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Abstract—Recently, graphic processing unit (GPU) becomes a 

mandatory component in mobile consumer devices such mobile 

phones. The vertex and fragment shader programs in embedded 

GPU are programmed with embedded system shading 

language(ESSL). The shader compiler for ESSL should be 

designed considering several distinct features of ESSL and GPU. 

In this paper, we present ESSL compiler techniques for 

embedded GPU. The compiler can optimize the code and data 

memory size as well as improve the performance of shader code 

by fully exploiting the special architecture of target GPU. 

Experiments show that the proposed optimization techniques can 

reduce the code size by up to 10.3% and the execution cycles by 

up to 16.8%. 
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I.  INTRODUCTION 

As recent mobile consumer devices such as mobile phones 
and mobile pads are supporting rich 3D user interfaces, 3D 
games, and WebGL, graphic processor units (GPUs) are widely 
adopted by mobile consumer devices. In order to support more 
complex graphic processing, recent GPUs use programmable 
shader pipeline. Users are able to program the desired graphic 
processing operations with shading language. OpenGL ESSL 
[1] is a standard language for vertex and fragment shader 
programs in embedded systems. Currently, OpenGL ES 2.0 
standard has been published.  

ESSL is similar to the conventional C language, but there 
are many differences on data types such as vector typed 
variables, matrix and sampler data. Furthermore, each variable 
must be specified with the allocated location in the physical 
memory by qualifier. To execute a shader program at a target 
GPU, it should be compiled by ESSL compiler [2]. Since both 
shader program and GPU have unique characteristics, ESSL 
compiler should be designed considering such features. For 
example, GPUs generally use the multi-way VLIW architecture 
or multithreaded architecture to execute multiple independent 
instructions simultaneously. ESSL compiler should find 
independent instructions to generate compact VLIW 
instructions. In addition, GPUs have distinct memory 
components such as global buffer, stream buffer, 
texture/sampler memory, and constant memory. Since each 
memory component can be used only for specified data, there 
is no memory space for general purpose such as stack memory. 
Therefore, the traditional register allocation techniques such as 
register spilling cannot be used for GPU. However, there is no 
intensive academic study on optimizing ESSL compiler while 
there are many commercial ESSL compiler products. 

In this paper, we present a shader compiler for OpenGL ES 
2.0 standard. It is carefully designed considering the special 

architecture of the target GPU. The compiler optimization 
techniques include the inter-procedural register allocation for 
stack-less GPU, the uniform/constant packing for global 
memory size optimization, the sub-bank register allocation for 
code memory size optimization, and the instruction reordering 
for two-way VLIW architecture. 

II. TARGET GPU ARCHITECTURE 
Our target GPU is a two-way VLIW architecture 

supporting vector-type instructions [3]. Fig. 1 shows the 
architecture of our target GPU. Since the GPU is designed for 
embedded systems, it has several features for low power 
consumption, small code size, and low hardware cost as 
follows: The GPU has only two Arithmetic-Logical Units 
(ALUs), which can execute up to two vector instructions 
(Instruction #0 and Instruction #1) in parallel, and one Special 
Functional Unit (SFU) for special functions such as log, 
exponent, etc. Each vector data can have up to four 
components, x, y, z, and w.  

 
Figure 1. Target GPU Architecture 

 

The GPU can execute two instructions simultaneously only 
when they have different operation types. Therefore, it is 
important to find two instructions which are independent and 
different operation types in order to maximize the utilization of 
GPU. The size of an instruction is variable, either one unit (32 
bits) or two units (64 bits). A simple instruction can be encoded 
with one unit while a complex instruction may require two 
units. Such two modes of instruction formats are suitable for 
code size optimization. ESSL compiler should generate one-
unit instructions if possible to minimize the code size.  

Fig. 2 shows the overall memory architecture of the target 
GPU. There are instruction bank, global buffer (GLB), stream 
buffers (STBs), and texture/sampler memory. The compiled 
code of shader program is stored in the instruction bank. The 
GLB has uniform and constant variables declared in the shader 
program. There are twelve STBs, each of which is allocated for 
each thread. The target GPU executes 12 threads in a pipelined 
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manner. The STB for each thread has 128 vector registers for 
temporal variables and input/output variables such as attribute 
and varying data. The texture/sampler memory is used to store 
the texture or sampler images for fragment shader.  

 

Figure 2. Memory architecture of target GPU 
 

III. ESSL COMPILER IMPLEMENTATION 
We used the ESSL compiler front-end modules 

(preprocessor, scanner, and parser) presented by 3DLabs and 
implemented the compiler back-end modules including code 
generator and optimizer for the target GPU.  

A. Inter-Procedural Register Allocation  

Each variable in the target shader program must be 
allocated to a proper physical memory during the code 
generation. Especially, the STBs should store effectively 
temporal variables with lifetime analysis. We used the graph 
coloring algorithm for the temporal variable register allocation. 
The conventional register allocation technique analyzes the 
lifetime of a variable only within procedure since the temporal 
variables can be saved in and restored from the stack memory 
at procedure call and return. However, since the target GPU 
has no memory space for stack, the temporal variables are alive 
across procedures.  

Therefore, we used an inter-procedural lifetime analysis for 
register allocation. The register allocation gives a higher 
priority to the temporal variable in deeper and more frequently 
called function. If two variables have non-overlapped lifetimes, 
they can share single register in STBs.   

B. Memory Size Optimization 
To encode a STB register number in an instruction, seven 

bits are required since a STB has 128 registers. In the target 
GPU, the lower five bits are stored in unit 0 and the higher two 
bits are stored in unit 1. If the instruction uses the operand in 
the low-bank registers, i.e., registers 0~31, it can be encoded 
with only one unit. To optimize the program code size, more 
instructions should use the low-bank registers. For the purpose, 
we divided the register allocation into two steps: First, each 
variable is assigned with a virtual register number. Second, 
each virtual register is allocated to a physical STB register 
number. In the second step, we use the reference count of a 
virtual register as priority, and the higher priority virtual 
registers are assigned with the low-bank registers.  

In addition, in order to store space-efficiently the variable-
sized uniform and constant variables into GLBs, our compiler 
packs them with a knapsack-like algorithm.  

C. Instruction Reordering 

To utilize the two-way VLIW architecture of the target 
GPU, compiler checks whether two sequential instructions are 
independent and use different types of operations. If the 
condition is not satisfied, compiler reorders instructions in a 
basic block to make more chances. 

IV. EXPERIMENTS 
To evaluate our compiler implementation, we used 3D IP 

test bench for target GPU and OpenGL ES Conformance 
Testing set [4]. Figure 3 shows the effect of code size 
optimization technique. The average code size is reduced by 
4.7%. Especially, for the fragment shader in the texture 
program, the code size is reduced by 10.3% since many one-
unit instructions are generated. Since the fragment shader in the 
disable program has few variables in the source code, it is not 
significantly affected by the code size optimization techniques.  

 

Figure 3. The effect of code size optimization 

In Figure 4, we compared the performance of two-way 
instruction code with that of one-way instruction code. The 
average execution cycle is decreased by 10.7%. Especially, 
there is about 16.8% of performance improvement for the 
texture program.   

 

Figure 4. The effect of two-way instruction 

V. CONCLUSION 
In this paper, we implemented ESSL compiler supporting 

OpenGL ES 2.0 standard.  The compiler is highly optimized 
considering several features of embedded GPU such as stack-
less architecture, variable-length instruction and data, and 
multi-way instructions.  
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