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Abstract— Since recently emerging storage class RAM 

(SCRAM) devices are power-efficient, byte-addressable, and non-

volatile, they are expected to replace the power-hungry DRAM in 

mobile consumer devices. However, SCRAM has a limited 

number of program and erase cycling, requiring a wear-leveling 

technique. Since the locality in memory access pattern may 

intensify the discriminated wearing of memory blocks, it is 

required to change the operating systems such that memory 

accesses are distributed evenly over all memory space for wear-

leveling. We propose a novel memory allocator, called W-Buddy, 

which selects a free memory chunk to be allocated considering 

the wear-outs of memory chunks. Our experimental results show 

that the proposed W-Buddy achieves fourteen time longer 

lifetime compared with the conventional buddy memory allocator. 
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I.  INTRODUCTION 

For battery-powered mobile consumer devices such as 
mobile phone and mobile pad, power consumption is an 
important metric. Since DRAM must be refreshed periodically, 
it is one of power-hungry devices in the mobile system. 
Therefore, low-power mobile DRAMs are generally used to 
minimize the power consumption. Recently, as a next-
generation non-volatile memory, the storage class RAM 
(SCRAM) such as phase-change RAM (PCRAM), spin-
transfer-torque magnetic RAM (STT-MRAM), and resistive 
RAM (RRAM) is emerging to replace the power-hungry 
DRAM [1]. Since SCRAM is byte-addressable and has a 
shorter latency than NAND flash memory, it is reasonable to 
use SCARM as main memory. The non-volatility of SCRAM 
will reduce overall power consumption of mobile devices as 
well as simplify the system software, which is now inevitably 
complex in order to handle the volatile main memory. 

 However, the memory cells of SCRAM have a limited 
lifetime because they wear out at every program-and-erase 
operation. The limited lifetime is critical to use SCRAM for 
main memory. Especially, the main memory access pattern is 
highly localized making a significant imbalance on the wear-
outs of memory cells. Therefore, a wear-leveling technique is 
essential to balance the wear-outs of different memory cells. 
Recently, many wear-leveling techniques for SCRAM have 
been proposed. However, most of them are device-oriented, 
which means the wear-leveling module is implemented within 
memory controller and it monitors the write pattern from host 
and takes some action for wear-leveling. For example, Dhiman 
et al. [2] suggested a memory controller which maintains the 

update counts of every 4 KB memory page for wear-leveling 
purpose. StartGap [3] technique periodically rotates the logical-
to-physical address mapping in memory controller to change 
the memory page allocated for update-intensive data.  

For a more active technique, we can consider a host-driven 
wear-leveling technique which changes the host access pattern 
to distribute the write requests evenly over all memory space. 
The host-driven wear-leveling can be used along with the 
device-driven wear-leveling making a synergetic effect.  

Unfortunately, since current operating systems are designed 
for DRAM-based systems, they have no consideration on the 
wear-leveling for main memory. For example, the buddy 
memory allocator of Linux operating system allocates the first 
free memory chunk suitable for the request size without any 
information on the wear-outs of memory blocks. Therefore, 
write requests are likely to be concentrated on only a portion of 
overall memory blocks. To avoid such imbalance on wear-outs, 
we should revisit the operating systems considering the wear-
leveling issue of SCRAM.  

In this paper, we propose a wear-out-aware memory 
allocator for SCRAM-based mobile systems. The buddy 
memory allocator is redesigned such that it allocates a less-
worn-out memory block. To the best of our knowledge, this is 
the first study to reform operating systems considering the 
wear-leveling issue of SCRAM. The experiments show that the 
wear-out-aware memory allocator can increase the lifetime of 
SCRAM significantly with a negligible overhead. 

II. WEAR-OUT-AWARE MEMORY ALLOCATOR 
Linux uses the buddy memory allocator for physical 

memory management. Every memory chunk in the buddy 
allocator is managed based on the order of the chunk. The size 

of memory chunk in the n-th order is 2
n
S where S is the 

smallest chunk size. All memory chunks are managed by 
linked lists according to their orders. The buddy allocator 
chooses a memory chunk to be allocated by finding a free 
chunk from the head of the corresponding order list. If a chunk 
is deallocated, it is attached to the head of the corresponding 
linked list. Therefore, if an application repeats memory 
allocation and deallocation frequently, the recently-allocated 
memory chunk will be reallocated making a significant 
imbalance on the wear-outs of memory chunks. 

We propose a novel wear-out-aware buddy allocator, called 
W-Buddy, for SCRAM-based memory. W-Buddy manages the 
update counts of memory chunks and prefers to allocate a less-
worn-out chunk to balance the wear-outs of memory chunks. 
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Fig. 1 shows how W-Buddy manages memory chunks. If 
we assume the total memory size is 32 KB and the smallest 
allocatable chunk size is 4 KB, the memory is managed at four 
different orders from 0 to 3. The chunk in the order i can be 
divided into two buddy sub-chunks in the order i-1, and vice 
versa. For a memory allocation request, W-buddy selects one 
of free chunks from the chunk list in the proper order.  

Ci,j denotes the j-th memory chunk on the order i. For each 
chunk, W-Buddy manages the special information of (Np, Salloc) 
so as to search a less-worn-out free chunk efficiently. Np is the 
update count of the chunk and Salloc is the allocation status 
bitmap for the chunk and the sub-chunks at sub-levels. The Np 
of a chunk is determined by the Np of its sub-chunks. If both 
the sub-chunks of Ci,j are free, the Np of Ci,j is set to the sum of 
update counts of sub-chunks. If only one of sub-chunks is free, 
the Np of Ci,j is set to two times the Np of the free sub-chunk. 
For example, since C2,0  has only one free sub-chunk C1,1, the 

Np of C2,0  is 14 (= 27). The Salloc of C2,0 is (100), which means 
C2,0  is not free but a free sub-chunk exists in the order of 1 and 
0.  
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Figure 1. The memory buddy chunk management in W-Buddy 

The memory allocation process is as follows: If a 4 KB 
memory chunk should be allocated assuming the initial 
memory state in Fig. 1, W-Buddy first examines the Salloc of the 
highest order chunk C3,0. Since the Salloc is (1100), there exists a 
free chunk in the order 0 where 4 KB memory chunks are 
managed. Then, by checking the Salloc of sub-chunks, W-Buddy 
can know that both C2,0 and C2,1 have a free 4 KB sub-chunk. 
W-Buddy compares the update counts of C2,0 and C2,1. Since 
the update count of C2,0 is less than that of C2,1, W-Buddy 
further examines the sub-chunks of C2,0. By the searching 
process, W-buddy will select the chunk of C0,3  finally. 

If there are memory chunks which have cold or hot data 
and are not deallocated during a long period, the memory 
chunks cannot be utilized by the allocation-based wear-leveling. 
Therefore, if the difference on update counts between the most-
worn-out chunk and the least-worn-out chunk exceeds a 
predefined threshold, W-buddy invokes a compulsory wear-
leveling which swaps the cold data and hot data in the chunks.  

To maintain the update counts of memory chunks, we use a 
hardware counter in the memory controller. If the counter 
monitors all memory write requests and reports them to 
operating system via interrupt in order to maintain the exact 
update counts of all memory chunks, there is too much 
overhead for the hardware counter capacity and interrupt 
handling. Instead, we use a sampling-based approach, where 
the memory controller checks the current updated memory 
chunk and inform OS of the information only at every the 
sampling period. 

III. PERFORMANCE EVALUATION 
We used a trace-driven SCRAM simulator and several real-

world memory traces to evaluate the wear-leveling 
performance. We assumed the SCRAM-based memory has the 
size of 1 MB. The wear-leveling performances of three 

memory allocators, Ideal, Buddy, and W-Buddy, are evaluated. 
While the Buddy allocator does not consider the wear-leveling, 
the Ideal and the W-Buddy allocator perform the wear-leveling. 
The Ideal allocator counts all memory update requests and 
allocates the least-worn-out memory chunk. In addition, it 
supports the compulsory wear-leveling. For W-Buddy, we used 
the sampling ratio of 100 K update requests. 

Fig. 2 shows the distribution of memory chunk update 
counts under different memory allocators. The Buddy allocator 
shows significant differences on update counts resulting from 
the spatial locality of memory update pattern. W-Buddy 
reduced the standard deviation of update count distribution by 
87% and the maximum update count by 93% compared to the 
Buddy allocator. However, the average update counts are 
increased by the compulsory wear-leveling. The wear-leveling 
performance of W-Buddy is lower than the Ideal allocator due 
to its sampling-based approach. However, W-Buddy has 
negligible hardware and interrupt overheads while the Ideal 
allocator makes an interrupt to OS at every memory update. 

 
Figure 2. The distribution of memory chunk update counts (The box 

represents the 25th and 75th percentile, and the upper whisker and lower 

whisker are the maximum and the minimum update count, respectively) 

IV. CONCLUSION 
The current operating systems are designed assuming 

DRAM-based memory devices. Therefore, many subsystems in 
operating systems should be redesigned for future low-power 
SCRAM-based memory devices. Especially, the wear-leveling 
will be an essential feature of memory allocator. We proposed 
a low-overhead wear-out-aware memory allocator, W-Buddy, 
as the first study on revisiting operating systems for SCRAM. 
From experiments, the proposed W-Buddy allocator showed 
significant improvements on the lifetime of SCRAM. 
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