
Dynamic Voltage Scaling for Mixed Task Sets

in Fixed-Priority Systems

Dongkun Shin and Jihong Kim

School of Computer Science and Engineering

Seoul National University

San 56-1, Shillim-dong, Kwanak-gu, Seoul, Korea

TEL : 02-880-1861

Email : sdk@davinci.snu.ac.kr, jihong@davinci.snu.ac.kr

 Abstract - We address the problem of dynamic

voltage scaling (DVS) for real-time systems with
both periodic and aperiodic tasks. Although many
DVS algorithms have been developed for
real-time systems with periodic tasks, the
arbitrary temporal behaviors of aperiodic tasks
make it difficult to use the algorithms for such a
system with mixed tasks. We propose an
off-line DVS algorithm and on-line DVS
algorithms that are based on existing DVS
algorithms but can utilize the execution behavior
of bandwidth-preserving server which is a
dedicated server to service aperiodic tasks.
Experimental results show that the proposed
algorithms reduce the energy consumption by
26% over the power-down method under the RM
scheduling policy.

Ⅰ. Introduction

 Many practical real-time applications require

aperiodic tasks as well as periodic tasks. For

example, consider multimedia applications (e.g.,

MP3 or MPEG player) in which audio or video

data is decoded periodically maintaining

consistent output rates. These systems continue

accepting user inputs that need prompt responses

(e.g., volume control, playback control or playlist

editing). While the decoding tasks are periodic

tasks, the tasks to service user inputs are

aperiodic tasks. Generally, periodic tasks are

time-driven with hard deadlines but aperiodic

tasks are event-driven (i.e., activated at arbitrary

times) with soft deadlines. In this paper, we call

a system with both periodic and aperiodic tasks

as a mixed task system.

 In mixed task systems, there are two design

objectives. The first objective is to guarantee the

schedulability of all periodic tasks under

worst-case execution scenarios. That is,

aperiodic tasks should not prevent periodic tasks

from completing before their deadlines. The

second objective is that aperiodic tasks should

have "good" average response times. To satisfy

these objectives, many scheduling algorithms such

as deferrable server, sporadic server, total

bandwidth server and constant bandwidth server

had been proposed [7, 10, 1]. They are called

"bandwidth-preserving servers". In this paper, we

introduce the third design objective for the

energy consumption in the mixed task system.

That is, the third objective is to minimize the

total energy consumption due to both periodic

tasks and aperiodic tasks.

 Dynamic voltage scaling (DVS) [5] is a good

candidate to reduce the energy consumption of

real-time systems. When the required

performance of the target system is lower than

the maximum performance, we can reduce the

supply voltage and the clock speed to minimize

the energy consumption. Recently, many voltage

scheduling algorithms have been proposed for

hard real-time systems [9, 2, 8, 4]. All of these

algorithms assume that the system consists of

periodic hard real-time tasks only and the task

release times are known a priori.
 Although the existing DVS algorithms can be

effective for optimizing the energy consumption

of periodic tasks, they cannot be used for mixed

task systems. The arbitrary behaviors of

aperiodic tasks prevent the DVS algorithms from

identifying the slack times. Therefore, it is

necessary to modify the existing DVS algorithms

to be applicable to mixed task systems with

aperiodic tasks.

 Despite of many researches on dynamic voltage

scheduling, there have been few studies to adapt

DVS techniques to the aperiodic task scheduling.

A recent work by W. Yuan and K. Nahrstedt [11]

proposed a DVS algorithm for soft real-time

multimedia and best-effort applications. The

target of their algorithm is aperiodic task

systems, not mixed task systems. Y. Doh et al.
[3] investigated the problem of allocating both

energy and utilization for mixed task systems.

They used the total bandwidth server and

considered the static scheduling problem only.

Given the energy budget, their algorithm finds

voltage settings for both periodic and aperiodic

734

tasks such that all periodic tasks are completed

before their deadlines and all aperiodic tasks can

attain the minimal response times.

 We propose DVS algorithms that guarantee the

first objective (i.e., timing constraints of periodic

tasks) while making the best effort of satisfying

the third objective (i.e., low energy) with a

reasonable performance bound on the second

objective (i.e., good average response time). We

present new dynamic voltage scheduling

algorithms by adding the slack estimation method

for the bandwidth-preserving server to existing

on-line voltage scheduling algorithms for a

periodic task set.

 The modified DVS algorithms utilize the

execution behaviors of bandwidth-preserving

server for aperiodic tasks to apply the key ideas

of the existing DVS algorithms such as [9, 8, 2].

The task schedules generated by the proposed

DVS algorithms can reduce the energy

consumption by 25% over the task schedules

which execute all tasks at full speed and power

down at idle intervals (i.e., the power-down

method).

 To the best of our knowledge, our work is the

first attempt to develop on-line DVS algorithms

for the mixed task system. While Y. Doh et al.'s

algorithm is an off-line static speed assignment

algorithm under the EDF scheduling policy, our

work in this paper considers both off-line and

on-line algorithms under RM scheduling policy.

Another difference is that we concentrate on

minimizing the energy consumption under the

constraint on the average response time.

 The rest of this paper is organized as follows.

In Section II, we introduce the problems of static

speed assignment and dynamic speed assignment

in mixed task systems. The dynamic speed

assignment algorithms are presented in Sections

III. In Section IV, the experimental results are

discussed. We conclude with a summary and

future works in Section V.

Ⅱ. Problem Formulation

We assume that a mixed task system T consists

of n periodic tasks, τ1, ,τn , and an aperiodic

task, σ. The aperiodic task σ is serviced by a

bandwidth-preserving server S. The bandwidth

-preserving server S is characterized by an

ordered pair (Qs,Ts) where Qs is the maximum

budget and Ts is the period of the server. During

the execution of aperiodic tasks, the budget of S

is consumed. We use qs to denote the remaining

budget of S. The budget qs is set to Qs at each

replenishment time. S is scheduled together with

periodic tasks in the system according to the

given priority-driven algorithm. Once S is

activated, it executes any pending aperiodic

requests within the limit of its budget qs .

 A periodic task τi is specified by (Cτi
, Tτi

) where

Cτ i
 and Tτ i

 are the worst-case execution time

(WCET) and the period of τi, respectively. We

assume that periodic tasks have relative

deadlines equal to their periods. The j-th

instance of τi and the k-th instance of σ are

denoted by τ i, j and σk , respectively. We assume

that the aperiodic task instances σ1, , σm are

executed during the hyper period H of periodic

tasks.

 We first consider the static speed assignment

problem considering both the expected workload

and the schedulability condition. Our static

voltage assignment algorithm selects the

operating speed Sp of periodic tasks and the

operating speed Ss of scheduling server for

aperiodic tasks, respectively. Sp and Ss should

allow a real-time scheduler to meet all the

deadlines for a given periodic task set minimizing

the total energy consumption. Consequently, the

problem of the static speed assignment can be

formulated as follows:

Static Speed Assignment Problem

Given Up, Us, w, and ρ,

find Sp and Ss such that

 E = Up w S 2
p +ρ S 2

s is minimized

subject to
Up

Sp

+
Us

Ss
≤Ulub and 0≤Sp,Ss≤1.

where Up is the worst case utilization of periodic

task set, Us (= Qs/Ts) is the server utilization, w

is the average workload ratio of periodic tasks,

and ρ is the average workload of aperiodic tasks.

E is a metric reflecting energy consumption1).
Ulub , which is the least upper bound of

schedulable utilization, is n (21/n − 1) for n tasks

at the RM scheduling. Using the Lagrange

transform, we can get a following optimal solution

for Sp and Ss.

Sp =
1

Ulub









Up + Us
3

√
ρ

Us w
,

Ss =
1

Ulub









Up
3

√
Us w

ρ
+ Us

1) Assuming the supply voltage and clock speed are

proportional in DVS, the energy consumption is represented to

be proportional to the square of clock speed.

735

Under the assumption that we can know the

exact w and ρ values, we can get the optimal

static speeds for periodic and aperiodic tasks.

 Dynamic speed assignment problem is to find

the speeds of each periodic task instances and

aperiodic task instances at run time. Our

objective is to minimize the total energy

consumption of both periodic and aperiodic tasks

using a DVS algorithm while satisfying the timing

constraints of periodic tasks and bounding the

response time delay.

 If an aperiodic task σk can be serviced without

any interference by periodic tasks or another

aperiodic tasks, the response time of the

aperiodic task σk is c (σk)/s(σk) where c(σk) and

s(σk) are the number of execution cycles and the

clock speed of σk , respectively. However, the

execution of the aperiodic task σk is delayed due

to the following factors: (1) Queueing delay: σk

should wait until the completion time of the

aperiodic tasks released before σk . (2) Budget

delay: σk should wait until the next replenishment

time if qs of the bandwidth-preserving server S

is 0. (3) Preemption delay: σk should wait until

the completion time of the periodic tasks which

have higher priorities than the priority of S. We

denote the delays due to the queueing, budget

and preemption as w(σk), b(σk), and p(σk),

respectively. Then, the response time of σk can

be represented as

 c(σk)/s(σk)+w (σk)+ b(σk)+p (σk).

 The response time will be increased by a DVS

algorithm because s(σk) , w(σk), b(σk) and p(σk)

are changed. When the response times of σk are

t and t+D in the non-DVS scheme and the DVS

scheme respectively, we call the increase D in

the response time as the response time delay.

Therefore, the problem of dynamic speed

assignment (DSA) can be formulated as follows:

Dynamic Speed Assignment Problem

Given T= τ1, , τn ,σ , S and ,

find s(τ1,1), , s(τn,H/Tn
) and s(σ1), , s(σm) such

that E = Σ
i = 1

n

Σ
j = 1

H/Tτi

E (τi,j)+ Σ
k = 1

m

E (σk) is minimized

subject to ∀i, j, e (τ i,j)≤j Tτi
 and ∀k,D (σk)≤ .

where s (τi, j) , E (τi, j) , and e (τi, j) are the clock

speed, the energy consumption and the

completion time of the task instance τ i, j ,

respectively. E (σk) denotes the energy

consumption of the aperiodic task instance σk .

D (σk) represents the response time delay of σk .

In this paper, we propose the DVS algorithms

which provide solutions for the DSA problem

when = Ts − Qs .

 Existing on-line DVS algorithms such as [9, 2,

8, 4] are not directly applicable for the DSA

problem. For example, consider the stretching
-to-NTA technique used in [9]. It stretches the

execution time of the periodic task ready for

execution to the next arrival time of a periodic

task when there is no another periodic task in

ready queue. To use the stretching-to-NTA

technique for a mixed task system, we should

know the next arrival time of an aperiodic task

as well as a periodic task. Though the arrival

times of periodic tasks can be easily computed

using their periods, we cannot know the arrival

times of aperiodic tasks since they arrive at

arbitrary times. If we ignore the arrivals of

aperiodic tasks, there will be a deadline miss of

periodic hard real-time task when an aperiodic

task arrives before the next arrival time of a

periodic task. Consequently, the stretching-to
-NTA technique should assign the full speed to

all tasks in the mixed task system.

 Therefore, we need to modify on-line DVS

algorithms to utilize the characteristics of

bandwidth-preserving servers. In this paper, we

handle only sporadic server [10] because it is

more advanced algorithm for the RM scheduling

policy.

Ⅲ. Dynamic Speed Assignment

Figure 1(a) shows the task schedule using a

sporadic server SS, assuming two periodic tasks,

τ1 = (1,5) and τ2 = (2,8), and one SS =(1,4). The

budget of SS, qs, is set to Qs at time 0. If an

aperiodic task is executed during the time [t1, t2],

qs is reduced by t2 − t1 at the time t2 . The budget

qs is replenished by the amount of t2 − t1 at the

time t1 + Ts . SS preserves its budget qs if no

requests are pending when released. An aperiodic

request can be serviced at any time (at server's

priority) as long as the budget of SS is not

exhausted (e.g., task σ1). If the budget is

exhausted, aperiodic tasks should wait until the

next replenishment time. For example, though the

task σ4 arrived at the time 19, it is serviced at

the time 20.

 Although we cannot know the arrival times of

aperiodic tasks, the stretching-to-NTA method

can be used if we utilize the execution behavior

of SS. There are two cases the current ready

task can be stretched: (1) Rule for aperiodic task:

If there is no periodic task in the ready queue,

736

execute an aperiodic task at the speed of qs

/(min(next arrival time of a periodic task, next

replenishment time)-t) where t is the current

time. (2) Rule for periodic task: If there is only

one periodic task in the ready queue and qs is 0,

stretch the periodic task to min(next arrival time

of a periodic task, next replenishment time). This

is because the arriving aperiodic task is delayed

until the next replenishment time if qs is 0. If

qs>0, we cannot scale down the speed of the

periodic task even though there is only one

periodic task in the ready queue.

 Using these two rules, we modified existing

on-line DVS algorithms. Figure 1(b) shows the

task schedule using the lppsRM/SS algorithm

which is the modified version of lppsRM [9] for

SS. lppsRM uses the stretching-to-NTA method.

The aperiodic tasks σ1 and σ2 are stretched to

the next arrival times of periodic tasks (5 and

15) because there is no periodic task in ready

queue. The periodic tasks τ1,5 , τ2,3 , and the latter

part of τ2,4 are stretched to min(next arrival time,

next replenishment time) because qs is 0. We

cannot stretch the tasks τ1,2 and τ1,3 because qs

is larger than 0.

 The preemption delays in lppsRM and lppsRM/SS

are same because periodic tasks are stretched

only when qs=0 by the stretching rule for

periodic task. The budget delays are also same

due to the stretching rule for aperiodic task.

However, since the queueing delay and the clock

speed of aperiodic task are changed, the

response time of aperiodic task in lppsRM/SS is

longer than that in lppsRM. Nevertheless, we can

guarantee that D (σk) ≤ Ts− Qs for all σk . If σk is

completed at t in lppsRM, the completion time of
σk is smaller than t + Ts − Qs in lppsRM/SS

because R ≤ t +Ts−Qs where R is the next

replenishment time.

 Though we can reduce the energy consumption

by lppsRM/SS algorithm, the algorithm can show

poor performance when the workload of aperiodic

tasks is small. In this case, since the budget qs is

larger than 0 at most of scheduling points, we

cannot use the stretching rule for periodic task.

Extremely, when there is no aperiodic request,

there is nothing to do for the DVS algorithm.

Therefore, we need a more advanced DVS

algorithm which can be applicable to the mixed

task system with a low aperiodic workload. For

this purpose, we propose a new slack estimation

method, bandwidth-based slack-stealing, which

identifies the maximum slack time for a periodic

task considering the bandwidth of sporadic

server. Figure 1(c) shows the lppsRM/SS-SE

algorithm, which is based on lppsRM/SS but uses

the bandwidth-based slack-stealing method. When

qs is larger than 0 and there is only one periodic

task in the ready queue, the slack estimation

method calculates the maximum available time

before the arrival time of next periodic task.

 Figure 2 shows the bandwidth-based
slack-stealing method. In Figure 2, Tτ is the

period of τ , t is the current time, NTA is the

next periodic task arrival time and R is the next

replenishment time of SS. We should consider

two different cases depending on the priority of

SS. Figure 2(a) shows the case when Tτ > Ts. In

this case, the maximum blocking time by

aperiodic tasks before the next task arrival time

(NTA) should be identified. Figure 2(b) shows the

case when Tτ < Ts. In this case, the task τ is

stretched to min (R, NTA) − qs. Although there is

no deadline miss even when the periodic task τ

is completed after R, the proposed DVS algorithm

is designed to bound the response time delay.

Under this policy, the preemption delay is

increased but we can guarantee that
D (σk)≤Ts −Qs for all σk because σk is not

delayed above the replenishment time R.

(a) Tτ > Ts

NTA

Ts

t

qs

R

τ

s
s

Q
T

RNTA







 −

s
s

T
T

RNTAR 






 −
+

),min(ss
s

QT
T

RNTARNTA 






 −
−−

NTA

Ts

t

qs

R

τ

s
s

Q
T

RNTA







 −

s
s

T
T

RNTAR 






 −
+

),min(ss
s

QT
T

RNTARNTA 






 −
−−

(b) Tτ < Ts

NTA

Ts

t

qs

R

τ
NTA

Ts

t

qs

R

τ

Figure 2. Bandwidth-based slack stealing in

lppsRM/SS-SE.

(a) No DVS

+1 +1 +1 +1 +1

σ1 σ2 σ3 σ4 σ5

5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

SS

τ1

τ2

τ1,1

1

1

1

τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2 τ2,3 τ2,4

+1 +1 +1 +1 +1

σ1 σ2 σ3 σ4 σ5

5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

SS

τ1

τ2

τ1,1

1

1

1

τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2 τ2,3 τ2,4

(b) lppsRM/SS

+1 +1 +1 +1 +1

5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

SS
1

1

1

σ1 σ2 σ3 σ4 σ5

τ1

τ2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2 τ2,3 τ2,4

+1 +1 +1 +1 +1

5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

SS
1

1

1

σ1 σ2 σ3 σ4 σ5

τ1

τ2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2 τ2,3 τ2,4

(c) lppsRM/SS-SE

Figure 1. Task schedules with a sporadic server.

+1 +1 +1 +1 +1

5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

SS
1

1

1

σ1 σ2 σ3 σ4 σ5

τ1

τ2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2
τ2,3 τ2,4

+1 +1 +1 +1 +1

5 10 15 20 25 30

8 16 24

2 6 12 16 18 24 26 30

budget

speed

speed

SS
1

1

1

σ1 σ2 σ3 σ4 σ5

τ1

τ2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2
τ2,3 τ2,4

737

 From Figure 2, the maximum available time

MAT of a task τ can be calculated as follows:

if (Tτ > Ts) MAT = NTA − t− qs−
NTA − R

Ts

Qs

 − min (NTA−R−
NTA−R

Ts

Ts,Qs)

if (Tτ < Ts) MAT = min (R, NTA) − t− qs

In Figure 1(c), the periodic tasks τ1,2 , τ1,3 and τ2,1

are stretched by the bandwidth-based
slack-stealing method. For example, at the time

5, the task τ1,2 has the available time 2

(= NTA − t − qs = 8 − 5 − 1). A side effect of the

bandwidth-based slack-stealing method is that

aperiodic tasks tend to be executed at full speed.

Due to the side effect, the DVS algorithm using

the bandwidth-based slack-stealing method

generates better average response times.

Ⅳ. Experimental Results

 We have evaluated the performance of our DVS

algorithms for sporadic server using simulations.

The execution time of each periodic task instance

was randomly drawn from a Gaussian distribution

in the range of [BCET, WCET] where BCET is

the best case execution time.

 The interarrival times and service times of

aperiodic tasks were generated from the

exponential distribution using the parameters λ

and µ where 1/λ is the mean interarrival time

and 1/µ is the mean service time. Then, the

workload of aperiodic tasks can be represented

by ρ = λ/µ . If there is no interference between

aperiodic tasks and periodic tasks, the average

response time of aperiodic tasks is given by

(µ− λ)−1 from the M/M/1 queueing model.

 Table 1 shows the experimental results of the

static speed assignment. The results show the

energy consumption and response time normalized

by the results of uniform speed assignment

method, varying Us with fixed values of Up and ρ .

In this experiments, BCET is assumed to be 50%

of WCET. The uniform speed assignment method

assigns the same speed to both periodic tasks

and aperiodic tasks making the total utilization as
Ulub . We assumed that if the system is idle it

enters into the power-down mode. The proposed

static speed assignment method reduced the

energy consumption and the average response

time up to 14% and 5%, respectively. Since the

scheduling server gets a higher speed than the

speed for periodic tasks when w > ρ , the static

speed assignment reduces the average response

time as well as the energy consumption.

 For the dynamic speed assignment algorithm, we

observed the energy consumption of the total

system and the average response time of

aperiodic tasks varying the server utilization Us

and the workload of aperiodic tasks ρ under a

fixed utilization Up of periodic tasks. (Due to the

limited space, we present the experimental

results where Us is controlled by changing the

value of Ts with a fixed Qs value and ρ is

controlled by a varying λ with a fixed µ value.)

 The periodic task set has three tasks with Up

=0.3. For all experiments including the non-DVS

scheme, both periodic tasks and aperiodic tasks

were given an initial clock speed
f0 = (Up + Us)fm /Ulub , where fm is the maximum

clock speed. During run time, the speed is

further reduced by on-line DVS algorithms

exploiting the slack times. In the experiments,

BCET is assumed to be 10% of WCET.

 Figure 3(a) shows the energy consumptions of

the ccRM/SS algorithm and the ccRM/SS-SE

algorithm normalized by that of the power-down

method. ccRM [8] also use the stretching-to
-NTA method. ccRM/SS and ccRM/SS-SE use the

proposed dynamic speed assignment algorithms

additionally. We also evaluated the modified

version of ccRM/SS-SE called ccRM/SS-SD. The

ccRM/SS-SD algorithm uses a different slack

distribution method. When slack times are

identified, ccRM/SS-SD gives the slack times to

only periodic tasks. Therefore, aperiodic tasks

are always executed at the initial clock speed f0 .

ccRM/SS-SD is good for a better response time.

 The difference between the energy savings of

ccRM/SS and ccRM/SS-SE decreases as ρ

increases. This is because there are more

chances for SS to have the zero budget when ρ

is large. As Us increases, ccRM/SS-SE shows a

larger energy saving compared with ccRM/SS

because ccRM/SS-SE performs well in the low

aperiodic workload (over Us). The ccRM/SS and

ccRM/SS-SE reduced the energy consumption on

average by 11% and 26% over the power-down

method, respectively.

Table 1. Experimental results of static speed

assignment (Up = 0.3, ρ=0.1)

Us
Normalized

Energy Consumption

Normalized

Response Time

0.15 0.98 0.97

0.20 0.88 0.96

0.25 0.91 0.95

0.30 0.88 0.96

0.35 0.86 0.97

738

 As shown in Figure 3(b), ccRM/SS and

ccRM/SS-SE increase the response time on

average by 10% and 5% over the power-down

method, respectively. Due to the side effect on

aperiodic tasks explained at Section III,

ccRM/SS-SE shows better average response

times. ccRM/SS-SD shows almost the same

response time to that of power-down method

because the execution speed of aperiodic task is

always f0 and the preemption delay is not

increased except the case when Ts is larger than

the periods of periodic tasks. However, it shows

better energy performances than ccRM/SS.

(a) Energy Consumption

0.50

0.60

0.70

0.80

0.90

1.00

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
15

0.
20

0.
25

0.
30

0.
35

0.
20

0.
25

0.
30

0.
35

0.
25

0.
30

0.
35

0.
30

0.
35

ρ=0.05 ρ=0.10 ρ=0.15 ρ=0.20 ρ=0.25

Us

N
or

m
al

iz
ed

 E
en

rg
y

C
on

su
m

pt
io

n

ccRM/SS ccRM/SS-SE ccRM/SS-SD

0.50

0.60

0.70

0.80

0.90

1.00

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
15

0.
20

0.
25

0.
30

0.
35

0.
20

0.
25

0.
30

0.
35

0.
25

0.
30

0.
35

0.
30

0.
35

ρ=0.05 ρ=0.10 ρ=0.15 ρ=0.20 ρ=0.25

Us

N
or

m
al

iz
ed

 E
en

rg
y

C
on

su
m

pt
io

n

ccRM/SS ccRM/SS-SE ccRM/SS-SD

(b) Response Time

Figure 3. Experimental results using a sporadic

server

0.80

0.90

1.00

1.10

1.20

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
15 0.
20

0.
25

0.
30

0.
35 0.
20

0.
25

0.
30

0.
35

0.
25

0.
30

0.
35

0.
30

0.
35

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

ccRM/SS ccRM/SS-SE ccRM/SS-SD

ρ=0.05 ρ=0.10 ρ=0.15 ρ=0.20 ρ=0.25

Us

0.80

0.90

1.00

1.10

1.20

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
15 0.
20

0.
25

0.
30

0.
35 0.
20

0.
25

0.
30

0.
35

0.
25

0.
30

0.
35

0.
30

0.
35

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

ccRM/SS ccRM/SS-SE ccRM/SS-SD

ρ=0.05 ρ=0.10 ρ=0.15 ρ=0.20 ρ=0.25

Us

V. Conclusions

We have proposed DVS algorithms for mixed task

systems which have both periodic and aperiodic

tasks. We presented the slack estimation methods

for the bandwidth-preserving servers. Existing

on-line DVS algorithms, which cannot be used for

mixed task systems, were modified to use the

proposed slack estimation methods. The modified

DVS algorithms reduced the energy consumption

by 26% over the power-down method. We also

showed the effects of the slack distribution

methods on the energy and the response time.

 Our work in this paper can be extended in

several directions. Though the proposed algorithm

only guarantees that the response time delay is

smaller than Ts − Qs , it will be more useful if we

can control the maximum response time delay

with an arbitrary value. Furthermore, it will be

interesting to use the DVS algorithm to utilize the

temporal locality of aperiodic requests. When the

aperiodic requests are sparse, we could use a

larger value for a more energy-efficient

schedule.

References

[1] L. Abeni and G. Buttazzo. Integrating Multimedia

Applications in Hard Real-Time Systems. In Proc.
of IEEE Real-Time Systems Symp., pp. 4-13, 1998.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez.

Dynamic and Aggressive Scheduling Techniques for

Power-Aware Real-Time Systems. In Proc. of IEEE
Real-Time Systems Symp., pp. 95-106, 2001.

[3] Y. Doh, D. Kim, Y.-H. Lee, and C. M. Krishna.

Constrained Energy Allocation for Mixed Hard and

Soft Real-Time Tasks. In Proc. of Int. Conf. on
Real-Time and Embedded Computing Systems and
Applications, pp. 533-550, 2003.

[4] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage

Scaling Algorithm for Dynamic-Priority Hard

Real-Time Systems Using Slack Time Analysis. In

Proc. of Design Automation and Test in Europe, pp.

788-794, 2002.

[5] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min.

Performance Comparison of Dynamic Voltage

Scaling Algorithms for Hard Real-Time Systems. In

Proc. of IEEE Real-Time and Embedded
Technology and Applications Symp., pp. 219-228,

2002.

[6] J. P. Lehoczky and S. Ramos-Thuel. An Optimal

Algorithm for Scheduling Soft-Aperiodic Tasks in

Fixed Priority Preemptive Systems. In Proc. of
IEEE Real-Time Systems Symp., pp. 110-123,

1992.

[7] J. W. S. Liu. Real-Time Systems. Prentice Hall,

2000.

[8] P. Pillai and K. G. Shin. Real-Time Dynamic

Voltage Scaling for Low-Power Embedded

Operating Systems. In Proc. of ACM Symp. on
Operating Systems Principles, pp. 89-102, 2001.

[9] Y. Shin and K. Choi. Power Conscious Fixed

Priority Scheduling for Hard Real-Time Systems. In

Proc. of Design Automation Conf., pp. 134-139,

1999.

[10] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic

Task Scheduling for Hard Real-Time Systems.

Journal of Real-Time Systems, 1(1):27-60, 1989.

[11] W. Yuan and K. Nahrstedt. Integration of Dynamic

Voltage Scaling and Soft Real-Time Scheduling for

Open Mobile Systems. In Proc. of Int. Workshop on
Network and Operating Systems Support for Digital
Audio and Video, pp. 105-114, 2002.

739

