
IEICE Electronics Express, Vol.7, No.11, 804–809

Workload-driven adaptive
log buffer-based FTL

Dongkun Shina)

School of Information and Communication Engineering

Sungkyunkwan University, Suwon, Korea

a) dongkun@skku.edu

Abstract: Flash translation layer (FTL) is generally used for NAND
flash memory in order to handle the mapping between logical page ad-
dress and physical page address. Log buffer-based FTLs provide good
performances with small-sized mapping information. In designing the
log buffer-based FTL, one important factor is to determine the map-
ping architecture between data block and log block, called associativ-
ity. While previous static schemes use fixed associativities, our scheme
adjusts the associativity dynamically based on the run-time workload
variation improving the performance by 5∼16% compared to the static
scheme.
Keywords: flash memory, flash translation layer, log buffer, hybrid
mapping, embedded storage
Classification: Storage technology

References

[1] J. Kim, et al., “A spaceefficient flash translation layer for compact flash
systems,” IEEE Trans. Consum. Electron., vol. 48, no. 2, pp. 366–375,
2002.

[2] S.-W. Lee, et al., “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Trans. Embedded Comput. Syst.,
vol. 6, no. 3, Article no. 18, 2007.

[3] S. Y. Park, et al., “A re-configurable FTL (flash translation layer) ar-
chitecture for NAND flash based applications,” ACM Trans. Embedded
Comput. Syst., vol. 7, no. 4, Article no. 38, 2008.

[4] Samsung Electronics, NAND Flash Data Sheet K9K8G08U1A, 2007.
[5] Z. Liu, et al., “An adaptive block-set based management for large-scale

flash memory,” Proc. SAC’09, pp. 1621–1625, 2009.

1 Introduction

NAND flash memory has become the most important storage media in the
mobile embedded systems. Unlike a traditional hard disk, NAND flash mem-
ory does not support overwrite operation because of its “erase-before-write”
characteristic. This feature of NAND flash memory requires two storage
management schemes: address mapping and garbage collection. The address
mapping scheme is to map a logical address from the file system to a physi-
cal address of the flash memory by maintaining the address mapping table.

c© IEICE 2010
DOI: 10.1587/elex.7.804
Received April 28, 2010
Accepted May 13, 2010
Published June 10, 2010

804



IEICE Electronics Express, Vol.7, No.11, 804–809

The garbage collection scheme makes it possible to reclaim the invalidated
pages by erasing the corresponding block after copying valid pages in the
block to a free block. To support these two management schemes, a soft-
ware layer called flash translation layer (FTL) is used between file system
and flash memory. The address mapping schemes of the FTL can be divided
into three classes depending on the mapping granularity: page-level mapping,
block-level mapping, and hybrid mapping. The drawback of the page-level
mapping technique is that its mapping table size is inevitably large and thus
it requires a large SRAM for mapping table. Though the block-level mapping
requires a small-sized mapping table, it invokes a large overhead even if only
a small portion of a block is changed.

Hybrid mapping is a compromise between page-level mapping and block-
level mapping. In this scheme, a small portion of physical blocks is reserved
as a log buffer. So, it is called a log buffer-based FTL. While the log blocks
in the log buffer use the page-level mapping scheme, the normal data blocks
are handled by the block-level mapping. A log block in the log buffer can
be used for one or several data blocks, i.e., data blocks and log blocks are
associated each other. The number of associated data blocks of a log block
is called the associativity of the log block. When the write request for a data
block is sent to the FTL, the data is written to the associated log block, and
the corresponding old data in the data block is invalidated. Hybrid mapping
requires a small-sized mapping table since only the log blocks are handled
by the page-level mapping. In addition, unlike block-level mapping, hybrid
mapping does not invoke a large overhead for every write request.

When there is no empty space in the log buffer, one of the log blocks is
selected as a victim and all of the valid pages in the log block are moved into
the data blocks to make space for on-going write requests. This process is
referred to as a log block merge. The merge cost of a log block L is calculated
as follows:

N · A(L) · Ccopy + (A(L) + 1) · Cerase (1)

where N , Ccopy, and Cerase denote the number of pages in a flash block, the
cost of one page copy, and the cost of one block erase, respectively. A(L) is
the associativity of the log block L, which means the number of data blocks
that share the log block.

As the associativity of log block is large, the average cost of log block
merge is large but the log block merge is invoked infrequently. Therefore, it
is important to find the optimal associativity in order to reduce the log block
merge overhead. Several recently proposed FTLs use static schemes which
select fixed associativities at the design time. In this paper, we propose an
adaptive scheme, called A-SAST, which adjusts the associativity between
data blocks and log blocks depending on the run-time workload to minimize
the log block merge overhead. Experimental results show that our scheme
increases the performance by 5∼16% over the previous scheme that uses the
static best associativity determined by examining the target workload pattern
at the design time.

c© IEICE 2010
DOI: 10.1587/elex.7.804
Received April 28, 2010
Accepted May 13, 2010
Published June 10, 2010

805



IEICE Electronics Express, Vol.7, No.11, 804–809

2 Related works

There are several kinds of log buffer-based FTL schemes such as BAST [1],
FAST [2] and SAST [3]. The SAST scheme groups N number of sequential
data blocks into a data block group (DBG). One DBG can be associated
with only one log block group (LBG) that has K number of log blocks at
maximum. A log block of an LBG can have the updated pages of any data
block of the associated DBG. Therefore, N+K number of physical blocks
can be allocated for N number of logical blocks, thus SAST is referred to
N :N+K mapping. If both N and K are 1, the SAST scheme is same to the
BAST scheme. Another extreme case of SAST can be made by grouping all
data blocks into one group, which is equal to the FAST scheme.

Fig. 1 illustrates the SAST scheme. We assume that one flash memory
block consists of four pages. One data block group consists of four sequential
data blocks and one log block group consists of two log blocks at most,
i.e., N=4 and K=2. The log block groups LBG0, LBG1 and LBG2 are
associated with the data block groups DBG0, DBG1 and DBG2, respectively.
For example, the physical blocks with physical block numbers (PBNs) 100,
101, 102, and 103 are allocated as data blocks for DBG0, and the physical
blocks with PBNs 301 and 302 compose LBG0. When the update requests
on the logical page numbers 2, 3, 4, 5, 6, and 7 are sent to FTL, the new
data are written at the log blocks in LBG0 and the old pages in DBG0 are
invalidated. When there is no free space in the corresponding LBG of the
target DBG, SAST selects the least-recently-used log block among all log
blocks and merges it with data blocks to make a clean log block.

Fig. 1. SAST scheme (N:4, K:2).

In SAST, the values of N and K have a significant influence on the FTL
performance, and the optimal values for N and K depend on the I/O request
pattern. We can find the optimal values by exhaustive simulation for target
I/O workloads. A more efficient approach is to use the workload analysis
technique proposed in [3]. To find the proper value for N , the workload
analysis technique examines the request density of a logical block, which is
the ratio of the number of requests accessed in the logical block to the total
number of requests. If the request density is high, there is a high spatial
locality for the logical block. So, a large value should be used for N . The
proper value for K is determined by measuring the temporal locality. If there

c© IEICE 2010
DOI: 10.1587/elex.7.804
Received April 28, 2010
Accepted May 13, 2010
Published June 10, 2010

806



IEICE Electronics Express, Vol.7, No.11, 804–809

are many updates, a large value should be used for K.
However, the optimal values of N and K are changed during the run time

and they are different depending on the logical address since the I/O pattern
varies according to the execution time and the logical address. However, the
values of N and K are equally applied throughout all the address space and
the values are fixed during the run time in the SAST scheme. Moreover, it
is difficult to know the exact run-time workload for analysis at design time.
Therefore, it is necessary to develop an adaptive scheme which can change
the sizes of DBG and LBG depending on the run-time I/O workload.

3 Adaptive SAST scheme

The optimal size of a DBG is related to the log block utilization and the
log block merge cost. Generally, as we increase the size of data block group,
the log block utilization increases because several data blocks can share a log
block. However, the log block merge cost also increases because the associa-
tivity of a log block increases. Therefore, if an LBG has a low utilization,
which means that the associated DBG cannot utilize log blocks effectively, it
is better to use a larger value for the size of corresponding DBG since it has
a low request density. If an LBG has too high associativity thus it has a high
average merge cost, a smaller value is proper to the size of corresponding
DBG since it has a random request pattern.

The proposed adaptive SAST scheme, called A-SAST, adjusts the size of
each DBG to adapt to the I/O pattern of the corresponding address range
and the change of I/O pattern at run time. The adjustment is performed by
merging or splitting data groups. For example, in Fig. 1, LBG0 and LBG1

consume small numbers of pages thus have low utilizations. This is because
there were little updates for DBG0 and DBG1. In this case, if we create a
new larger data block group by merging DBG0 and DBG1 and assign one log
block group to the merged DBG, the log block utilization will increase. On
the other hand, LBG2 has a high utilization but the merge cost for each log
block is high because each log block is associated with several data blocks.
This means that the write pattern for DBG2 is quite random. If we split
DBG2 into two smaller data groups, the merge cost for each log block can be
reduced.

Fig. 2 shows how A-SAST changes the block groups by merging and
splitting for the example in Fig. 1. By merging DBG0 and DBG1, a new
DBG which consists of 8 data blocks is created and it requires only two log
blocks. As a result, it increases the log block utilization and saves one log
block. Merging data block groups is performed when the following conditions
are satisfied for two consecutive DBGs, DBGi and DBGj :

Pused(φ(DBGi))
Ptotal(DBGi)

< α,
Pused(φ(DBGj))

Ptotal(DBGj)
< α and (2)

∀L ∈ φ(DBGi) ∪ φ(DBGj), A(L) < β (3)

where φ(g), Pused, and Ptotal are the associated log block group of data block
group g, the number of used pages and the number of allocated pages for

c© IEICE 2010
DOI: 10.1587/elex.7.804
Received April 28, 2010
Accepted May 13, 2010
Published June 10, 2010

807



IEICE Electronics Express, Vol.7, No.11, 804–809

Fig. 2. Reorganizing data block groups in A-SAST.

DBG or LBG, respectively. The first condition checks the utilizations of two
LBGs and the second condition checks the associativities of all log blocks
of DBGi and DBGj . When a log block receives random write requests,
the associativity of the log bock increases and thus the merge cost is high.
Therefore, the second condition prevents DBGs from being merged when
each DBG requires a high merge cost. For example, the log block group
utilizations of DBG0 and DBG1 are 6/16 and 2/16, respectively, and the
associativities of their log blocks are not larger than 2 in Fig. 1.

The group merge condition is examined for the DBG whose one of asso-
ciated log blocks is selected as a victim log block. By merging data block
groups which have small number of updates and sequential write patterns,
we can use the log blocks more efficiently.

If the log block association is high due to many random updates for a
certain group, the performance can be enhanced by splitting the DBG. Since
the associativities of the log blocks in LBG2 are large in Fig. 1, DBG2 is split
into two data block groups in Fig. 2. If write requests for each page occur
as the order of (32, 36, 40, 44, 33, 37, 41, 45), the associativity of each log
block is reduced by half compared to Fig. 1. A-SAST checks the following
DBG split condition when a new log block is allocated for the DBG:

A(L) > γ (4)

where γ is the split threshold and L is the lastly written log block of the log
block group.

The proper values for α, β, and γ are derived from the experiments on
the target workloads. The group merge and split conditions actually compare
the randomness of workload, which is represented by the merge cost of log
blocks, with the threshold values. Therefore, the best ranges of α, β and γ

are irrelevant to the workloads.
We eliminated the constraint for the value of K. Thus an LBG can have

any number of log blocks (K = ∞) though the total number of log blocks is
fixed. The LRU policy for log buffer automatically control the proper number
of log blocks. That is, if a DBG needs a large number of log blocks due to

c© IEICE 2010
DOI: 10.1587/elex.7.804
Received April 28, 2010
Accepted May 13, 2010
Published June 10, 2010

808



IEICE Electronics Express, Vol.7, No.11, 804–809

its high temporal locality, the victim selection policy takes a log block from
the DBG with a low temporal locality and gives the log block to the DBG
with a high temporal locality.

4 Results

Our proposed scheme is evaluated using simulation. Four I/O workloads are
used: PCtrace, RandomFile, Iozone-4, and Iozone-80. PCtrace workload is
collected by executing several Windows applications. RandomFile is com-
posed of random I/O requests for multiple files. Iozone-4 and Iozone-80 are
collected using Iozone benchmark program. While Iozone-4 generates random
I/O pattern, Iozone-80 generates both random and sequential I/O requests.
The timing parameters for NAND flash operations are based on [4].

We compared our proposed A-SAST scheme with SAST and BSFTL [5].
For SAST, we used the fixed optimal sizes of DBG and LBG for each target
workloads while A-SAST adjusts the values dynamically. BSFTL is an adap-
tive scheme which adjusts the data group size at run time. BSFTL focuses
on only the hotness of data blocks and thus uses 1:1 mapping for hot blocks
and uses 1:N mapping for cold blocks to reduce the log block merge cost.
Fig. 3 shows the total I/O execution times of BSFTL, SAST, and A-SAST.
A-SAST shows the performance improvements by 30∼43% and 5∼16% com-
pared to BSFTL and A-SAST, respectively.

Fig. 3. Performance Comparison.

5 Conclusion

We proposed a novel FTL scheme to deal with proficiently irregular I/O
patterns in NAND flash memory. While the previous FTL schemes use fixed
log block associativities determined at design time, the proposed A-SAST
scheme adjusts dynamically it during run time considering the variations of
I/O workload. As a result, A-SAST can reduce the log block merge overhead
of FTL significantly.

Acknowledgments

This paper was supported by Faculty Research Fund, Sungkyunkwan Uni-
versity, 2007.

c© IEICE 2010
DOI: 10.1587/elex.7.804
Received April 28, 2010
Accepted May 13, 2010
Published June 10, 2010

809


