
W-Buddy: Wear-Out-Aware Memory Allocator for

SCRAM-based Low Power Mobile Systems

Dongyoung Seo

Sungkyunkwan University

Suwon, Korea

kkaka@skku.edu

Dongkun Shin

Sungkyunkwan University

Suwon, Korea

dongkun@skku.edu

Abstract— Since recently emerging storage class RAM

(SCRAM) devices are power-efficient, byte-addressable, and non-

volatile, they are expected to replace the power-hungry DRAM in

mobile consumer devices. However, SCRAM has a limited

number of program and erase cycling, requiring a wear-leveling

technique. Since the locality in memory access pattern may

intensify the discriminated wearing of memory blocks, it is

required to change the operating systems such that memory

accesses are distributed evenly over all memory space for wear-

leveling. We propose a novel memory allocator, called W-Buddy,

which selects a free memory chunk to be allocated considering

the wear-outs of memory chunks. Our experimental results show

that the proposed W-Buddy achieves fourteen time longer

lifetime compared with the conventional buddy memory allocator.

Keyword: SCRAM, Wear-leveling, Memory Allocator

I. INTRODUCTION

For battery-powered mobile consumer devices such as
mobile phone and mobile pad, power consumption is an
important metric. Since DRAM must be refreshed periodically,
it is one of power-hungry devices in the mobile system.
Therefore, low-power mobile DRAMs are generally used to
minimize the power consumption. Recently, as a next-
generation non-volatile memory, the storage class RAM
(SCRAM) such as phase-change RAM (PCRAM), spin-
transfer-torque magnetic RAM (STT-MRAM), and resistive
RAM (RRAM) is emerging to replace the power-hungry
DRAM [1]. Since SCRAM is byte-addressable and has a
shorter latency than NAND flash memory, it is reasonable to
use SCARM as main memory. The non-volatility of SCRAM
will reduce overall power consumption of mobile devices as
well as simplify the system software, which is now inevitably
complex in order to handle the volatile main memory.

 However, the memory cells of SCRAM have a limited
lifetime because they wear out at every program-and-erase
operation. The limited lifetime is critical to use SCRAM for
main memory. Especially, the main memory access pattern is
highly localized making a significant imbalance on the wear-
outs of memory cells. Therefore, a wear-leveling technique is
essential to balance the wear-outs of different memory cells.
Recently, many wear-leveling techniques for SCRAM have
been proposed. However, most of them are device-oriented,
which means the wear-leveling module is implemented within
memory controller and it monitors the write pattern from host
and takes some action for wear-leveling. For example, Dhiman
et al. [2] suggested a memory controller which maintains the

update counts of every 4 KB memory page for wear-leveling
purpose. StartGap [3] technique periodically rotates the logical-
to-physical address mapping in memory controller to change
the memory page allocated for update-intensive data.

For a more active technique, we can consider a host-driven
wear-leveling technique which changes the host access pattern
to distribute the write requests evenly over all memory space.
The host-driven wear-leveling can be used along with the
device-driven wear-leveling making a synergetic effect.

Unfortunately, since current operating systems are designed
for DRAM-based systems, they have no consideration on the
wear-leveling for main memory. For example, the buddy
memory allocator of Linux operating system allocates the first
free memory chunk suitable for the request size without any
information on the wear-outs of memory blocks. Therefore,
write requests are likely to be concentrated on only a portion of
overall memory blocks. To avoid such imbalance on wear-outs,
we should revisit the operating systems considering the wear-
leveling issue of SCRAM.

In this paper, we propose a wear-out-aware memory
allocator for SCRAM-based mobile systems. The buddy
memory allocator is redesigned such that it allocates a less-
worn-out memory block. To the best of our knowledge, this is
the first study to reform operating systems considering the
wear-leveling issue of SCRAM. The experiments show that the
wear-out-aware memory allocator can increase the lifetime of
SCRAM significantly with a negligible overhead.

II. WEAR-OUT-AWARE MEMORY ALLOCATOR
Linux uses the buddy memory allocator for physical

memory management. Every memory chunk in the buddy
allocator is managed based on the order of the chunk. The size

of memory chunk in the n-th order is 2
n
S where S is the

smallest chunk size. All memory chunks are managed by
linked lists according to their orders. The buddy allocator
chooses a memory chunk to be allocated by finding a free
chunk from the head of the corresponding order list. If a chunk
is deallocated, it is attached to the head of the corresponding
linked list. Therefore, if an application repeats memory
allocation and deallocation frequently, the recently-allocated
memory chunk will be reallocated making a significant
imbalance on the wear-outs of memory chunks.

We propose a novel wear-out-aware buddy allocator, called
W-Buddy, for SCRAM-based memory. W-Buddy manages the
update counts of memory chunks and prefers to allocate a less-
worn-out chunk to balance the wear-outs of memory chunks.

The 1st IEEE Global Conference on Consumer Electronics 2012

978-1-4673-1501-2/12/$31.00 ©2012 IEEE 552

Fig. 1 shows how W-Buddy manages memory chunks. If
we assume the total memory size is 32 KB and the smallest
allocatable chunk size is 4 KB, the memory is managed at four
different orders from 0 to 3. The chunk in the order i can be
divided into two buddy sub-chunks in the order i-1, and vice
versa. For a memory allocation request, W-buddy selects one
of free chunks from the chunk list in the proper order.

Ci,j denotes the j-th memory chunk on the order i. For each
chunk, W-Buddy manages the special information of (Np, Salloc)
so as to search a less-worn-out free chunk efficiently. Np is the
update count of the chunk and Salloc is the allocation status
bitmap for the chunk and the sub-chunks at sub-levels. The Np
of a chunk is determined by the Np of its sub-chunks. If both
the sub-chunks of Ci,j are free, the Np of Ci,j is set to the sum of
update counts of sub-chunks. If only one of sub-chunks is free,
the Np of Ci,j is set to two times the Np of the free sub-chunk.
For example, since C2,0 has only one free sub-chunk C1,1, the

Np of C2,0 is 14 (= 27). The Salloc of C2,0 is (100), which means
C2,0 is not free but a free sub-chunk exists in the order of 1 and
0.

Ci,j(NP, Salloc)

C1,1 (7,00) C1,2 (16,10) C1,3 (15,00)

C2,1 (30,100)

C0,4(8,0) C0,5(2,1)C0,2(4,0) C0,3(3,0) C0,7(10,0)C0,6(5,0)C0,0(1,1) C0,1(2,1)

C1,0(3,11)

C2,0 (14,100)

C3,0 (44,1100)3

2

1

0

order

32KB

16KB

8KB

4KB

Free Alloc

Memory Address

Figure 1. The memory buddy chunk management in W-Buddy

The memory allocation process is as follows: If a 4 KB
memory chunk should be allocated assuming the initial
memory state in Fig. 1, W-Buddy first examines the Salloc of the
highest order chunk C3,0. Since the Salloc is (1100), there exists a
free chunk in the order 0 where 4 KB memory chunks are
managed. Then, by checking the Salloc of sub-chunks, W-Buddy
can know that both C2,0 and C2,1 have a free 4 KB sub-chunk.
W-Buddy compares the update counts of C2,0 and C2,1. Since
the update count of C2,0 is less than that of C2,1, W-Buddy
further examines the sub-chunks of C2,0. By the searching
process, W-buddy will select the chunk of C0,3 finally.

If there are memory chunks which have cold or hot data
and are not deallocated during a long period, the memory
chunks cannot be utilized by the allocation-based wear-leveling.
Therefore, if the difference on update counts between the most-
worn-out chunk and the least-worn-out chunk exceeds a
predefined threshold, W-buddy invokes a compulsory wear-
leveling which swaps the cold data and hot data in the chunks.

To maintain the update counts of memory chunks, we use a
hardware counter in the memory controller. If the counter
monitors all memory write requests and reports them to
operating system via interrupt in order to maintain the exact
update counts of all memory chunks, there is too much
overhead for the hardware counter capacity and interrupt
handling. Instead, we use a sampling-based approach, where
the memory controller checks the current updated memory
chunk and inform OS of the information only at every the
sampling period.

III. PERFORMANCE EVALUATION
We used a trace-driven SCRAM simulator and several real-

world memory traces to evaluate the wear-leveling
performance. We assumed the SCRAM-based memory has the
size of 1 MB. The wear-leveling performances of three

memory allocators, Ideal, Buddy, and W-Buddy, are evaluated.
While the Buddy allocator does not consider the wear-leveling,
the Ideal and the W-Buddy allocator perform the wear-leveling.
The Ideal allocator counts all memory update requests and
allocates the least-worn-out memory chunk. In addition, it
supports the compulsory wear-leveling. For W-Buddy, we used
the sampling ratio of 100 K update requests.

Fig. 2 shows the distribution of memory chunk update
counts under different memory allocators. The Buddy allocator
shows significant differences on update counts resulting from
the spatial locality of memory update pattern. W-Buddy
reduced the standard deviation of update count distribution by
87% and the maximum update count by 93% compared to the
Buddy allocator. However, the average update counts are
increased by the compulsory wear-leveling. The wear-leveling
performance of W-Buddy is lower than the Ideal allocator due
to its sampling-based approach. However, W-Buddy has
negligible hardware and interrupt overheads while the Ideal
allocator makes an interrupt to OS at every memory update.

Figure 2. The distribution of memory chunk update counts (The box

represents the 25th and 75th percentile, and the upper whisker and lower

whisker are the maximum and the minimum update count, respectively)

IV. CONCLUSION
The current operating systems are designed assuming

DRAM-based memory devices. Therefore, many subsystems in
operating systems should be redesigned for future low-power
SCRAM-based memory devices. Especially, the wear-leveling
will be an essential feature of memory allocator. We proposed
a low-overhead wear-out-aware memory allocator, W-Buddy,
as the first study on revisiting operating systems for SCRAM.
From experiments, the proposed W-Buddy allocator showed
significant improvements on the lifetime of SCRAM.

V. ACKNOWLEDGMENT
This research was partly supported by Mid-career

Researcher Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science
and Technology (2012-0027613).

REFERENCES

[1] R. Freitas and W. Wilcke, “Storage-class memory: The next storage
system technology,” IBM Journal of Research and Development, vol. 52,
issue 4/5, pp. 439–447, 2008.

[2] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a hybrid PRAM and
DRAM main memory system,” In Proc. of the 46th Annual Design
Automation Conference, pp. 664–469, 2009.

[3] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based Main
Memory with Start-Gap Wear Leveling,” In Proc. of the 42nd Annual
International Symposium on Microarchitecture, pp. 14–23, 2009

553

