
Des Autom Embed Syst (2011) 15:89–109
DOI 10.1007/s10617-011-9070-x

Communication-aware VFI partitioning for GALS-based
networks-on-chip

Dongkun Shin · Woojoong Kim · Soontae Kwon ·
Tae Hee Han

Received: 4 May 2010 / Accepted: 18 February 2011 / Published online: 10 March 2011
© Springer Science+Business Media, LLC 2011

Abstract The voltage/frequency island (VFI) design paradigm is a practical architecture
for energy-efficient networks-on-chip (NoC) systems. In VFI-based NoC systems, each is-
land can be operated with different voltage and clock frequency and thus it is important
to carefully partition processing elements (PEs) into islands based on their workloads and
communications. In this paper, we propose an energy-efficient design scheme that optimizes
energy consumption and hardware costs in VFI-based NoC systems. Since on-chip networks
take up a substantial portion of system power budget in NoC-based systems, the proposed
scheme uses communication-aware VFI partitioning and tile mapping/routing algorithms to
minimize the inter-VFI communications. Experimental results show that the proposed de-
sign technique can reduce communication energy consumption by 32–51% over existing
techniques and total energy consumption by 3–14%.

Keywords Networks-on-chip · Voltage/frequency island · Low-power design · GALS ·
Interconnection network

1 Introduction

Recently, the use of multiprocessor system-on-chip (MP-SoC) platforms has emerged as an
important integrated circuit design trend for high-performance computing applications. As
the number of processors on such platforms continues to increase, monolithic bus-based
interconnect architectures will not be able to support the increased complexity. To support
higher degrees of integration, networks-on-chip (NoC) [1, 2] is seen as an efficient on-chip
communication infrastructure, where the interconnection network replaces the traditional
shared bus structure. The NoC design paradigm enables the integration of an exceedingly
high number of computational and storage blocks in a single chip by overcoming complex

D. Shin · W. Kim · S. Kwon · T.H. Han (�)
School of Information and Communication Engineering, Sungkyunkwan University,
300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
e-mail: than@skku.edu

mailto:than@skku.edu

90 D. Shin et al.

Fig. 1 An example of VFI-based
NoC

on-chip communication problems with a more structured and modular network interface and
by allowing scalable designs.

An NoC-based system is typically divided into regular tiles, where each tile is either a
processing element or a storage element. Instead of dedicated wires, each tile is connected
to an interconnection network that routes packets between tiles. The router consists of input
and output links, buffers and a crossbar switch.

To minimize energy consumption, each tile can be assigned an optimal voltage/frequency
in consideration of both workload and performance constraints. In order to use a different
clock frequency for each tile, it would be appropriate to implement the NoC by the globally
asynchronous, locally synchronous (GALS) design paradigm [3, 4], where locally synchro-
nous blocks communicate with one another asynchronously.

However, optimized unique voltage/frequency assignment on each tile requires a signif-
icant number of mixed-clock FIFOs (mcFIFOs) [5] and voltage level converters (VLCs),
which invoke performance/energy penalties, design complexities and silicon area costs.
To alleviate these problems, a VFI-based NoC design paradigm has recently been intro-
duced [6–8], where an NoC is partitioned into several voltage/frequency islands (VFIs).
Each island is composed of multiple tiles and is optimized with its own supply voltage and
operating frequency to minimize overall energy consumption. Figure 1 shows an example
of NoC consisting of three VFIs which use voltages VHIGH , VMID and VLOW , respectively.
Seven mcFIFOs are required to connect the routers which use different voltages/frequencies.
The use of VFIs in the NoC design can reduce the implementation overhead of single volt-
age, single clock frequency NoC design and can exploit energy-performance tradeoffs more
flexibly.

As a recent example, Intel announced the 24 tiled “single-chip cloud computer” [9],
where four adjacent tiles are grouped into one voltage island and each tile can run at a
different frequency. Software can dynamically configure voltage and frequency of each tile
to attain power consumptions from 125 W to as low as 25 W at run time.

In designing VFI-based NoCs, an important design decision is how to partition several
processing elements into VFIs. Since all processing elements in a VFI should use the same
voltage and clock frequency, processing elements which demand similar voltages and clock
frequencies should be grouped into a single VFI. In addition, it is also important to minimize
communications between VFIs since inter-VFI communication requires mcFIFOs.

Communication-aware VFI partitioning for GALS-based 91

As with other multiprocessor-based systems, the design flow of NoC-based systems in-
volves several interacting steps. In a typical multiprocessor system, the design flow includes
two key steps: task assignment and task scheduling. Given a task graph with design con-
straints (e.g., execution time and power consumption) and processing elements (PEs), each
task is first assigned to an appropriate PE (task assignment). Then, each task is scheduled for
execution within the PE (task scheduling). However, in NoC-based systems, two additional
steps are necessary: tile mapping and routing path allocation. The tile mapping step maps
a PE to one of the tiles in an NoC platform. The routing path allocation step determines
communication paths between tiles. We call these two steps together network assignment.
For VFI-based NoCs, in addition to these steps, tiles should be grouped into several VFIs
(VFI partitioning) and each VFI should be assigned a voltage and clock frequency (V/F
assignment).

In this paper, we propose an overall VFI-aware energy optimization framework for NoCs.
The proposed framework includes VFI partitioning and V/F assignment as well as tile map-
ping and routing. It is much more energy-efficient by considering inter-VFI communications
in all design steps. Experimental results show that the proposed design technique can reduce
communication energy consumption by 32–51% over existing techniques and total energy
consumption by 3–14%.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the related
works on energy-efficient NoC design techniques. The problem formulation and overall de-
sign flow are presented in Sect. 3. The detailed design techniques are described in Sect. 4.
We present experimental results in Sect. 5. Section 6 concludes with a summary and direc-
tions for future work.

2 Related works

Several research groups have investigated system-level techniques for minimizing energy
consumption in NoC-based systems. The first technique is to dynamically adjust the op-
erating voltage and clock frequency of a communication link. Shang et al. [10] developed
a history-based dynamic voltage scaling (DVS) policy based on the utilization of the link
and the input buffer. Worm et al. [11] proposed an adaptive low-power transmission scheme
which minimizes the energy required for reliable communications, while satisfying a QoS
constraint by dynamically controlling the voltage on the links.

The second technique is a dynamic link shutdown (DLS) [12] which powers down links
dynamically when their utilizations are below a certain threshold level. The DLS technique
requires an adaptive routing strategy that intelligently uses a subset of links for minimizing
energy consumption. Soteriou and Peh [13] proposed a proactive dynamic link shutdown
technique for communication links, which turns links on or off depending network statistics
such as input buffer utilization.

The third technique is to minimize the communication traffic by communication-aware
application mapping. Hu and Marculescu [14] proposed a design technique which reduces
the communication traffic by optimizing the communication distance between two PEs with
high communication demands at tile mapping and routing steps. Shin and Kim [15] proposed
a genetic algorithm-based NoC design framework which optimizes the voltage/frequency of
communication links as well as the communication distance. Marcon et al. [16] consid-
ered communication dependencies as well as computation dependencies in communication
scheduling.

92 D. Shin et al.

There are also several compiler-directed approaches for energy-efficient NoCs. Chen
et al. [17] introduced a compiler-level technique, which increases the idle periods of commu-
nication channels by reusing the same set of channels for as many communication messages
as possible. Li et al. [18] proposed a compiler-driven approach where a compiler analyzes
the application code and extracts communication patterns among parallel processors. Based
on these patterns, the compiler decides the optimal voltage/frequency for communication
links. Kandemir and Ozturk [19] presented a compiler-directed voltage/frequency scaling
algorithm for both the PEs and communication links. They use a critical path analysis tech-
nique to estimate slack times and an integer linear programming (ILP) to determine the
voltage/frequency of each PE and link.

While these works focus on reducing communication costs to optimize energy consump-
tion, VFI-based NoC focuses mainly on reducing the energy consumption of processing
elements. Various GALS-based NoC architectures that focus on link level synchronization
techniques in a multi-clock domain SoC have been introduced, such as DSPIN [20], AS-
PIN [20], MANGO [21] and ANOC [22].

For VFI-based NoCs, chip partitioning into multiple VFIs is a critical issue. Ogras
et al. [6, 7] first proposed the VFI partitioning and static voltage assignment methodology
taking into account the overhead due to mcFIFO and VLC. However, they did not consider
the tile mapping and routing path allocation problem. Since PEs of a VFI should be adjacent
in NoC platform to each other, the VFI partitioning should be combined with tile mapping
and routing path allocation. Otherwise, a VFI partitioning alone may mislead NoC energy
optimization.

Leung and Tsui [23] grouped PEs on the critical path in task graph to form a single
voltage island. They tried to minimize PE energy consumptions only and did not consider
the communication overhead between VFIs. In addition, they assumed that each PE has been
assigned only one task to ease the critical path analysis. However, in real implementations,
one PE can execute multiple tasks at different time slices.

Jang et al. [8] presented a VFI-aware energy optimization framework that includes VFI
partitioning, tile mapping and routing path allocation. Their VFI partitioning algorithm
searches the full design space to find the optimal partition solution and thus may require
significant search time when the complexity of the VFI-based NoC is large. Moreover, the
proposed VFI partitioning does not consider the communication costs of the partition so-
lution. Nevertheless, they assumed that each task assigned to a tile has its own deadline to
determine the voltage/frequency of each tile, and so this may not be a practical solution.

Guang et al. [24] proposed an autonomous DVFS technique for VFI-based NoC. The
local DVFS monitor adjusts the voltage and frequency of each island based on the network
load at run time.

Ghosh et al. [25] proposed a mixed integer linear program (MILP) formulation of the
VFI-based NoC design problem. They handled task assignment, tile mapping, routing, and
voltage/frequency assignment problems. To model with a MILP formulation, they assume
each PE has a candidate set of discrete voltages/frequencies. The MILP requires an excessive
time to find optimal solution especially when the number of tiles in NoC is large. In addition,
the technique does not cover the VFI partitioning problem. Instead, it optimizes only the
energy overhead for communications between different PEs operating at different voltages
for a given maximum number of voltage islands. Such a technique can neither consider the
isolation of VFIs nor simplify the power delivery network, which is handled by our proposed
technique.

Our algorithm has similar design flows in [8] and adopts their ideas for tile mapping and
routing. However, we use a more practical task model and propose a communication-aware

Communication-aware VFI partitioning for GALS-based 93

Fig. 2 An example of a task
graph G(V,E)

(consumer-mocsyn.tgff in
E3S [28])

VFI partitioning heuristic. In addition, we improve the tile mapping and routing techniques
by considering communication costs. The differentiation points are explained in detail in
Sect. 3.3.

3 VFI-based NoC design

3.1 Specification and architectural model

We represent a periodic real-time application by a task graph (TG) G = (V ,E) as shown in
Fig. 2, which is a directed acyclic graph. V is the set of tasks and E is the set of directed
edges between tasks. We assume that the processing element for a task τi in V is given
as an input and is denoted by r(τi). One PE can be assigned multiple tasks. Each task τi

is associated with its worst-case execution cycles at PE r(τi), w(τi). We design an NoC-
based system by using the worst-case workload of each task. It is assumed that the worst-
case execution cycles of each task are known. This assumption is common at most design
techniques [8, 23, 26]. The worst-case execution cycles can be estimated by a timing analysis
tool such as [27] or a profiling tool.

The set of PEs is represented by R. In a TG, each directed edge e(τi, τj) represents a
precedence relation between τi and τj . That is, e(τi, τj) means that task τi must complete
its execution before task τj starts its execution. (For descriptive purposes, we will denote
e(τi, τj) by ei,j .) A task τi may have a deadline di , which must be met to ensure correct
functionality of the application. If a task is not a sink node in the graph, it may have no
deadline. But, the sink node must have a deadline. Each edge ei,j is associated with a value
w(ei,j) which indicates the amount of communication data required between τi and τj when
τi and τj are allocated to different PEs.

We denote a VFI-based NoC-based system N with n × n tiles and m islands as 〈T ,�〉,
where T = {t1, . . . , tn, . . . , tn2} is the set of tiles, and � = {I1, . . . , Im} is the set of volt-
age/frequency islands. The number of VFIs, m, determines the cost of VLCs. We assume
a regular mesh communication architecture as shown in Fig. 1. We will denote the link be-
tween ti and tj by �i→j . For a link �i , W(�i) indicates the total amount of data transferred
across the link. W(�i) should not be larger than the bandwidth constraint of a link BWmax .

94 D. Shin et al.

3.2 Problem formulation

For a given task graph G = 〈V,E〉 and a VFI-based NoC architecture 〈T ,�〉, the re-
quired design decisions are task scheduling, VFI partitioning, tile mapping, routing, and
voltage/frequency assignment. The task scheduling step determines the execution order of
tasks assigned to the same PE. Since the task scheduling step converts the task graph G

to G′ by augmenting additional edges, we describe it with the function O : G → G. The
VFI partitioning determines which PEs have the same voltage and frequency and can be
described with the function � : R → �.

Each PE is then assigned to one of tiles in the NoC. The function � : R → T is used
to represent this tile mapping step. The mapping affects the total communication load be-
cause the distances between tiles are changed depending on the mapping. The routing path
between tiles is then allocated. The function � : E → P is used to denote this routing path
allocation step, where P is the set of link sequences. In this paper, we consider only de-
terministic path routing algorithms. After the routing path allocation, we set W(�i) to be∑

∀ej ,�i∈�(ej) w(ej) for all �i . If W(�i) = 0, the link is removed from the NoC. Under VFI
architectures, we can consider two types of communication links: intra-VFI links and inter-
VFI links. (For descriptive purposes, we will denote intra-VFI links and inter-VFI links by
just intra-link and inter-link, respectively.) Since inter-links require mcFIFOs, they consume
more energy when transferring data between different VFIs. In addition, mcFIFO increases
the hardware costs.

The voltage/frequency assignment step chooses appropriate operating voltage and fre-
quency of each VFI in order to minimize energy consumption by utilizing what would oth-
erwise be slack time. We use the function � : � → F to denote the voltage/frequency as-
signment step, where F is the set of possible voltages/frequencies for the VFIs. We denote
the voltage and clock frequency of VFI Ik as Fv(Ik) and Ff (Ik), respectively. The clock
frequency Ff (Ik) can be represented as

Ff (Ik) = K
(Fv(Ik) − Fvt (Ik))

α

Fv(Ik)
(1)

where α is a technology parameter and K is a design-specific constant [7]. Fvt (Ik) is the
threshold voltage of VFI Ik .

The problem is to find the design functions which can minimize the total energy con-
sumption while satisfying the deadline constraint of the task graph. Therefore, we can rep-
resent the VFI-based NoC design problem as follows:

VFI-based NoC Design Problem

Given G = 〈V,E〉 and N = 〈T ,�〉,
find the functions O,�,�,�, and � such that

En =
∑

τi∈V

En(τi) +
∑

ei,j ∈E

En(ei,j) is minimized

subject to ∀τj ∈ V, ρ(τj) ≤ deadline.

where En(τi) and En(ei,j) are the energy consumption of task τi and the energy consump-
tion of the communication between τi and τj . They can be represented as

En(τi) = w(τi) · C(r(τi)) · Fv(�(r(τi)))
2 (2)

Communication-aware VFI partitioning for GALS-based 95

where C(r(τi)) is the total switched capacitances per cycle at PE r(τi),

En(ei,j) = w(ei,j) · Ebit (ti , tj) + Li,j · Einterlink (3)

where ti = �(r(τi)), tj = �(r(τj)), Ebit (ti , tj) = ∑
k∈Pi,j

(ES(tk) + EL(tk) + EB(tk)).
ES(tk), EL(tk) and EB(tk) are the energy consumed by each flit within the switch, link

and buffer of tile tk , respectively. Pi,j and Li,j are the set of tiles and the number of inter-
VFI communications on the path from tile ti and tj , respectively. Einterlink is the mcFIFO
overhead cost. The VFI partitioning, tile mapping and routing path allocation determine Pi,j

and Li,j . For example, in Fig. 1, if we select the routing path of (r1, r2, r6, r10, r11) for
the communication between router r1 and router r11, the number of elements of P1,11 is 5
and L1,11 is 2. However, the routing path of (r1, r2, r3, r7, r11) requires only one inter-VFI
communication.

ρ(τj) is the completion time of task τj , which is determined as

ρ(τj) = max
ei,j ∈E

{ρ(τi) + comm(ei,j)} + d(τj) (4)

where comm(ei,j) is the communication latency while sending w(ei,j) bits of data between
�(r(τi)) and �(r(τj)), and d(τj) is the computation delay of task τj , which can be ex-
pressed as

d(τj) = w(τj)

Ff (�(r(τj)))
(5)

3.3 Overall design flow

The VFI partitioning technique proposed in [6] merges PEs that are adjacent in the predeter-
mined tile mapping; however, it is more profitable to group PEs with similar operating speed
demands. Therefore, we first need to know the proper voltage/frequency value of each PE,
which is determined by the precedence/deadline constraints and the workload of each task.
The V/F assignment which finds the proper voltage/frequency value of each PE to minimize
the energy consumption satisfying the deadline constraint should precede VFI partitioning.
Before the V/F assignment, we should know the exact workload of each PE including the
communication cost between PEs on the NoC tile structure in order to estimate the slack
time of each PE. The communication cost is determined by the tile mapping and routing.
In tile mapping and routing, it is better to place a PE onto the neighboring tile of other
PEs that will be included in the same VFI for the effective VFI implementation. Therefore,
these three design steps (VFI partitioning, V/F assignment and tile mapping/routing) interact
circularly as shown in Fig. 3(a).

In consideration of the above, we propose the design flow shown in Fig. 3(b) for VFI-
based NoC systems. The design flow consists of six optimization steps. First, it determines
the order of tasks mapped on each PE. Second, an initial (tentative) voltage and frequency
is determined for each PE. Since we do not know the communication distance between PEs
before network assignment, we use an optimistic approach which assumes that all commu-
nication distances are one hop. This approach is reasonable because the following design
steps attempt to minimize the communication distance. Note that the voltage and frequency
of each PE may change in the VFI partitioning and island V/F assignment steps.

Third, the PEs are partitioned into m number of VFIs based on the voltage and frequency
values. The VFI partition is determined such that the total energy consumption for computa-
tion and communication be minimized. Since the inter-link cost is larger than the intra-link

96 D. Shin et al.

Fig. 3 Overall design flow for a VFI-based NoC

cost, it is important to reduce inter-VFI communications when determining VFI partitions.
However, the previous technique proposed in [8] ignores the communication cost between
VFIs since it cannot know the exact communication cost before network assignment. Our
communication-aware partitioning technique, on the other hand, estimates the communica-
tion cost assuming one hop distance. This assumption is feasible since we optimize the tile
mapping such that two PEs having significant communication between them are to be adja-
cent. In order to minimize the communication cost between VFIs, we use an iterative graph
partitioning heuristic similar to the K&L algorithm [29].

Fourth, the tile mapping and routing are determined to minimize the communication cost
between PEs. The VFI-aware tile mapping in [8] determines the tile location of each PE in
the order of communication traffic of the PE to minimize the distance between two tiles that
communicate large amounts of data. However, PEs with small communication costs can be
isolated with other PEs of its VFI. To solve the problem, the technique performs the time-
consuming pair-wise swapping to remove the isolated tile. In practice, it performs pair-wise
swapping until it finds the optimal solution, and so, it is not an efficient heuristic as it does
not prevent the exhausting search for total solution space. However, we solve the problem
using the isolation-preventing tile mapping (IP-TM) technique, which reserves the space for
unmapped PEs.

In routing, it is important to minimize the number of inter-links because they require
mcFIFOs. The proposed algorithm uses the global inter-link allocation (GLR) technique to
minimize the number of inter-links while a local inter-link allocation (LLR) technique was
used in [8].

Finally, the voltage and frequency of each VFI are re-examined using the exact commu-
nication cost fixed by the tile mapping and routing steps. Therefore, the V/F assignment has
two phases. If the energy of the final solution exceeds the energy constraint, we increase the
number of allowable VFIs and then repeat the loop starting from VFI Partitioning step in
Fig. 3(b). Although the exact communication delay is known after the first iteration, the sec-

Communication-aware VFI partitioning for GALS-based 97

Table 1 Comparison between two VFI-aware design schemes

Design step Jang [8] Proposed

Task model Deadline for each task Deadline for task graph

V/F assignment Lowest possible V/F Two-phase

(PE V/F, Island V/F)

VFI partitioning Comm-unaware Comm-aware

Full search Iterative graph partitioning

Tile mapping VFI-aware TM VFI-aware and

isolation-preventing TM

Routing Local inter-link allocation Global inter-link allocation

ond iteration should perform the VFI partitioning with the best-case communication delay
since it uses a larger number of VFIs.

The overall differences between our approach and the work of Jang [8] are summarized
in Table 1. In the design technique of Jang [8], each task is assigned the clock frequency
which is the lowest possible value to complete its execution before its deadline since they
assume each task has its deadline. However, we use a more practical task graph model as
described in Sect. 3.1.

4 Detailed descriptions of VFI-based NoC design

4.1 Task scheduling and V/F assignment on PEs

For task scheduling, we adopted a list scheduling algorithm which uses the mobility of each
task to determine its priority. The mobility of a task is defined as the difference between the
ASAP (as-soon-as-possible) start time and the ALAP (as-late-as-possible) end time. In order
to get these time values, the communication delays for respective edges are needed. How-
ever, the distance between two tiles is not available ahead of the tile mapping and routing
steps. Moreover, the communication delay at a link is dependent on how many communi-
cation loads share the link. To cope with this problem, we use the best-case communication
delay assuming the distance between two tiles is one hop and each communication uses its
links exclusively.

After the task scheduling, the voltage and clock frequency of each PE are determined
considering the deadlines of tasks and the workload of the PE. The PE V/F assignment prob-
lem is a nonlinear inequality constrained problem. Schmitz and Al-Hashimi [26] proposed
a voltage and clock frequency selection algorithm similar to the gradient-descent approxi-
mation algorithm. Their algorithm first estimates the slack time of each task considering the
deadline and precedence constraints. It then calculates �En(τi) for a task τi which has a
slack time. �En(τi) is the energy gain when the time slot for τi is increased by �t (with
a lower clock speed). �En(τi) is called an energy gradient of task τi . After increasing the
time slot for the task τi with the largest �En(τi) by a time increment �t , it repeats the same
sequence of steps until there remains no task with slack time. Since it adjusts the task with
the largest power variation, it is called the power variation DVS algorithm. Luo and Jha [30]
proposed a more efficient slack allocation technique which updates the execution times of
multiple tasks at the same time when their energy gradients are at about the same level.

98 D. Shin et al.

Fig. 4 Task scheduling and first V/F assignment

While the algorithms of [26, 30] determine the operating speed of each task assigned on
the DVS-enabled PE, our PE V/F assignment algorithm determines an operating speed for
each PE that is not changed dynamically at run time. Therefore, we calculate the energy
gradient �En(ri) for PE ri which has a slack time. The slack time of ri is the minimum
among the slack times of tasks assigned to the PE ri . For example, we can get the task
schedule shown in Fig. 4 for the task graph in Fig. 2. The task schedule is driven based on
the energy and timing parameters provided in E3S benchmark suites [28]. Since PE3, which
should execute the tasks djpeg and rgb-cymk, has a slack time, its voltage is changed to
1.68 V. Since there are the lower limits of clock and voltage for each PE, some tasks have
slack times even after the V/F assignment.

4.2 VFI partitioning

Before the VFI partitioning, we create a PE communication cost graph GPE(V ,E) as shown
in Fig. 5. Each node represents a PE with an assigned voltage and each undirected edge
represents the total communication cost between two PEs. Then, we use Algorithm 1, which

Communication-aware VFI partitioning for GALS-based 99

Fig. 5 GPE(V ,E) graph

is similar to the K&L heuristic [31]. We first divide all PEs into m number of initial VFI
partitions, I1, . . . , Im. When the lowest and highest PE voltages assigned by the PE V/F
assignment step are Lv and Hv , respectively, Ik includes the PEs whose voltages are greater
than or equal to Lv and less than Lv + �V · k where �V is (Hv − Lv)/m. The PE with
voltage Hv is included in Im (line 3). Since the clock frequency and voltage value of all PEs
within a VFI should be identical, the values of all PEs are changed to the maximum value

100 D. Shin et al.

Fig. 6 Communication-aware VFI partitioning

among them, which are the voltage and clock frequency of the VFI (line 4). Figure 6 shows
the initial state and changes of VFI partition assuming the number of VFIs is 3 (m = 3) for
the example in Fig. 5.

Next, we find the communication edge with the largest inter-VFI communication cost
and check whether we can reduce total energy consumption by moving one of the PEs of
the communication edge so as to change the inter-VFI cost into an intra-VFI cost (line 10
and line 14). For example, since the inter-VFI communication between PE 31 and PE 3 has
the largest value at the initial step partition in Fig. 6, we try to move PE 31 into VFI2 or
move PE 3 into VFI1 at the first iteration. At the second iteration, the algorithm tries to
remove the inter-VFI communications between (PE 5, PE 15), (PE 5, PE 20), or (PE 23,
PE 32). However, none of the alternatives can reduce the total energy consumption, so the
algorithm tries to remove the next highest cost. By moving PE 11 into VFI2, we can reduce
energy consumption. When there remains no PEs that can reduce energy consumption by
rearrangement, we stop the PE migration and get a final VFI partition solution.

When the algorithm moves a PE, it permits only those movements that do not destroy
the VFI boundaries (line 9 and line 13). For example, for the third solution in Fig. 6, if PE
20 is moved into VFI1, the voltage of VFI1 should be changed into 2.08 V which is the
largest voltage among those of PE 5, PE 23 and PE 20. Then, the voltage of VFI1 becomes
larger than that of VFI2 and the VFI boundaries are destroyed. Therefore, we exclude such
movements.

4.3 VFI-aware tile mapping

In the tile mapping step, we determine the tile location of each PE such that the PEs com-
prising a VFI be adjacent in the tile structure. We use Algorithm 2, which is similar to the

Communication-aware VFI partitioning for GALS-based 101

heuristic proposed in [8] but uses a different isolation-preventing technique. PEs are sorted
in decreasing order by the amount of traffic and then are mapped in this order (lines 1 and 2).
There is a candidate tile list CT(Ik) for each VFI Ik . The mapping algorithm selects one of
the candidate tiles for the current PE being mapped by examining the candidate tile list
(line 10). If no candidate exists, we select the empty tile which has the maximum number of
neighbor tiles and is close to the other tiles in CT(Ik) generating the minimum communica-
tion traffic (line 8). After determining the tile location of a PE, neighboring empty tiles are
inserted into the candidate list (line 16). This repeats until all PEs are mapped onto the NoC
grid.

While the algorithm is mapping each PE, it checks whether there is an isolated island,
which consists of free tiles that cannot afford to contain all unmapped PEs of its neighbor
VFIs. If an isolated island can be generated by the tile mapping of a PE, then the proposed
isolation-preventing algorithm searches other candidate locations until no isolated island is
generated (lines 12–15). If it cannot find an alternative location, it re-maps the lastly mapped
PE. While the tile mapping algorithm in [8] uses a post-pass pair-wise tile swapping tech-
nique to remove isolated tiles, the proposed algorithm prevents generating isolated VFIs at
each PE mapping and thus can achieve enhanced energy efficiency and provide a reasonable
searching time.

Figure 7 illustrates the difference between isolation-unaware tile mapping and isolation-
preventing tile mapping. The intermediate tile mapping after PE 10 is mapped to the tile
t14 is shown in Fig. 7(a). The candidate tile list for VFI I2 is {t8, t11}, which are neighbor-
ing empty tiles. An isolation-unaware mapping algorithm may select tile t8 for PE 11, as
shown in Fig. 7(b), and generate two separate islands for I1, as shown in Fig. 7(c). However,
the isolation-preventing mapping selects tile t11, as shown in Fig. 7(d), and composes VFI
I1 with adjacent tiles as shown in Fig. 7(e). Even though the isolation-unaware mapping
uses the pair-wise tile swapping process, it may deteriorate the effect of the VFI-aware tile
mapping since the swapping is performed only to remove isolated islands.

102 D. Shin et al.

Fig. 7 IU-TM (isolation-unaware tile mapping) vs. IP-TM (isolation-preventing tile mapping)

4.4 VFI-aware routing

The aim of the proposed routing path allocation is to build the minimum number of inter-
links as well as to minimize the total communication cost. Even though non-minimal routing
paths can minimize the number of inter-links, we consider only minimal routing paths since
the problem space including non-minimal routing paths is too large as well as they gener-
ally have long interconnection distances. XY -routing is a commonly used minimal routing

Communication-aware VFI partitioning for GALS-based 103

Fig. 8 Routing path allocation in
a VFI-based NoC

technique in NoC design, where packets are first routed along the X-axis. Once a packet
reaches the column under which the destination tile is located, it is then routed along the Y -
axis. XY -routing path is one among multiple shortest paths. Due to its simplicity and good
performance, XY -routing is an acceptable solution when the NoC does not utilize the VFIs.

However, in VFI-based NoC, it is necessary to consider the inter-VFI communication
overhead in determining the routing path. For example, in Fig. 8, there are three VFIs and
tile S1 in VFI1 should send data to tile D1 in VFI3. XY -routing uses the routing path P1,
which passes through VFI2. The path P1 requires two inter-links thus has a long delay time.
If we use the routing path P2 instead, only one inter-link is necessary. Therefore, the routing
path should be allocated aiming to minimize the number of inter-links. Furthermore, the
possibility of inter-link sharing should be taken into account. For the communication from
S2 to D2, paths P3 and P4 both require one inter-link. However, P4 can share the inter-link
with P2. With the help of inter-link sharing, we can reduce the hardware cost as long as the
inter-link can provide the required bandwidth.

For this purpose, we use the global link allocation technique shown in Algorithm 3, which
determines the required inter-links examining all communications between VFIs to globally
minimize the number of inter-links. The previous routing algorithm in [8] allocates at least
one inter-link at each boundary between two VFIs.

The global link allocation first composes candidate inter-links between all adjacent tiles
that are located at the boundary of different VFIs (line 2). Using the PE communication
graph G′′

PE(V ,E) generated by tile mapping, it composes the inter-VFI communication list
called InterComm (line 3). For each candidate inter-link (li), the algorithm finds the shortest
path for each inter-VFI communication (ej) that uses the inter-link (line 7). If there is such a
path, it adds the required bandwidth (w(ej)) to the required maximum bandwidth of the link
(W(li)) and inserts the path into the set of routing paths of the inter-link (li .path) (line 9).
After estimating the maximum bandwidths and paths assigned to all candidate inter-links,
the algorithm finds a candidate inter-link with the largest required bandwidth (line 13). Then,
it selects the inter-link as the final one and fixes all routing paths which use the inter-link
(lines 17–19). Before fixing routing paths, it adjusts the required bandwidth of the inter-link
if it is larger than the maximum allowable (lines 14–16). The algorithm repeats these steps
until the route paths for all inter-VFI communications are determined.

Figure 9 shows the difference between local inter-link allocation and global inter-link
allocation when three inter-VFI communications are required ((S1,D1), (S2,D2) and
(S3,D3)). While the local approach allocates one inter-link between all different VFIs, the
proposed global method allocates only two inter-links and thus enhances their utilizations
as well as reduces the routing distance.

104 D. Shin et al.

Fig. 9 Comparison between LLR (local inter-link allocation routing) and GLR (global inter-link allocation
routing)

4.5 V/F assignment on VFI

Due to VFI partitioning, each PE is assigned voltage/frequency values which are larger than
the values at the first-phase V/F assignment step, and thus a slack time will be generated. In
addition, the network assignment determines an exact cost of each communication, which
is larger than the value assumed at the first-phase V/F assignment step. As a result, several
tasks may miss their deadline with the voltages and clock frequencies determined by the
first-phase V/F assignment step. To resolve these problems, we should adjust the final volt-
age and clock frequency of each VFI at the second-phase V/F assignment step. While the

Communication-aware VFI partitioning for GALS-based 105

Fig. 10 Comparison of the
number of VFIs

(first-phase) PE V/F assignment determines the operating speed of each PE, the (second-
phase) island V/F assignment determines an operating speed for each VFI. We calculate the
energy gain (or loss) �En(Ii) for VFI Ii which has a slack time (or missed time), that is
the minimum among the slack times of tasks assigned to it. Considering the power variation
of the VFI, we adjust the voltage/frequency values using the same algorithm used in the PE
V/F assignment step.

5 Experiments

We estimated the effects of the proposed technique using four applications in E3S bench-
mark suites [28], auto-industry, consumer, telecommunication, and networking, which con-
tains 24, 12, 30 and 13 tasks mapped onto 4 × 4, 3 × 5, 5 × 5 and 3 × 3 NoC grids, respec-
tively. The energy and timing parameters of a combination of PE and task are derived from
the benchmarks. The parameters of communications are taken from [24].

We first compared the performances of the two kinds of tile mapping techniques, IU-
TM and IP-TM, explained in Sect. 4.3. Figure 10 shows the number of VFIs generated by
each tile mapping technique. The X-axis is the input VFI number and the Y -axis represents
the generated VFI number (counting isolated VFIs separately). Since IU-TM may generate
isolated VFIs (though IU-TM uses a swapping technique to remove isolated VFI, we did not
use the technique in this experiment since it takes a significant amount of time), the number
of generated VFIs is larger than the input VFI number in most configurations. However,
IP-TM generates the same number of VFIs as the input. The superiority of IP-TM is more
significant when the number of tasks is large (i.e., auto-industry and telecommunication).

Figure 11 shows the effect of the global inter-link allocation technique explained in
Sect. 4.4. The Y -axis represents the number of mcFIFOs generated by each routing tech-
nique. We assumed that the maximum bandwidth of inter-link is 10 Mbit/s. The GLR tech-
nique reduces the numbers of mcFIFOs compared to the LLR technique and increases the
utilizations of inter-links. The number of mcFIFOs generated by GLR depends on the max-
imum allowable bandwidth of inter-link. As we increase the bandwidth constraint, the num-
ber of mcFIFOs decreases by the GLR technique as shown in Fig. 12. However, there is little
change in the LLR technique since it allocates at least one inter-link at each VFI boundary.

We also compared our communication-aware design scheme with the previous re-
search [8]. As shown in Table 2, we compared six kinds of design schemes. For the task
scheduling and V/F Assignment steps, all schemes used the mobility-driven list scheduling

106 D. Shin et al.

Fig. 11 Comparison of the
required numbers of mcFIFOs
between IU-TM & LLR and
IP-TM & GLR

Fig. 12 Changes of the number
of mcFIFOs while varying the
maximum bandwidth of inter-link
(Telecom. benchmark in 3 VFIs)

Table 2 Design schemes for experiments

Experiment Partitioning Mapping Routing

Scheme1 (JJJ) Jang [8] Jang [8] Jang [8]

Scheme2 (OJJ) Proposed Jang [8] Jang [8]

Scheme3 (JOJ) Jang [8] Proposed Jang [8]

Scheme4 (JJO) Jang [8] Jang [8] Proposed

Scheme5 (JOO) Jang [8] Proposed Proposed

Scheme6 (OOO) Proposed Proposed Proposed

and power variation-driven V/F assignment techniques, respectively. For VFI partitioning,
tile mapping, and routing steps, each scheme used either the previous technique or the pro-
posed technique.

Figure 13 shows the energy consumptions comparison of the six design schemes for a
different number of VFI configurations. The result is normalized by the energy consumption
of scheme1 (JJJ version) and is divided into communication energy and PE energy.

Scheme6 (OOO version) provides a total energy consumption reduction of 3–14%. As the
proposed techniques focus on reducing the communication energy, Scheme6 reduces it by
32–51%. The consumer and networking benchmarks whose communication costs are large
show corresponding great reductions in total energy consumption. From the results, it is ob-

Communication-aware VFI partitioning for GALS-based 107

Fig. 13 Energy comparison with the previous scheme [8]

served that the main contributor on communication energy reduction is the communication-
aware VFI partitioning. The IP-TM and GLR techniques contribute on reducing the number
of VFIs and mcFIFOs, respectively. The effect of communication-aware partitioning grows
more significantly as the number of VFIs increases.

6 Conclusions

In this paper, we proposed an energy-efficient design technique to optimize communication
energy as well as computation energy in VFI-based NoC systems. The proposed algorithms

108 D. Shin et al.

optimize the energy at various design steps including VFI partitioning, tile mapping, routing
path allocation, and V/F assignment. We developed a communication-aware VFI partition-
ing, isolation-preventing tile mapping, and global inter-VFI link allocation techniques to
improve upon the limitations of previous design schemes. As a result, our algorithm re-
duced the communication energy consumption of VFI-based NoC systems by up to 51%
compared with previous design schemes.

Our work can be extended in several directions. In this paper, we assumed that the voltage
and clock frequency of VFIs do not change dynamically at run time. However, it would be
more energy-efficient to provide a dynamic adaptation scheme that exploits the run-time
slack. To adjust the voltages and clock frequencies of all PEs of one VFI synchronously,
there should be a strong correlation among workload changes assigned to the PEs of the
VFI. Considering such correlation in VFI partitioning is our future work.

Acknowledgements This research was partially supported by KORUS Tech Program funded by the KIAT
(KORUSTECH(KT)-2008-DC-AP-FS0-0003).

References

1. Benini L, Micheli GD (2002) Networks on chip: a new SoC paradigm. IEEE Comput 35(1):70–78
2. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: Proc design

automation conference, pp 684–689
3. Chapiro DM (1984) Globally asynchronous locally synchronous systems. PhD dissertation, Dept Com-

put Sci, Stanford Univ, Stanford, CA
4. Hemani A, Meincke T, Kumar S, Postula A, Olsson T, Nilsson P, Oberg J, Ellervee P, Lundqvist D (1999)

Lowering power consumption in clock by using globally asynchronous locally synchronous design style.
In: DAC ’99: proceedings of the 36th annual ACM/IEEE design automation conference, pp 873–878

5. Chelcea T, Nowick SM (2000) A low-latency fifo for mixed-clock systems. In: Proc of the IEEE com-
puter society annual workshop on VLSI (WVLSI’00), p 119

6. Ogras UY, Marculescu R, Choudhary P, Marculescu D (2007) Voltage-frequency island partitioning
for GALS-based networks-on-chip. In: DAC ’07: proceedings of the 44th annual design automation
conference, pp 110–115

7. Ogras UY, Marculescu R, Marculescu D, Jung EG (2009) Design and management of voltage-frequency
island partitioned networks-on-chip. IEEE Trans Very Large Scale Integr Syst 17(3):330–341

8. Jang W, Ding D, Pan DZ (2008) A voltage-frequency island aware energy optimization framework for
networks-on-chip. In: ICCAD ’08: proceedings of the 2008 IEEE/ACM international conference on
computer-aided design, pp 264–269

9. Intel, Single-chip cloud computer. http://techresearch.intel.com/articles/Tera-Scale/1826.htm
10. Shang L, Peh L-S, Jha NK (2003) Dynamic voltage scaling with links for power optimization of inter-

connection networks. In: Proc international symposium on high-performance computer architecture
11. Worm F, Ienne P, Thiran P, Micheli GD (2002) An adaptive low power transmission scheme for on-chip

networks. In: Proc international system synthesis symposium, pp 92–100
12. Kim EJ, Yum KH, Link GM, Vijaykrishnan N, Kandemir M, Irwin MJ, Yousif M, Das CR (2003) Energy

optimization techniques in cluster interconnects. In: Proceedings of the 2003 international symposium
on low power electronics and design, pp 459–464

13. Soteriou V, Peh L-S (2003) Dynamic power management for power optimization of interconnection
networks using on/off links. In: Proc symposium on high performance interconnects, pp 15–20

14. Hu J, Marculescu R (2003) Exploiting the routing flexibility for energy/performance aware mapping of
regular NoC architectures. In: Proc design, automation and test in Europe conference, pp 10688–10693

15. Shin D, Kim J (2004) Power-aware communication optimization for networks-on-chips with voltage
scalable links. In: CODES ’04: proc of international conference on hardware/software codesign and
system synthesis, pp 170–175

16. Marcon C, Calazans N, Moraes F, Susin A, Reis I, Hessel F (2005) Exploring NoC mapping strategies:
an energy and timing aware technique. In: DATE ’05: proc of the conference on design, automation and
test in Europe, pp 502–507

17. Chen G, Li F, Kandemir M (2006) Compiler-directed channel allocation for saving power in on-chip net-
works. In: POPL ’06: conference record of the 33rd ACM SIGPLAN-SIGACT symposium on principles
of programming languages, pp 194–205

http://techresearch.intel.com/articles/Tera-Scale/1826.htm

Communication-aware VFI partitioning for GALS-based 109

18. Li F, Chen G, Kandemir M (2005) Compiler-directed voltage scaling on communication links for reduc-
ing power consumption. In: Proceedings of the 2005 IEEE/ACM international conference on computer-
aided design, pp 456–460

19. Kandemir M, Ozturk O (2008) Software-directed combined cpu/link voltage scaling fornoc-based cmps.
In: Proceedings of the 2008 ACM SIGMETRICS international conference on measurement and model-
ing of computer systems, pp 359–370

20. Sheibanyrad A, Panades IM, Greiner A (2007) Systematic comparison between the asynchronous and
the multi-synchronous implementations of a network on chip architecture. In: DATE ’07: proceedings of
the conference on design, automation and test in Europe, pp 1090–1095

21. Bjerregaard T, Sparso J (2005) A router architecture for connection-oriented service guarantees in the
mango clockless network-on-chip. In: DATE ’05: proceedings of the conference on design, automation
and test in Europe, pp 1226–1231

22. Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) An asynchronous NoC architecture
providing low latency service and its multi-level design framework. In: ASYNC ’05: proceedings of the
11th IEEE international symposium on asynchronous circuits and systems, pp 54–63

23. Leung L-F, Tsui C-Y (2007) Energy-aware synthesis of networks-on-chip implemented with voltage
islands. In: DAC ’07: proceedings of the 44th annual design automation conference, pp 128–131

24. Guang L, Nigussie E, Koskinen L, Tenhunen H (2009) Autonomous DVFS on supply islands for energy-
constrained NoC communication. In: ARCS ’09: proceedings of the 22nd international conference on
architecture of computing systems, pp 183–194

25. Ghosh P, Sen A, Hall A (2009) Energy efficient application mapping to NoC processing elements op-
erating at multiple voltage levels. In: NOCS ’09: proceedings of the 2009 3rd ACM/IEEE international
symposium on networks-on-chip, pp 80–85

26. Schmitz MT, Al-Hashimi BM (2001) Considering power variations of DVS processing elements for en-
ergy minimisation in distributed systems. In: Proc international symposium on system synthesis, pp 250–
255

27. Lim S, Bae Y, Jang G, Rhee B, Min S, Park C, Shin H, Park K, Kim C (1995) An accurate worst case
timing analysis for RISC processors. In: IEEE transactions on software engineering, vol 21, pp 593–604

28. Dick RP (2003) Embedded system synthesis benchmarks suites. http://ziyang.eecs.umich.edu/dickrp/
e3s/

29. Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J
49:291–307

30. Luo J, Jha NK (2007) Power-efficient scheduling for heterogeneous distributed real-time embedded sys-
tems. IEEE Trans Comput-Aided Des Integr Circuits Syst 26(6):1161–1170

31. Vahid F, Le TD (1997) Extending the Kernighan-Lin heuristic for hardware and software functional
partitioning. Des Autom Embed Syst 2:237–261

http://ziyang.eecs.umich.edu/dickrp/e3s/
http://ziyang.eecs.umich.edu/dickrp/e3s/

	Communication-aware VFI partitioning for GALS-based networks-on-chip
	Abstract
	Introduction
	Related works
	VFI-based NoC design
	Specification and architectural model
	Problem formulation
	Overall design flow

	Detailed descriptions of VFI-based NoC design
	Task scheduling and V/F assignment on PEs
	VFI partitioning
	VFI-aware tile mapping
	VFI-aware routing
	V/F assignment on VFI

	Experiments
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

