
OpenGL ESSL Optimizing Compiler

for Embedded 3D Graphic Processor

Soojun Im

Sungkyunkwan University

Suwon Korea

lang33@skku.edu

Dongkun Shin

Sungkyunkwan University

Suwon Korea

dongkun@skku.edu

Abstract—Recently, graphic processing unit (GPU) becomes a

mandatory component in mobile consumer devices such mobile

phones. The vertex and fragment shader programs in embedded

GPU are programmed with embedded system shading

language(ESSL). The shader compiler for ESSL should be

designed considering several distinct features of ESSL and GPU.

In this paper, we present ESSL compiler techniques for

embedded GPU. The compiler can optimize the code and data

memory size as well as improve the performance of shader code

by fully exploiting the special architecture of target GPU.

Experiments show that the proposed optimization techniques can

reduce the code size by up to 10.3% and the execution cycles by

up to 16.8%.

Keywords-GPU;Compiler;ESSL; Embedded Systems

I. INTRODUCTION

As recent mobile consumer devices such as mobile phones
and mobile pads are supporting rich 3D user interfaces, 3D
games, and WebGL, graphic processor units (GPUs) are widely
adopted by mobile consumer devices. In order to support more
complex graphic processing, recent GPUs use programmable
shader pipeline. Users are able to program the desired graphic
processing operations with shading language. OpenGL ESSL
[1] is a standard language for vertex and fragment shader
programs in embedded systems. Currently, OpenGL ES 2.0
standard has been published.

ESSL is similar to the conventional C language, but there
are many differences on data types such as vector typed
variables, matrix and sampler data. Furthermore, each variable
must be specified with the allocated location in the physical
memory by qualifier. To execute a shader program at a target
GPU, it should be compiled by ESSL compiler [2]. Since both
shader program and GPU have unique characteristics, ESSL
compiler should be designed considering such features. For
example, GPUs generally use the multi-way VLIW architecture
or multithreaded architecture to execute multiple independent
instructions simultaneously. ESSL compiler should find
independent instructions to generate compact VLIW
instructions. In addition, GPUs have distinct memory
components such as global buffer, stream buffer,
texture/sampler memory, and constant memory. Since each
memory component can be used only for specified data, there
is no memory space for general purpose such as stack memory.
Therefore, the traditional register allocation techniques such as
register spilling cannot be used for GPU. However, there is no
intensive academic study on optimizing ESSL compiler while
there are many commercial ESSL compiler products.

In this paper, we present a shader compiler for OpenGL ES
2.0 standard. It is carefully designed considering the special

architecture of the target GPU. The compiler optimization
techniques include the inter-procedural register allocation for
stack-less GPU, the uniform/constant packing for global
memory size optimization, the sub-bank register allocation for
code memory size optimization, and the instruction reordering
for two-way VLIW architecture.

II. TARGET GPU ARCHITECTURE
Our target GPU is a two-way VLIW architecture

supporting vector-type instructions [3]. Fig. 1 shows the
architecture of our target GPU. Since the GPU is designed for
embedded systems, it has several features for low power
consumption, small code size, and low hardware cost as
follows: The GPU has only two Arithmetic-Logical Units
(ALUs), which can execute up to two vector instructions
(Instruction #0 and Instruction #1) in parallel, and one Special
Functional Unit (SFU) for special functions such as log,
exponent, etc. Each vector data can have up to four
components, x, y, z, and w.

Figure 1. Target GPU Architecture

The GPU can execute two instructions simultaneously only
when they have different operation types. Therefore, it is
important to find two instructions which are independent and
different operation types in order to maximize the utilization of
GPU. The size of an instruction is variable, either one unit (32
bits) or two units (64 bits). A simple instruction can be encoded
with one unit while a complex instruction may require two
units. Such two modes of instruction formats are suitable for
code size optimization. ESSL compiler should generate one-
unit instructions if possible to minimize the code size.

Fig. 2 shows the overall memory architecture of the target
GPU. There are instruction bank, global buffer (GLB), stream
buffers (STBs), and texture/sampler memory. The compiled
code of shader program is stored in the instruction bank. The
GLB has uniform and constant variables declared in the shader
program. There are twelve STBs, each of which is allocated for
each thread. The target GPU executes 12 threads in a pipelined

The 1st IEEE Global Conference on Consumer Electronics 2012

978-1-4673-1501-2/12/$31.00 ©2012 IEEE 735

manner. The STB for each thread has 128 vector registers for
temporal variables and input/output variables such as attribute
and varying data. The texture/sampler memory is used to store
the texture or sampler images for fragment shader.

Figure 2. Memory architecture of target GPU

III. ESSL COMPILER IMPLEMENTATION
We used the ESSL compiler front-end modules

(preprocessor, scanner, and parser) presented by 3DLabs and
implemented the compiler back-end modules including code
generator and optimizer for the target GPU.

A. Inter-Procedural Register Allocation

Each variable in the target shader program must be
allocated to a proper physical memory during the code
generation. Especially, the STBs should store effectively
temporal variables with lifetime analysis. We used the graph
coloring algorithm for the temporal variable register allocation.
The conventional register allocation technique analyzes the
lifetime of a variable only within procedure since the temporal
variables can be saved in and restored from the stack memory
at procedure call and return. However, since the target GPU
has no memory space for stack, the temporal variables are alive
across procedures.

Therefore, we used an inter-procedural lifetime analysis for
register allocation. The register allocation gives a higher
priority to the temporal variable in deeper and more frequently
called function. If two variables have non-overlapped lifetimes,
they can share single register in STBs.

B. Memory Size Optimization
To encode a STB register number in an instruction, seven

bits are required since a STB has 128 registers. In the target
GPU, the lower five bits are stored in unit 0 and the higher two
bits are stored in unit 1. If the instruction uses the operand in
the low-bank registers, i.e., registers 0~31, it can be encoded
with only one unit. To optimize the program code size, more
instructions should use the low-bank registers. For the purpose,
we divided the register allocation into two steps: First, each
variable is assigned with a virtual register number. Second,
each virtual register is allocated to a physical STB register
number. In the second step, we use the reference count of a
virtual register as priority, and the higher priority virtual
registers are assigned with the low-bank registers.

In addition, in order to store space-efficiently the variable-
sized uniform and constant variables into GLBs, our compiler
packs them with a knapsack-like algorithm.

C. Instruction Reordering

To utilize the two-way VLIW architecture of the target
GPU, compiler checks whether two sequential instructions are
independent and use different types of operations. If the
condition is not satisfied, compiler reorders instructions in a
basic block to make more chances.

IV. EXPERIMENTS
To evaluate our compiler implementation, we used 3D IP

test bench for target GPU and OpenGL ES Conformance
Testing set [4]. Figure 3 shows the effect of code size
optimization technique. The average code size is reduced by
4.7%. Especially, for the fragment shader in the texture
program, the code size is reduced by 10.3% since many one-
unit instructions are generated. Since the fragment shader in the
disable program has few variables in the source code, it is not
significantly affected by the code size optimization techniques.

Figure 3. The effect of code size optimization

In Figure 4, we compared the performance of two-way
instruction code with that of one-way instruction code. The
average execution cycle is decreased by 10.7%. Especially,
there is about 16.8% of performance improvement for the
texture program.

Figure 4. The effect of two-way instruction

V. CONCLUSION
In this paper, we implemented ESSL compiler supporting

OpenGL ES 2.0 standard. The compiler is highly optimized
considering several features of embedded GPU such as stack-
less architecture, variable-length instruction and data, and
multi-way instructions.

ACKNOWLEDGMENT

This work was supported by the IT R&D program of

MKE/KEIT. [KI0018-10041244, SmartTV 2.0 Software

Platform]

REFERENCES
[1] Khronos Group, OpenGL ES 2.0 http://www.khronos.org/opengles/

[2] Robert, M. Hill, S., “ESSL compiler for embedded 3D graphics
architecture,” Proc. Of International Conference on Consumer
Electronics (ICCE), pp. 10-14, Jan. 2009.

[3] Woo-Young Kim, Bo-Haeng Lee, Kwang-Yeob Lee, and Jae-Chang
Kwak, “Design of a fully programmable shader processor for low power
mobile devices”, TENCON `09, pp. 23-26, Jan. 2009.

[4] OpenGL ES Adoption and Conformance Testing,
http://www.khronos.org/opengles/adopters/

736

