, and thus it can reduce the map loading overhead 

and page copy cost during the GC. 

However, CPM can suffer from the low utilization of 

physical blocks. Even when other clusters have free pages 

within their allocated physical blocks, the GC should be 

invoked if the target cluster has no free pages. In particular, 

the clusters allocated for cold data will hold many free pages 

that are not used for a long period.  

To solve the problem of CPM, this paper also proposes K-

associative clustered page-level mapping, called K-CPM, which 

allows a cluster to share its physical blocks with other clusters. 

Since the physical block sharing can increase the GC cost, the 

number of clusters which can share physical blocks with a cluster 

is limited in K-CPM. Therefore, K-CPM can improve the 

utilization of physical blocks without increasing the GC cost 

significantly.  

Experiments with a flash memory simulator show that CPM 

reduces the GC cost by about 54% compared with the 

previous page-level mapping. K-CPM reduces the GC cost 

further by about 19.7% compared with CPM by increasing the 

block utilization. Moreover, K-CPM reduces the write 

latencies by delaying GCs. 

II. RELATED WORKS 

Several hybrid mapping FTLs have been proposed. BAST 

[5] uses 1-to-1 mapping between data block and log block. It 

is simple but suffers from low utilizations of log blocks, called 

the log block thrashing problem. FAST [6] solved the problem 

by sharing a log block among multiple data blocks, which is 

called 1-to-N mapping. However, FAST has a high log block 

merge cost especially when a victim log block has many 

associated data blocks. KAST [7] allows only a limited 

number of data blocks to be associated with a log block in 

order to limit the log block merge cost. 

Superblock FTL [15] is also a hybrid mapping scheme. It 

groups several contiguous logical blocks into a superblock, 

and allocates several physical blocks as data blocks.  Several 

log blocks can be allocated for each superblock to handle 

write requests on the superblock. In Superblock FTL, data 

blocks as well as log blocks are managed by the out-of-place 

scheme. Therefore, it can alleviate the log block merge 

overhead. In addition, Superblock FTL utilizes the temporal 

information at log block merge operations in order to gather 

cold data into data blocks. The least-recently-used (LRU) log 

block is selected for a victim rather than the log block with the 

maximum number of invalid pages. 

However, Superblock FTL cannot completely overcome the 

inherent limitation of hybrid mapping, i.e., data blocks and log 

blocks should be separated. An incoming data should always 

be written at a log block first, and the data blocks are used for 

only the valid page copy operations during the GC. Therefore, 

the utilizations of both data blocks and log blocks are low. In 

the proposed CPM technique, data blocks and log blocks are 

not differentiated.  Therefore, the block utilization can be 

improved at CPM compared with Superblock FTL. A 

comparison between these two schemes will be discussed later 

in detail. 

DFTL [16] is a page-level mapping for resource-constrained 

devices. DFTL uses the on-demand caching technique for the 

page-level mapping table. Whereas the entire page-level mapping 

table is stored in the NAND flash memory, only the recently 

referenced map entries are loaded into RAM. For a map entry 

miss, multiple logically-contiguous map entries are loaded into 

RAM. Therefore, DFTL suffers from a high map loading 

overhead especially when the data access pattern has little 

temporal and spatial localities. In addition, if the logical addresses 

of valid pages in the victim block of GC have low spatial 

localities, the GC cost increases due to the map loading overhead.  

There are several hot/cold separation techniques for page-

level mapping FTLs. Park et al. proposed a hot/cold separation 

scheme which considers not only the frequency but also the 

recency of data. The scheme should manage an additional 

table for gathering the frequency and recency of each data [9]. 

Jung et al. proposed a process-aware hot/cold separation 

technique where the data access pattern is determined by the 

process that sends the write requests [10]. CAT [11] considers 

the age of a physical block at the victim block selection during 

GC. By avoiding selecting a young block, it can wait for the 

additional invalidations of hot data in the young block. 
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LAST [8] is a hot/cold separation technique for the log 

blocks in the hybrid mapping.  It utilizes the data update 

intervals to identify hot data. ComboFTL [12] uses the 

hot/cold separation technique to determine the data location at 

hybrid storage device, which has a multi-level cell (MLC) 

region and a single-level cell (SLC) region. ComboFTL 

determines the hotness of data based on the request size. The 

data with small I/O sizes are considered as hot data, and they 

are stored at the SLC region. Wu et al. [13] proposed a file 

system-aware hot data separation technique.  Since the file 

system metadata are frequently updated by file system 

operations, the technique handles the file system metadata as 

hot data. 

Most of the previous works require additional profiling cost, 

or require new interfaces between host and storage in order to 

transfer data semantics. However, the proposed CPM can 

efficiently separate hot and cold data without any profiling 

cost or new storage interface. 

III. MOTIVATION 

A. Locality Analysis on Real Workloads 

To design a logical address-based hot/cold separation 

technique, the real storage I/O workloads are observed. Fig. 1 

shows the write count for each logical page in a real workload, 

which is collected from a Linux-based smartphone. From the 

graph, the frequently accessed regions and infrequently 

accessed regions are explicitly identified. Whereas the address 

regions in the area of (a) have significantly high update counts, 

the address regions in the area of (b) have the update counts 

less than 10. That is, different address regions have different 

update frequencies. Therefore, it can be known that a hot and 

cold separation technique based on logical address can be 

effective. 

The correlation between the hotness and the logical address 

of data results from the block allocation scheme of file 

systems. For example, the ext4 file system [14] separates the 

metadata from user data in the logical block address. In 

addition, ext4 tries to allocate adjacent blocks for a file or 

multiple files under a directory to reduce the hard disk seek 

time. Since current smart consumer devices tend to store the 

same type of data into the same directory, it is likely that the 

data in adjacent logical addresses have similar write patterns.  

For a detailed analysis, the address access pattern of an 

application is observed as shown in Fig. 2. The graph shows 

the written logical addresses during the execution of a social 

network service (SNS) application. Whereas the address range 

in (a) has the average update count of 1.2, the average update 

count of the range (b) is 30.4. Therefore, the address region of 

(a) is cold and the address region of (b) is hot. The address 

ranges of (a) and (b) correspond to the cached image folder 

and the database folder, respectively. The database files are 

used for managing image file information. The image files 

have read-intensive data, but the database files are frequently 

updated during the read or write operations on the image files. 

Therefore, the storage device will receive interleaved write 

requests on hot region and cold region.  

Such interleaved updates on hot and cold regions are 

significantly harmful to the page-level mapping. Since the page-

level mapping FTL allocates the physical block in the order of 

request arrival time, the pages sent in a similar time will be 

adjacent in the physical address space. Therefore, hot and cold 

data are mixed within a physical block and thus the GC cost 

increases. If the physical block of data is allocated considering 

the logical address of the data, it is more probable that the hot 

and cold data will be located at different physical blocks. 

 
Fig. 1. Write counts on different logical pages (smartphone trace). 

 
Fig. 2. Write pattern during SNS workload. 

B. Demand Map Loading in DFTL 

If logically separated pages are mixed within a physical 

block in DFTL, the map loading cost as well as the page copy 

cost during the GC increases. In the page-level mapping, the 

mapping entry for a logical page includes the PBN and the 

page index (PI) of the mapped physical page. The size of a 

mapping entry for a logical page can be calculated as follows: 

    (1) 

 and  are the number of total physical blocks and the 

number of total physical pages in the storage device, 

respectively.  is the number physical pages per block.  

If the page size is 8 KB, the size of a mapping entry is 4 bytes 

for the storage whose capacity is less than 32 TB. Since read 

and write operations are performed in the unit of page in flash 

memory, multiple logically-contiguous map entries in a flash 

memory page are loaded into SRAM at a map entry miss in 

order to utilize the spatial locality on data access pattern. The 

page with multiple map entries is called virtual translation page 
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(VTP). The VTPs are stored in the map blocks which are 

separated from normal data blocks. The global translation 

directory (GTD) is the mapping table for finding the physical 

locations of VTPs. Each entry in GTD has the PPN for a virtual 

translation page number (VPN). Whereas the normal page map 

entries are selectively loaded into the cached map table (CMT) 

of SRAM, GTD resides on a fixed map table (FMT) of SRAM. 

Fig. 3 shows the architecture of DFTL. It is assumed that one 

block is composed of four pages, and a single VTP has the 

mapping entries for four logically-contiguous pages. CMT can 

cache two VTPs. The block valid page count (BVC) table 

manages the numbers of valid pages in data blocks in order to 

select a GC victim block based on the number of valid pages at 

data blocks.  denotes the physical block whose PBN is i, and 

 denotes the logical page whose LPN is j.  is the VTP 

whose VPN is k. 
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Fig. 3. Mapping table management in DFTL. 

In Fig. 3, the GC should be started since no data block has 

any free pages. The physical block with the maximum number 

of invalid pages is chosen as a victim block for the GC. 

Therefore,  and  are candidates. Whereas all the map 

entries of valid pages in  can be found at one VTP, , the 

map entries of valid pages in  are scattered at two VTPs,  

and . During GC, the map entries of valid pages should be 

modified since the physical pages of the valid data are 

changed. Therefore, more VTPs should be loaded into CMT 

during GC if  is selected for a GC victim.  

From this example, it can be known that a low spatial 

locality among the valid pages in the GC victim block can 

increase the GC overhead due to the frequent map loading 

operations. However, the pages in a physical block may not be 

spatially adjacent in DFTL.  

IV. CPM: CLUSTERED PAGE-LEVEL MAPPING 

A. Architecture 

This paper proposes a clustered page-level mapping (CPM) 

scheme in order to increase the spatial adjacency of the pages 

within a physical block. It can separate hot and cold data into 

different physical blocks, and can reduce the map loading 

overhead during GC. CPM divides the overall logical address 

space into multiple clusters, each of which is composed of  

number of logically contiguous blocks. CPM allocates several 

physical blocks to each cluster, and the physical blocks are 

managed by the out-of-place scheme. The physical blocks 

allocated for a cluster can have the logical pages belong to the 

cluster. Therefore, each physical block has logically adjacent 

pages. 

CPM also uses the demand map loading technique like 

DFTL. Since the logical address space of the pages in a 

physical block is limited, the number of VTPs to be updated 

during GC is also limited. Therefore, the map loading 

overhead during GC can be reduced.  

CPM is similar to Superblock FTL since both of them 

divide the logical space into multiple regions and use the out-

of-place scheme in all physical blocks. However, CPM does 

not distinguish between data blocks and log blocks, therefore, 

it can enhance the block utilization and can reduce the GC cost 

compared to Superblock FTL. 

Fig. 4 compares between the GC operations in Superblock 

FTL and CPM. It is assumed that the size of superblock or 

cluster is two logical blocks, and each superblock or cluster 

can use up to 4 physical blocks. Whereas two data blocks,  

and , and two log blocks,  and , are allocated in the 

Superblock FTL, four data blocks,  to , are allocated in 

the CPM FTL. The physical blocks of the two schemes are 

equally filled with valid or invalid pages, and both the 

schemes require the GCs since there are no free pages to write 

incoming data. Since Superblock FTL cannot write incoming 

data at data block, the GC should generate a free block to be 

used for an update block. Therefore, the GC should select two 

victim blocks to be erased, one of which will be used for an 

update block and another will be used to copy the valid pages 

in victim blocks. In this example, Superblock FTL selects  

and  as victim blocks, copies all the valid pages into a new 

data block , and allocates a new log block . However, 

CPM selects only one victim block, , and copies one valid 

page into the newly allocated block, . The block  can be 

used for incoming data. Therefore, CPM can utilize the 

physical blocks more efficiently, and can reduce the GC 

overhead compared to Superblock FTL. 
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Fig. 4. Comparison between GCs of Superblock FTL and CPM. 

 



H. Kim and D. Shin: Clustered Page-Level Mapping for Flash Memory-Based Storage Devices  51 

CPM allows more number of physical blocks to be 

allocated than the logical size of a cluster. In this paper,  

denotes the cluster whose cluster number is i, and  

denotes the number of physical blocks allocated for . Since a 

larger value of  requires more entries for PBNs, the 

maximum number of  is limited to  in order to 

limit the size of the mapping table.  

Fig. 5 describes the structure of CPM. It is assumed that 

and . CPM manages two 

mapping tables: one is the logical-to-physical page mapping 

table (PMT) and another is the cluster-block mapping table 

(CBMT). There are separated map blocks in the flash memory 

for these mapping tables like DFTL. The PMT manages the 

PPN (PBN and its PI) for each LPN. CBMT has the 

information on physical blocks allocated for each cluster. 

There are  number of entries for each cluster in CBMT, 

where each entry has the PBN and valid page count for an 

allocated physical block.  
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Fig. 5. Mapping table and data management structure of CPM. 

PMT and CBMT are loaded into CMT on demand, and each 

table is managed by the LRU replacement policy. The 

mapping entries in PMT are loaded into CMT in the unit of 

VTP, i.e., multiple logically contiguous mapping entries are 

loaded at a time. However, each cluster-block mapping entry 

is the unit for replacement and loading in CBMT since one 

entry covers a large logical address space (e.g., 16 MB). 

DFTL should maintain the valid page counts for all the 

physical blocks in SRAM in order to select a GC victim block. 

However, CPM only needs to maintain the cluster-level 

invalid page count (CIC) for each cluster since CPM first 

selects a victim cluster, and then selects victim blocks within 

the victim cluster using the valid page counts in CBMT. 

B. Read & Write Operations 

If host sends a read request, CPM searches the mapping 

entry of the logical page in PMT. For example,  is stored in 

 and the page index is 0 in Fig. 5. If host sends a write 

request, CPM should find a free page for the new data from 

the physical blocks allocated for the cluster, and then should 

update the corresponding mapping entry in PMT and the valid 

page counts in CBMT. However, if there is no free page in the 

allocated blocks, a new free block should be allocated for the 

cluster. If there are no available free block, or 

, CPM invokes the GC to make free blocks. 

CPM can use two different GC techniques. The first one is 

the intra-cluster garbage collection (IntraGC), which reclaims 

invalid pages within a cluster that needs free pages. The 

IntraGC operation is similar to the GC of normal page-level 

mapping. Fig. 6(a) describes the procedure of IntraGC. When 

a GC is invoked by the cluster of , the CPM chooses  as a 

victim block since it has the maximum number of invalid 

pages. The number of victim blocks is always only one. CPM 

copies valid pages into the free block , which is reserved for 

GC operation.  becomes a new physical block allocated for 

, and the entry of  in CBMT is updated. The erased block 

 is reserved for future GCs. 
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Fig. 6. IntraGC and InterGC operations in CPM. 

The second GC technique is the inter-cluster garbage 

collection (InterGC), which reclaims invalid pages in an 

external cluster (called victim cluster) rather than the target 

cluster. Since CPM separates the logical address space into 

clusters, the physical block allocated for a cluster cannot be 

used for other clusters. Therefore, InterGC should make a whole 

free block from a victim cluster in order to give the free block to 

the target cluster. Fig. 6(b) shows the InterGC operation. First, 

InterGC finds a victim cluster that has the maximum number of 

invalid pages from the CIC table. Then, InterGC selects one or 

more victim blocks from the victim cluster by scanning the 

fields of valid pages in CBMT. Multiple victim blocks can be 

selected in order to make a whole free block. In Fig. 6(b),  

and  are selected. CPM copies the valid pages ( , , and 

) into the free block ( ) that is reserved for GC operation. 

Two victim blocks,  and , can be erased. One is allocated 

for the target cluster, and the other is reserved for future GCs. 

Compared with IntraGC, InterGC has a higher GC cost since it 

should generate a whole free block. 

If ,  cannot use more physical blocks. 

Therefore, IntraGC should be used. Otherwise, CPM chooses 

IntraGC or InterGC considering the GC efficiency, , which 

is the number of generated free pages per GC cost, and can be 



52  IEEE Transactions on Consumer Electronics, Vol. 61, No. 1, February 2015 

represented as follows: 

    (2) 

,  and denote the latencies for program, read, 

and erase operations, respectively.  is the number of free 

pages generated by the GC.  is the number valid pages to 

be copied during the GC.  represents the number of 

victim blocks during the GC. CPM compares the GC 

efficiencies of IntraGC and InterGC, and selects a more 

efficient GC. 

C. Problems of CPM 

Although CPM can efficiently reduce the GC cost by 

allocating separated physical blocks to different clusters, the 

policy will decrease the block utilization.  Therefore, the GC for 

a cluster can be invoked even though there are free pages in the 

physical blocks allocated for other clusters. Such an early GC 

will copy the pages that will be invalidated in the near future. 

In order to mitigate the low block utilization problem, a 

large size of clusters will be beneficial since many logical 

blocks can share a physical block. However, if the size of 

cluster is too large, the hot and cold will be mixed within a 

cluster. In addition, the number of VTPs required for storing 

all the mapping entries for a cluster will increase, and thus the 

map loading overhead during GC also will increase. Therefore, 

another optimization technique is required, which can improve 

the block utilization without increasing the cluster size. 

V. K-CPM: K-ASSOCIATIVE CLUSTERED PAGE-LEVEL 

MAPPING 

A. Architecture 

The K-associative clustered page-level mapping (K-CPM) 

allows several clusters to share a physical block. When a 

cluster needs free pages, K-CPM does not perform the GC 

immediately, but it checks whether there is any other cluster 

that can share its physical blocks with the target cluster. By 

allowing physical block sharing, K-CPM can improve the 

block utilization and can delay the GC. However, the map 

loading overhead during the GC on the shared physical block 

may increase. Considering this problem, K-CPM limits the 

maximum number of clusters which share the physical blocks 

allocated for a cluster.  

When a logical page  belongs to a cluster ,  is called 

the owner cluster of the logical page, and it is represented as 

. When a logical page is written at the 

physical block allocated for the cluster , is called the 

saved cluster of the logical page, and it is represented as 

. If the owner cluster and the saved cluster of 

a logical page are different, it is called an adopted page. If 

 and  for a certain  is 

called an associated cluster (AC) of , and the number of 

ACs of  is represented as . In the case,  is called a 

distributed cluster (DC) of , and the number of DCs of  is 

represented as . 

K-CPM has a restriction on the number of associated 

clusters such that  for all clusters. As a larger 

value of K is used, the block utilization is improved. However, 

the map loading overhead during GC increases, and the 

number of bits required for representing physical block index 

increases. By limiting the maximum number of associated 

clusters, K-CPM can manage the map loading overhead and 

the mapping table size. However, there is no limit on the 

number of distributed clusters of a cluster since it does not 

directly affect the GC overhead.  

Fig. 7 shows the overall architecture of K-CPM. The basic 

assumption of the figure is the same as Fig. 5. The physical 

blocks allocated for  and  have adopted pages. For 

example, whereas the owner cluster of is , the saved 

cluster of is . The associated clusters of  are , , 

and  (i.e., ).  and , whose owner cluster is 

, are saved in the physical blocks of . Therefore, is a 

distributed cluster of  and . 

In order to manage the associated and distributed clusters, K-

CPM has the cluster association map table (CAMT) and the 

cluster distribution map table (CDMT), all entries of which reside 

in the FMT of SRAM. The usages of CBMT and PMT are the 

same as CPM. However, each mapping entry in PMT has the 

cluster number of PBN additionally. The CAMT manages the 

associated cluster number (ACN) for each cluster, and it also 

manages the number of adopted pages of each AC. The CDMT 

manages the distributed clusters for each cluster. The distributed 

clusters of each cluster are managed with a linked list since the 

number of distributed clusters of a cluster is variable.  
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Fig. 7. Mapping table and data management structure of K-CPM. 

 

B. Write Operation 

Whereas the read operation of K-CPM is the same as CPM, the 

write operation of K-CPM is quite different with that of CPM. 

There are four different cases which should be handled differently 

in K-CPM for a write request on the target cluster . 

Case 1: If there are free pages in the physical blocks 

allocated for , the write request can be handled within 

. K-CPM updates the corresponding mapping entry in 

PMT and the number valid pages in CBMT. 
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Case 2: If  has no free pages, but a free physical block 

can be allocated for  (i.e., ), then K-

CPM allocates a free block for  and the incoming data are 

written at the block. 

Case 3: If  has no free page and a new physical block 

cannot be allocated (i.e., ), K-CPM checks 

whether one of DCs of  has free pages. If a DC has free 

pages, then the incoming data are sent to the DC. No new 

entry is inserted into CAMT or CDMT. Only the field of 

adopted page count in CAMT is updated. 

Case 4: If there are no free pages in the DCs of , K-

CPM should find a new distributed cluster for . If  has 

free pages and  is less than K,  can be a new DC of 

. Then,  is inserted as an AC of  in CAMT, and  is 

inserted as a DC of  in CDMT. 

If K-CPM fails to find a new distributed cluster, the GC 

should be performed to reclaim invalid pages. 

C. Garbage Collection 

K-CPM also selects IntraGC or InterGC considering the GC 

efficiency. However, the physical blocks allocated for the DCs 

of the target cluster can be a victim block in the IntraGC of K-

CPM since K-CPM can send the write request to the DCs of 

the target cluster.  

InterGC selects a victim cluster from all clusters but the 

DCs of the target cluster, and it generates a free block to be 

allocated for the target cluster or its DCs. If all of the target 

cluster and its DCs have been allocated with  number of 

physical blocks respectively, the free block generated by 

InterGC cannot be allocated for the target cluster or its DCs. 

In this case, K-CPM should assign a new DC that has less than 

 number of allocated physical blocks and its 

associativity is less than K.  

As an extreme case, K-CPM cannot find a new DC if the 

numbers of ACs of all clusters are K.  To handle such a case, 

K-CPM uses K-InterGC, which reduces the associativity of a 

cluster by removing its associated clusters. K-InterGC finds a 

cluster which has the minimum number of adopted pages at 

one of its DCs, and moves the adopted pages to the cluster or 

its other DCs. Then, K-InterGC can obtain a cluster whose 

associativity is less than K. During the page migration, other 

GCs can be invoked. Therefore, K-InterGC has a significantly 

high GC cost. However, since K-InterGC hardly occurs, the 

high cost of K-InterGC may not be a significant problem. 

VI. EXPERIMENTS 

To demonstrate the effectiveness of the proposed FTL 

schemes, three different page-level mapping schemes, DFTL, 

CPM and K-CPM, are compared with an FTL simulator. 

A. Comparison on Mapping Table Size 

TABLE I compares the memory sizes for mapping tables 

under DFTL, CPM and K-CPM. It is assumed that the total 

storage capacity is 32 GB, the page size is 8 KB, the number 

of pages per block is 128, the cluster size (  in CPM and K-

CPM is 16 MB, and = 32. CPM requires 192 KB of 

additional memory space for CBMT compared to DFTL. K-

CPM requires 256 KB of additional space for CBMT, CAMT 

and CDMT. As the amount of increased space for mapping 

tables, the competition on the limited space of SRAM will be 

severe and the map loading overhead will be increased. 

However, the increased memory space can be negligible 

compared to the size of PMT. 

TABLE I 

MAPPING TABLE FOR EACH SCHEME (32GB STORAGE) 

 PMT CBMT CAMT CDMT 

DFTL 16MB    

CPM 16MB 192KB   

K-CPM 16MB 192KB 32KB 32KB 

B. Workloads  

For experiments, real workloads are used, which are 

collected at a smartphone while executing several applications. 

The smartphone uses a Linux-based mobile platform, and the 

file system is ext4. The blktrace is used to collect storage I/O 

traces. TABLE II shows the characteristics of seven workloads. 

The AppInstall trace is collected while installing top twenty 

ranking applications, and the AppUpdate trace is collected 

while updating the installed applications. The AppLaunch 

trace is collected while executing the installed applications, 

and the Browser trace is extracted during one hour of web 

surfing. The SNS trace is also extracted during one hour of 

browsing SNS pages, and the Map trace has 30 minutes of 

map searching operations. The Mp3copy trace is collected 

while copying forty MP3 files from a PC to the smartphone 

via USB interface. 

 
TABLE II 

WORKING SET (WS) ANALYSIS FOR REAL WORKLOADS 

 

No. 

of 

WS 

Avg. WS 

size 

(MB) 

Avg. IO 

size (KB) 

Avg. page 

update 

Write 

ratio (%) 

AppInstall 58 10.93 84.0 1.20 79.2 

AppUpdate 34 8.15 31.8 1.90 18.5 

AppLaunch 59 12.34 66.6 1.25 53.2 

Browser 33 6.81 27.4 3.35 84.1 

SNS 33 3.87 9.97 4.81 31.7 

Map 14 8.56 10.2 2.67 84.5 

Mp3copy 68 15.74 295.4 1.06 96.8 

 

The accessed address regions in each trace are divided into 

several working sets. The working set is a logically contiguous 

address region that is composed of pages with similar access 

patterns. In order to remove too small working sets, two small 

working sets are merged into a working set, if the distance 

between them is less than 512 KB. 

As shown in the table, AppInstall, AppLaunch, and 

Mp3copy are composed of many large working sets 

respectively, and most of the working sets have cold data. 

However, AppUpdate, Browser, SNS, and Map have small size 

of working sets, each of which is updated frequently. 

AppUpdate and SNS are read-intensive workloads whereas 

others are write-intensive workloads. 
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C. Experimental Environments 

In order to compare the performances of DFTL, CPM and 

K-CPM, a trace-driven FTL simulator is used in this paper. 

The latencies for page write, page read, and block erase 

operations are assumed to be 800 us, 60 us and 1.5 ms, 

respectively. The size of SRAM is 128 KB. The storage is 

initially aged.  The 70% of the logical space is first written 

with sequential write requests, and then 20% of the aged 

logical space is overwritten with random write requests as the 

amount of total storage capacity.  

In CPM and K-CPM, the size of one cluster is determined 

as 16 MB (16 blocks) considering the average working set size 

in TABLE II. Under the cluster size, one VTP can cover one 

cluster. One cluster can use up to 32 physical blocks (i.e., 

= 32) and K = 4.  Among 128 KB of SRAM, 32 KB of 

memory is assigned for mapping tables other than PMT. The 

remaining 96 KB of SRAM is used for PMT. Only 96 KB of 

PMT entries can be loaded on demand into SRAM. 

D. GC and Map Loading Overheads 

Fig. 8 shows the GC overhead and map loading overhead of 

DFTL, CPM, and K-CPM. The overhead values are 

normalized by the total execution times. The overheads of 

CPM and K-CPM are less than those of DFTL due to the 

efficient hot and cold separation. In AppUpdate and Map 

workloads, the GC overheads of CPM are slightly worse than 

those of DFTL. This is because these workloads have small 

write requests with low temporal localities. Such workloads 

magnify the block utilization problem of CPM. However, due 

to the reduced map loading overhead, CPM shows better 

performance than DFTL at all workloads.  K-CPM improves 

the GC overhead much more than CPM by enhancing the 

block utilization, whereas the map loading overhead is 

increased compared with CPM. During the experiments, the 

average value of  in K-CPM is 2.89, and K-InterGC is not 

invoked. 

 

 
Fig. 8. Comparison on the GC and map loading overheads. 

In the read-intensive workloads such as AppUpdate and 

SNS, the map loading overhead of K-CPM is much larger than 

CPM. This is because K-CPM should manage more additional 

mapping tables in RAM. Although DFTL has no additional 

mapping table, the low spatial locality among the valid pages 

in a victim block during GC makes a higher map loading cost. 

Fig. 9 shows the ratios between IntraGC and InterGC in 

CPM and K-CPM. It also shows the number of block erase 

operations during GC. K-CPM invokes smaller number of 

GCs compared to CPM. CPM often selects InterGC whereas 

K-CPM rarely invokes InterGC. Since the distributed clusters 

can be used for IntraGC in K-CPM, there are more chances to 

select IntraGCs. The reduced number of block erase 

operations of K-CPM is beneficial to the limited lifetime of 

the flash storage. 

 
Fig. 9. GCs in CPM and K-CPM. 

E. I/O Latency 

Fig. 10 shows the cumulative distribution function (CDF) 

graphs on the I/O latencies during the executions of four 

workloads. There are significant differences at top 10% of I/O 

latencies. These long latencies are generated by GC and affect 

the overall performance. In the AppInstall, AppLaunch, and 

Browser workloads, the write latencies of CPM and K-CPM 

are shorter than those of DFTL. However, in the Map 

workload, CPM has a longer latency than DFTL. This results 

from the block utilization problem of CPM. The low block 

utilization invokes InterGCs frequently, which have higher 

costs than IntaGCs.  

 
Fig. 10. CDF graph for I/O latencies. 
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F. Effects of Cluster Size and Associativity 

Fig. 11 compares the GC and map loading overheads while 

varying  in CPM and K in K-CPM. Four different cluster 

sizes are used from 16 MB to 128 MB in CPM. Three 

different values of K are used from 2 to 8 while fixing  to 16 

MB in K-CPM. As  grows, the number of VTPs required to 

cover a cluster will increase. The graph also shows the average 

remaining space, which represents the average number of 

remaining free pages when a GC is invoked. A low value of 

remaining space represents that the block utilization is high. 

 
Fig. 11. The GC overhead and the remaining pages while varying SC in 

CPM and Nα in K-CPM. 

The graph shows that the average remaining space is 

reduced as  is enlarged in CPM. Therefore, a large cluster 

size can improve the block utilization. However, when the 

cluster is large, the GC cost increases since the hot and cold 

pages are mixed within a cluster. The map loading overhead 

also increases at larger cluster sizes. Therefore, a large cluster 

cannot be a solution on the low block utilization problem. 

In K-CPM, when a larger value of K is used, the block 

utilization increases, and thus the performances are improved. 

However, if K is too large, the map loading overheads increase 

since the sizes of CAMT and CDMT are increased.  

VII. CONCLUSION 

The current page-level mapping FTLs show better 

performance compared to block-level mapping FTLs. 

However, they do not consider the spatial locality in storage 

workloads. This paper proposed the clustered page-level 

mapping (CPM) technique which can efficiently and 

effectively separate the hot and cold data based on the logical 

address. By allocating different physical blocks to different 

address ranges, the spatial locality within a physical block can 

be utilized. CPM also can reduce the map loading overhead 

during garbage collections compared with the previous 

demand map loading FTLs. However, the block utilization 

may deteriorate in CPM. To solve the problem, this paper 

proposed K-associative clustered page-level mapping (K-CPM) 

which allows multiple clusters to share a physical block. K-

CPM can reduce the garbage collection cost by increasing the 

block utilizations.  
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