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  Abstract - We address the problem of dynamic 

voltage scaling (DVS) for real-time systems with 
both periodic and aperiodic tasks. Although many 
DVS algorithms have been developed for 
real-time systems with periodic tasks, the 
arbitrary temporal behaviors of aperiodic tasks 
make it difficult to use the algorithms for such a 
system with mixed tasks. We propose  an 
off-line DVS algorithm and on-line DVS 
algorithms that are based on existing DVS 
algorithms but can utilize the execution behavior 
of bandwidth-preserving server which is a 
dedicated server to service aperiodic tasks. 
Experimental results show that the proposed 
algorithms reduce the energy consumption by 
26% over the power-down method under the RM 
scheduling policy. 

Ⅰ. Introduction

 Many practical real-time applications require 

aperiodic tasks as well as periodic tasks. For 

example, consider multimedia applications (e.g., 

MP3 or MPEG player) in which audio or video 

data is decoded periodically maintaining 

consistent output rates. These systems continue 

accepting user inputs that need prompt responses 

(e.g., volume control, playback control or playlist 

editing). While the decoding tasks are periodic 

tasks, the tasks to service user inputs are 

aperiodic tasks. Generally, periodic tasks are 

time-driven with hard deadlines but aperiodic 

tasks are event-driven (i.e., activated at arbitrary 

times) with soft deadlines.  In this paper, we call 

a system with both periodic and aperiodic tasks 

as a mixed task system.

 In mixed task systems, there are two design 

objectives. The first objective is to guarantee the 

schedulability of all periodic tasks under 

worst-case execution scenarios. That is, 

aperiodic tasks should not prevent periodic tasks 

from completing before their deadlines. The 

second objective is that aperiodic tasks should 

have "good" average response times. To satisfy 

these objectives, many scheduling algorithms such 

as deferrable server, sporadic server, total 

bandwidth server and constant bandwidth server 

had been proposed [7, 10, 1]. They are called 

"bandwidth-preserving servers". In this paper, we 

introduce the third design objective for the 

energy consumption in the mixed task system. 

That is, the third objective is to minimize the 

total energy consumption due to both periodic 

tasks and aperiodic tasks. 

 Dynamic voltage scaling (DVS) [5] is a good 

candidate to reduce the energy consumption of 

real-time systems. When the required 

performance of the target system is lower than 

the maximum performance, we can reduce the 

supply voltage and the clock speed to minimize 

the energy consumption. Recently, many voltage 

scheduling algorithms have been proposed for 

hard real-time systems [9, 2, 8, 4]. All of these 

algorithms assume that the system consists of 

periodic hard real-time tasks only and the task 

release times are known a priori.
 Although the existing DVS algorithms can be 

effective for optimizing the energy consumption 

of periodic tasks, they cannot be used for mixed 

task systems. The arbitrary behaviors of 

aperiodic tasks prevent the DVS algorithms from 

identifying the slack times. Therefore, it is 

necessary to modify the existing DVS algorithms 

to be applicable to mixed task systems with 

aperiodic tasks.

 Despite of many researches on dynamic voltage 

scheduling, there have been few studies to adapt 

DVS techniques to the aperiodic task scheduling. 

A recent work by W. Yuan and K. Nahrstedt [11] 

proposed a DVS algorithm for soft real-time 

multimedia and best-effort applications. The 

target of their algorithm is aperiodic task 

systems, not mixed task systems. Y. Doh et al. 
[3] investigated the problem of allocating both 

energy and utilization for mixed task systems. 

They used the total bandwidth server and 

considered the static scheduling problem only. 

Given the energy budget, their algorithm finds 

voltage settings for both periodic and aperiodic 
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tasks such that all periodic tasks are completed 

before their deadlines and all aperiodic tasks can 

attain the minimal response times. 

 We propose DVS algorithms that guarantee the 

first objective (i.e., timing constraints of periodic 

tasks) while making the best effort of satisfying 

the third objective (i.e., low energy) with a 

reasonable performance bound on the second 

objective (i.e., good average response time). We 

present new dynamic voltage scheduling 

algorithms by adding the slack estimation method 

for the bandwidth-preserving server to existing 

on-line voltage scheduling algorithms for a 

periodic task set. 

 The modified DVS algorithms utilize the 

execution behaviors of bandwidth-preserving 

server for aperiodic tasks to apply the key ideas 

of the existing DVS algorithms such as [9, 8, 2]. 

The task schedules generated by the proposed 

DVS algorithms can reduce the energy 

consumption by 25% over the task schedules 

which execute all tasks at full speed and power 

down at idle intervals (i.e., the power-down 

method). 

 To the best of our knowledge, our work is the 

first attempt to develop on-line DVS algorithms 

for the mixed task system. While Y. Doh et al.'s 

algorithm is an off-line static speed assignment 

algorithm under the EDF scheduling policy, our 

work in this paper considers both off-line and 

on-line algorithms under RM scheduling policy. 

Another difference is that we concentrate on 

minimizing the energy consumption under the 

constraint on the average response time.

 The rest of this paper is organized as follows. 

In Section II, we introduce the problems of static 

speed assignment and dynamic speed assignment  

in mixed task systems. The dynamic speed 

assignment algorithms are presented in Sections 

III. In Section IV, the experimental results are 

discussed. We conclude with a summary and 

future works in Section V.

Ⅱ. Problem Formulation

We assume that a mixed task system T consists 

of n  periodic tasks, τ1, ,τn , and an aperiodic 

task, σ. The aperiodic task σ is serviced by a 

bandwidth-preserving server S. The bandwidth 

-preserving server S is characterized by an 

ordered pair (Qs,Ts ) where Qs is the maximum 

budget and Ts is the period of the server. During 

the execution of aperiodic tasks, the budget of S 

is consumed. We use qs to denote the remaining 

budget of S. The budget qs is set to Qs at each 

replenishment time. S is scheduled together with 

periodic tasks in the system according to the 

given priority-driven algorithm. Once S is 

activated, it executes any pending aperiodic 

requests within the limit of its budget qs .

 A periodic task τi is specified by (Cτi
, Tτi

) where 

Cτ i
 and Tτ i

 are the worst-case execution time 

(WCET) and the period of τi, respectively. We 

assume that periodic tasks have relative 

deadlines equal to their periods. The j-th 

instance of τi and the k-th instance of σ are 

denoted by τ i, j  and σk , respectively. We assume 

that the aperiodic task instances σ1, , σm  are 

executed during the hyper period H of periodic 

tasks. 

 We first consider the static speed assignment 

problem considering both the expected workload 

and the schedulability condition. Our static 

voltage assignment algorithm selects the 

operating speed Sp of periodic tasks and the 

operating speed Ss of scheduling server for 

aperiodic tasks, respectively. Sp and Ss should 

allow a real-time scheduler to meet all the 

deadlines for a given periodic task set minimizing 

the total energy consumption. Consequently, the 

problem of the static speed assignment  can be 

formulated as follows: 

Static Speed Assignment Problem

Given Up, Us, w, and ρ,

find Sp and Ss such that

 E = Up w S 2
p +ρ S 2

s  is minimized

subject to 
Up

Sp

+
Us

Ss
≤Ulub  and 0≤Sp,Ss≤1. 

where Up is the worst case utilization of periodic 

task set, Us (= Qs/Ts) is the server utilization, w 

is the average workload ratio of periodic tasks, 

and ρ is the average workload of aperiodic tasks. 

E is a metric reflecting energy consumption1). 
Ulub , which is the least upper bound of 

schedulable utilization, is n (21/n − 1 )  for n  tasks 

at the RM scheduling. Using the Lagrange 

transform, we can get a following optimal solution 

for Sp and Ss.

Sp =
1

Ulub









Up + Us
3

√
ρ

Us w
,

Ss =
1

Ulub









Up
3

√
Us w

ρ
+ Us

1) Assuming the supply voltage and clock speed are 

proportional in DVS, the energy consumption is represented to 

be proportional to the square of clock speed.
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Under the assumption that we can know the 

exact w and ρ values, we can get the optimal 

static speeds for periodic and aperiodic tasks. 

 Dynamic speed assignment problem is to find 

the speeds of each periodic task instances and 

aperiodic task instances at run time. Our 

objective is to minimize the total energy 

consumption of both periodic and aperiodic tasks 

using a DVS algorithm while satisfying the timing 

constraints of periodic tasks and bounding the 

response time delay.

 If an aperiodic task σk  can be serviced without 

any interference by periodic tasks or another 

aperiodic tasks, the response time of the 

aperiodic task σk  is c (σk )/s(σk ) where c(σk ) and 

s(σk )  are the number of execution cycles and the 

clock speed of σk , respectively. However, the 

execution of the aperiodic task σk  is delayed due 

to the following factors: (1) Queueing delay: σk  

should wait until the completion time of the 

aperiodic tasks released before σk . (2)  Budget 

delay: σk  should wait until the next replenishment 

time if qs of the bandwidth-preserving server S 

is 0. (3) Preemption delay: σk  should wait until 

the completion time of the periodic tasks which 

have higher priorities than the priority of S. We 

denote the delays due to the queueing, budget 

and preemption as w(σk ), b(σk ), and p(σk ), 

respectively. Then, the response time of σk  can 

be represented as

 c(σk )/s(σk )+w (σk )+ b(σk )+p (σk ).

 The response time will be increased by a DVS 

algorithm because s(σk ) , w(σk ), b(σk ) and p(σk ) 

are changed. When the response times of σk  are 

t and t+D in the non-DVS scheme and the DVS 

scheme respectively, we call the increase D in 

the response time as the response time delay. 

Therefore, the problem of dynamic speed 

assignment (DSA) can be formulated as follows:

Dynamic Speed Assignment Problem

Given T= τ1, , τn ,σ , S  and ,

find s(τ1,1 ), , s(τn,H/Tn
) and s(σ1 ), , s(σm ) such 

that E = Σ
i = 1

n

Σ
j = 1

H/Tτi

E (τi,j)+ Σ
k = 1

m

E (σk ) is minimized

subject to ∀i, j, e (τ i,j)≤j Tτi
 and ∀k,D (σk )≤ . 

where s (τi, j ) , E (τi, j ) , and e (τi, j )  are the clock 

speed, the energy consumption and the 

completion time of the task instance τ i, j , 

respectively. E (σk )  denotes the energy 

consumption of the aperiodic task instance σk . 

D (σk )  represents the response time delay of σk . 

In this paper, we propose the DVS algorithms 

which provide solutions for the DSA problem 

when = Ts − Qs . 

 Existing on-line DVS algorithms such as [9, 2, 

8, 4] are not directly applicable for the DSA 

problem. For example, consider the stretching 
-to-NTA technique used in [9]. It stretches the 

execution time of the periodic task ready for 

execution to the next arrival time of a periodic 

task when there is no another periodic task in 

ready queue. To use the stretching-to-NTA 

technique for a mixed task system, we should 

know the next arrival time of an aperiodic task 

as well as a periodic task. Though the arrival 

times of periodic tasks can be easily computed 

using their periods, we cannot know the arrival 

times of aperiodic tasks since they arrive at 

arbitrary times. If we ignore the arrivals of 

aperiodic tasks, there will be a deadline miss of 

periodic hard real-time task when an aperiodic 

task arrives before the next arrival time of a 

periodic task. Consequently, the stretching-to 
-NTA technique should assign the full speed to 

all tasks in the mixed task system. 

 Therefore, we need to modify on-line DVS 

algorithms to utilize the characteristics of 

bandwidth-preserving servers. In this paper, we 

handle only sporadic server [10] because it is 

more advanced algorithm for the RM scheduling 

policy.

Ⅲ. Dynamic Speed Assignment

Figure 1(a) shows the task schedule using a 

sporadic server SS, assuming two periodic tasks, 

τ1 = (1,5 ) and τ2 = (2,8 ), and one SS =(1,4). The 

budget of SS, qs, is set to Qs at time 0. If an 

aperiodic task is executed during the time [t1, t2 ], 

qs is reduced by t2 − t1  at the time t2 . The budget 

qs is replenished by the amount of t2 − t1  at the 

time t1 + Ts . SS preserves its budget qs if no 

requests are pending when released. An aperiodic 

request can be serviced at any time (at server's 

priority) as long as the budget of SS is not 

exhausted (e.g., task σ1). If the budget is 

exhausted, aperiodic tasks should wait until the 

next replenishment time. For example, though the 

task σ4 arrived at the time 19, it is serviced at 

the time 20.

 Although we cannot know the arrival times of 

aperiodic tasks, the stretching-to-NTA method 

can be used if we utilize the execution behavior 

of SS. There are two cases the current ready 

task can be stretched: (1) Rule for aperiodic task: 

If there is no periodic task in the ready queue, 
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execute an aperiodic task at the speed of qs

/(min(next arrival time of a periodic task, next 

replenishment time)-t) where t is the current 

time. (2) Rule for periodic task: If there is only 

one periodic task in the ready queue and qs is 0, 

stretch the periodic task to min(next arrival time 

of a periodic task, next replenishment time). This 

is because the arriving aperiodic task is delayed 

until the next replenishment time if qs is 0. If 

qs>0, we cannot scale down the speed of the 

periodic task even though there is only one 

periodic task in the ready queue. 

 Using these two rules, we modified existing 

on-line DVS algorithms. Figure 1(b) shows the 

task schedule using the lppsRM/SS algorithm 

which is the modified version of lppsRM [9] for 

SS. lppsRM uses the stretching-to-NTA method. 

The aperiodic tasks σ1 and σ2 are stretched to 

the next arrival times of periodic tasks (5 and 

15) because there is no periodic task in ready 

queue. The periodic tasks τ1,5 , τ2,3 , and the latter 

part of τ2,4  are stretched to min(next arrival time, 

next replenishment time) because qs is 0. We 

cannot stretch the tasks τ1,2  and τ1,3  because qs 

is larger than 0.

 The preemption delays in lppsRM and lppsRM/SS 

are same because periodic tasks are stretched 

only when qs=0 by the stretching rule for 

periodic task. The budget delays are also same 

due to the stretching rule for aperiodic task. 

However, since the queueing delay and the clock 

speed of aperiodic task are changed, the 

response time of aperiodic task in lppsRM/SS is 

longer than that in lppsRM. Nevertheless, we can 

guarantee that D (σk )     ≤     Ts− Qs for all σk . If σk  is 

completed at t in lppsRM, the completion time of 
σk  is smaller than t + Ts − Qs in lppsRM/SS  

because R     ≤     t +Ts−Qs where R is the next 

replenishment time.

 Though we can reduce the energy consumption 

by lppsRM/SS algorithm, the algorithm can show 

poor performance when the workload of aperiodic 

tasks is small. In this case, since the budget qs is 

larger than 0 at most of scheduling points, we 

cannot use the stretching rule for periodic task. 

Extremely, when there is no aperiodic request, 

there is nothing to do for the DVS algorithm. 

Therefore, we need a more advanced DVS 

algorithm which can be applicable to the mixed 

task system with a low aperiodic workload. For 

this purpose, we propose a new slack estimation 

method, bandwidth-based slack-stealing, which 

identifies the maximum slack time for a periodic 

task considering the bandwidth of sporadic 

server. Figure 1(c) shows the lppsRM/SS-SE  

algorithm, which is based on lppsRM/SS but uses 

the bandwidth-based slack-stealing method. When 

qs is larger than 0 and there is only one periodic 

task in the ready queue, the slack estimation 

method calculates the maximum available time 

before the arrival time of next periodic task.

 Figure 2 shows the bandwidth-based 
slack-stealing method. In Figure 2, Tτ  is the 

period of τ , t is the current time, NTA is the 

next periodic task arrival time and R is the next 

replenishment time of SS. We should consider 

two different cases depending on the priority of 

SS. Figure 2(a) shows the case when Tτ > Ts. In 

this case, the maximum blocking time by 

aperiodic tasks before the next task arrival time 

(NTA) should be identified. Figure 2(b) shows the 

case when Tτ < Ts. In this case, the task τ  is 

stretched to  min (R, NTA ) − qs. Although there is 

no deadline miss even when the periodic task τ  

is completed after R, the proposed DVS algorithm 

is designed to bound the response time delay. 

Under this policy, the preemption delay is 

increased but we can guarantee that 
D (σk )≤Ts −Qs for all σk  because σk  is not 

delayed above the replenishment time R.

(a) Tτ > Ts

NTA

Ts

t

qs

R

τ

s
s

Q
T

RNTA







 −

s
s

T
T

RNTAR 






 −
+

),min( ss
s

QT
T

RNTARNTA 






 −
−−

NTA

Ts

t

qs

R

τ

s
s

Q
T

RNTA







 −

s
s

T
T

RNTAR 






 −
+

),min( ss
s

QT
T

RNTARNTA 






 −
−−

 
(b) Tτ < Ts
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Figure 2. Bandwidth-based slack stealing in 

lppsRM/SS-SE.
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Figure 1. Task schedules with a sporadic server.
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 From Figure 2, the maximum available time 

MAT of a task τ can be calculated as follows:

if (Tτ > Ts )  MAT = NTA − t− qs−
NTA − R

Ts

Qs

   − min (NTA−R−
NTA−R

Ts

Ts,Qs )

if (Tτ < Ts )  MAT =  min (R, NTA ) − t− qs

In Figure 1(c), the periodic tasks τ1,2 , τ1,3  and τ2,1  

are stretched by the bandwidth-based 
slack-stealing method. For example, at the time 

5, the task τ1,2  has the available time 2 

(= NTA − t − qs = 8 − 5 − 1 ). A side effect of the 

bandwidth-based slack-stealing method is that 

aperiodic tasks tend to be executed at full speed. 

Due to the side effect, the DVS algorithm using 

the bandwidth-based slack-stealing method 

generates better average response times.

Ⅳ. Experimental Results 

 We have evaluated the performance of our DVS 

algorithms for sporadic server using simulations. 

The execution time of each periodic task instance 

was randomly drawn from a Gaussian distribution 

in the range of [BCET, WCET] where BCET is 

the best case execution time. 

 The interarrival times and service times of 

aperiodic tasks were generated from the 

exponential distribution using the parameters λ 

and µ where 1/λ  is the mean interarrival time 

and 1/µ  is the mean service time. Then, the 

workload of aperiodic tasks can be represented 

by ρ = λ/µ . If there is no interference between 

aperiodic tasks and periodic tasks, the average 

response time of aperiodic tasks is given by 

(µ− λ )−1  from the M/M/1 queueing model.

 Table 1 shows the experimental results of the 

static speed assignment. The results show the 

energy consumption and response time normalized 

by the results of uniform speed assignment 

method, varying Us with fixed values of Up and ρ . 

In this experiments, BCET is assumed to be 50% 

of WCET. The uniform speed assignment method 

assigns the same speed to both periodic tasks 

and aperiodic tasks making the total utilization as 
Ulub . We assumed that if the system is idle it 

enters into the power-down mode. The proposed 

static speed assignment method reduced the 

energy consumption and the average response 

time up to 14% and 5%, respectively. Since the 

scheduling server gets a higher speed than the 

speed for periodic tasks when w > ρ , the static 

speed assignment reduces the average response 

time as well as the energy consumption.

 For the dynamic speed assignment algorithm, we 

observed the energy consumption of the total 

system and the average response time of 

aperiodic tasks varying the server utilization Us 

and the workload of aperiodic tasks ρ under a 

fixed utilization Up of periodic tasks. (Due to the 

limited space, we present the experimental 

results where Us is controlled by changing the 

value of Ts with a fixed Qs  value and ρ is 

controlled by a varying λ with a fixed µ value.)

 The periodic task set has three tasks with Up

=0.3. For all experiments including the non-DVS 

scheme, both periodic tasks and aperiodic tasks 

were given an initial clock speed 
f0 = (Up + Us )fm /Ulub , where fm  is the maximum 

clock speed. During run time, the speed is 

further reduced by on-line DVS algorithms 

exploiting the slack times. In the experiments, 

BCET is assumed to be 10% of WCET.

 Figure 3(a) shows the energy consumptions of 

the ccRM/SS algorithm and the ccRM/SS-SE 

algorithm normalized by that of the power-down 

method.  ccRM [8] also use the stretching-to 
-NTA method. ccRM/SS and ccRM/SS-SE use the 

proposed dynamic speed assignment algorithms 

additionally. We also evaluated the modified 

version of ccRM/SS-SE called ccRM/SS-SD.  The 

ccRM/SS-SD algorithm uses a different slack 

distribution method. When slack times are 

identified, ccRM/SS-SD gives the slack times to 

only periodic tasks. Therefore, aperiodic tasks 

are always executed at the initial clock speed f0 . 

ccRM/SS-SD is good for a better response time.

 The difference between the energy savings of 

ccRM/SS and ccRM/SS-SE decreases as ρ 

increases. This is because there are more 

chances for SS to have the zero budget when ρ 

is large. As Us increases, ccRM/SS-SE shows a 

larger energy saving compared with ccRM/SS 

because ccRM/SS-SE performs well in the low 

aperiodic workload (over Us). The ccRM/SS and 

ccRM/SS-SE reduced the energy consumption on 

average by 11% and 26% over the power-down 

method, respectively.

Table 1. Experimental results of static speed 

assignment (Up = 0.3, ρ=0.1 )

Us
Normalized 

Energy Consumption

Normalized 

Response Time

0.15 0.98 0.97

0.20 0.88 0.96

0.25 0.91 0.95

0.30 0.88 0.96

0.35 0.86 0.97
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 As shown in Figure 3(b), ccRM/SS and 

ccRM/SS-SE increase the response time on 

average by 10% and 5% over the power-down 

method, respectively. Due to the side effect on 

aperiodic tasks explained at Section III, 

ccRM/SS-SE shows better average response 

times. ccRM/SS-SD shows almost the same 

response time to that of power-down method 

because the execution speed of aperiodic task is 

always f0  and the preemption delay is not 

increased except the case when Ts is larger than 

the periods of periodic tasks. However, it shows 

better energy performances than ccRM/SS.
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(b) Response Time

Figure 3. Experimental results using a sporadic 

server
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V. Conclusions

We have proposed DVS algorithms for mixed task 

systems which have both periodic and aperiodic 

tasks. We presented the slack estimation methods 

for the bandwidth-preserving servers. Existing 

on-line DVS algorithms, which cannot be used for 

mixed task systems, were modified to use the 

proposed slack estimation methods. The modified 

DVS algorithms reduced the energy consumption 

by 26% over the power-down method. We also 

showed the effects of the slack distribution 

methods on the energy and the response time.

 Our work in this paper can be extended in 

several directions. Though the proposed algorithm 

only guarantees that the response time delay is 

smaller than Ts − Qs , it will be more useful if we 

can control the maximum response time delay 

with an arbitrary  value. Furthermore, it will be 

interesting to use the DVS algorithm to utilize the 

temporal locality of aperiodic requests. When the 

aperiodic requests are sparse, we could use a 

larger  value for a more energy-efficient 

schedule.
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