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Abstract—Solid-state disks (SSDs), which are composed of multiple NAND flash chips, are replacing hard disk drives (HDDs) in the

mass storage market. The performances of SSDs are increasing due to the exploitation of parallel I/O architectures. However,

reliability remains as a critical issue when designing a large-scale flash storage. For both high performance and reliability, Redundant

Arrays of Inexpensive Disks (RAID) storage architecture is essential to flash memory SSD. However, the parity handling overhead for

reliable storage is significant. We propose a novel RAID technique for flash memory SSD for reducing the parity updating cost. To

reduce the number of write operations for the parity updates, the proposed scheme delays the parity update which must accompany

each data write in the original RAID technique. In addition, by exploiting the characteristics of flash memory, the proposed scheme

uses the partial parity technique to reduce the number of read operations required to calculate a parity. We evaluated the performance

improvements using a RAID-5 SSD simulator. The proposed techniques improved the performance of the RAID-5 SSD by 47 percent

and 38 percent on average in comparison to the original RAID-5 technique and the previous delayed parity updating technique,

respectively.

Index Terms—Redundant arrays of inexpensive disks (RAID), flash memory, solid-state disk (SSD), reliability, dependability.
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1 INTRODUCTION

DURING the last decade, there have been dramatic
changes in data storage systems. The evolution of

NAND flash memory has enabled several portable devices,
such as MP3 players, mobile phones, and digital cameras, to
be accommodated with a large amount of data storage.
Flash memory has the features of low-power consumption,
nonvolatility, high random access performance, and high
mobility, and hence, it is well-suited for portable consumer
devices. Recently, due to the dramatic price reduction, flash
memory has been extending its domain to mass storage
systems for desktop PCs or enterprise servers. As a result,
the flash memory solid-state disks (SSDs), which are
composed of multiple flash chips, are replacing hard disk
drives (HDDs) in the mass storage market [1], [2]. SSDs are
appreciated especially for energy efficiency over HDDs due
to the absence of mechanical moving parts, and thus, they
are attractive to the power-hungry data center.

However, the cost per bit of NAND flash memory is still
high. In recent years, multilevel cell (MLC) flash memories
have been developed as effective solutions to increase
storage density and reduce the cost of flash devices.
However, MLC flash has slower performance and less
reliability than those of single-level cell (SLC) flash for the
sake of its low cost. Therefore, the performance and
reliability problems should be solved for dependable and
high-performance flash memory SSD. To enhance the
performance of SSDs, we can use parallel I/O architectures,

such as multichannel and interleaving [3], which increase
the I/O bandwidth by allowing concurrent I/O operations
over multiple flash chips. However, the reliability problem
is still a critical issue when designing large-scale flash
storage systems.

Current NAND flash products ensure reliability by
employing error-correcting codes (ECCs). Traditionally,
SLC flash memory uses single-bit ECC, such as Hamming
codes. These ECCs are stored in the spare area of flash blocks,
the extra space per page for metadata. When a page is read
from the flash device, the flash memory controller calculates
a new ECC with the page and compares it with the ECC that
is stored in the spare area in order to detect and correct bit
errors before the page data are forwarded to the host.

However, MLC flash memory shows a much higher
bit-error rate (BER) that can be managed with single-bit
error-correcting codes. Multiple bits are stored in each
memory cell of the MLC flash memory by programming
each cell with multiple threshold levels. Therefore, the
reduced operational margin significantly degrades the
reliability of flash memories. In addition, as silicon technol-
ogy evolves, cell-to-cell interference is increasing. As a result,
codes with strong error-correction capabilities, like BCH or
Reed-Solomon (RS) codes, are used. However, these ECCs
require a high hardware complexity and increase the read
and write latencies.

Another approach for reliability is to adopt redundancy
in storage level. The Redundant Arrays of Inexpensive Disks
(RAID) [4] technique uses an array of small disks in order to
increase both performance and reliability. Current SSD
products employ RAID level 0 (RAID-0) striping architec-
ture, which spreads data over multiple disks to improve
performance. Concurrent accesses to multiple flash chips
are allowed so as to improve sequential access. However,
RAID-0 does not improve the reliability, since it does not use
redundant data. RAID-4 and RAID-5 architectures are
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widely used to provide redundancy. In such architectures,
one disk is reserved to store the parity, and thus, the multibit
burst error in a page, block, or device can be easily corrected.
Parity requires negligible calculation time compared to error
correction codes. There are also file-system-level parity
schemes [5], where one flash block of a segment is dedicated
to the parity of other blocks in the segment and one flash
page of a block is also dedicated to the parity of other pages
in the block. Such file-system-level schemes can be used
independently or in combination with RAID storage
architectures.

In order to implement RAID-4 or RAID-5 technology in
flash storage, we should consider the characteristics of flash
memory. To manage parity data, frequent write requests are
necessary, which significantly deteriorate the performance
due to the slow write performance of NAND flash memory.
Whenever a page is updated, the other pages need to be
read to calculate a new parity, and the new parity should be
written into the flash memory. Therefore, we need a flash-
aware RAID technique to implement reliable and high
performance flash memory SSDs.

In this paper, we propose a novel RAID-5 architecture for
flash memory SSD in order to reduce the parity updating
cost. It is a delayed parity update scheme with a partial parity
caching technique. To reduce the number of write operations
for these parity updates, the proposed scheme delays the
parity update which must accompany each data write in the
original RAID-5 technique. The delayed parities are main-
tained in the parity cache until they are written to the flash
memory. In addition, the partial parity caching technique
reduces the number of read operations required to calculate a
new parity. By exploiting the characteristics of flash memory,
the partial parity caching technique can recover the failed
data without full parities. We provide performance evalua-
tion results based on a RAID-5 SSD simulator.

The rest of the article is organized as follows: Section 2
introduces backgrounds on flash memory, SSD, and RAID
techniques. In Section 3, related works on flash memory
SSD and RAID-based SDD are introduced. Section 4
describes the proposed delayed parity update scheme.
The experimental results are presented in Section 5, and
Section 6 concludes with a summary and descriptions of
future works.

2 BACKGROUND

2.1 Flash Memory

Flash memory has several special features, unlike the
traditional magnetic hard disk. The first one is its “erase-
before-write” architecture. To write data into a block, the
block should first be cleaned by the erase command. The
erase operation in flash memory changes all of the bits in the
block to the logical value 1. The write operation changes
some bits to the logical value 0 but cannot restore the logical
value 0 to the logical value 1. The second feature is that the
unit sizes of the erase and write operations are asymmetric.
While the write operation is performed by the unit of a page,
the flash memory is erased by the unit of a block, a bundle of
several sequential pages. For example, in a large block-based
MLC NAND flash memory [6], one block is composed of

128 pages, and the size of a page is 4 KB. Due to these two
features, special software called the flash translation layer
(FTL) is required, which maps the logical page address from
the host system to the physical page address in flash
memory devices. Flash memory SSDs also require an
embedded FTL, which performs on the SSD controller.

The address mapping schemes of the FTL can be divided
into three classes depending on the mapping granularity:
page-level mapping, block-level mapping, and hybrid
mapping. Fig. 1 shows an example of page-level mapping,
where a logical page can be mapped to any physical page in
flash memory. When a host sends the read request with a
logical page number (LPN), FTL finds the physical page
number (PPN) from the mapping table. Since the mapping
table is generally maintained in SRAM, each physical page
also has its LPN in the spare field against sudden power
failures. If an update request is sent for the data that have
already been written to flash memory, page-level mapping
technique writes the new data to an empty page, invalidates
the old data, and changes the mapping information for the
logical page number since the flash memory page cannot be
overwritten. The invalidation of old data is marked at its
spare field. The drawback of the page-level mapping
technique is that its mapping table size is inevitably large,
and thus, it requires a large SRAM for mapping table.

In block-level mapping, only the mapping information
between the logical block number (LBN) and the physical
block number (PBN) is maintained. Therefore, a page
should be in the same page offset within both the logical
block and the physical block. Block-level mapping requires
a small-sized mapping table. However, when a logical page
is updated, the page should be written to a new clean flash
block, and all of the nonupdated pages of the old block
should be copied into the new flash block. Block-level
mapping, therefore, invokes large page migration costs.

Hybrid mapping [7], [8], [9], [10], [11] is a compromise
between page-level mapping and block-level mapping. In
this scheme, a small portion of physical blocks is reserved
as a log buffer. While the log blocks in the log buffer use the
page-level mapping scheme, the normal data blocks are
handled by the block-level mapping. When a write request
is sent to the FTL, the data are written to a log block, and the
corresponding old data in the data block are invalidated.
When there is no empty space in the log buffer, one of the
log blocks is selected as a victim and all of the valid pages in
the log block are moved into the data blocks to make space
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Fig. 1. Page-level address mapping in flash memory.



for on-going write requests. This process is referred to as
log block merge [7].

Hybrid mapping requires a small-sized mapping table
since only the log blocks are handled by the page-level
mapping. In addition, unlike block-level mapping, hybrid
mapping does not invoke a large page migration cost for
every write request. As a result, most SSDs are employing
the hybrid mapping or page-level mapping techniques.

2.2 SSD Architecture

To enhance the bandwidth of the flash memory SSD,
interleaving techniques are used. Fig. 2 shows an example
of the multichannel and multiway SSD architecture [3], [12].
The four channels can be operated simultaneously. Two
flash chips using different channels can be operated
independently, and, therefore, the page program times for
the different chips can overlap. In addition, one NAND
controller can access two flash chips in an interleaved
manner, and, therefore, we can write to two interleaved
chips simultaneously. However, since two flash chips
sharing one bus cannot occupy the data bus simultaneously,
the data transfer times cannot overlap.

Fig. 3 shows the parallel operations in 4-channel and 2-way
SSD architecture. If the bus speed is 40 MB/s (100 �s=4 KB)
and the program time for a 4 KB page in MLC is 800 �s, the
total time to program eight pages is 1 ms. We can program
eight pages in parallel with 4-channel and 2-way SSD
architecture. To utilize such parallel architectures, sequential
data are distributed across multiple flash chips. Therefore, the

parallel architecture can provide a high bandwidth for
sequential requests. However, random I/O performances
are poor compared to those of sequential I/O.

2.3 RAID Technologies

RAID enhances the reliability of storage systems by using
redundant data and improves the performance by inter-
leaving data across multiple disks. There are several levels
of RAIDs; RAID-0 uses only the interleaving technique
without redundant data, therefore, it does not improve the
reliability. Current SSD products use the RAID-0 technique
internally while utilizing the multichannel and multiway
architecture in order to improve the I/O bandwidth.

RAID-4 and RAID-5 use an extra disk to hold redundant
information that is necessary to recover user data when a
disk fails. RAID-4 and RAID-5 stripe data across several
drives, with the parity stored on one of the multiple drives.
In particular, in RAID-5, each stripe stores the parity on a
different drive to prevent one of the disks from being
bottleneck. Therefore, RAID-5 provides high read and write
performances due to parallel access to multiple disks.

The RAID-5 SSD can be implemented using several flash
chips or flash drives, as shown in Fig. 4. Depending on the
striping granularity, each stripe is composed of N+1
logically sequential pages or blocks, where N represents
the number of disks for user data. The RAID controller has a
write buffer that stores data temporarily until it is written to
the flash chips. It also generates a parity of data to be
written and distributes the user data and the parity across
multiple flash chips. The NAND controller writes the data
or parity to the flash chips. The parities are written at
different chips for different stripes. When D1 and D6 are
updated in Fig. 4, flash chips 1, 2, 3, and 4 may become busy
in parallel or in an overlapped fashion, and thus, no single
drive remains in a performance bottleneck.

In RAID-5 SSD, we should distinguish the logical and
physical addresses. The RAID controller determines the
stripe based on the logical address. Therefore, all pages of a
stripe have the same logical offsets within their flash chips,
but the physical offsets can be different since the logical
address is translated into a physical address by the FTL.

The stripe index j of data Di can be defined as j ¼ bi=Nc,
where i is the logical page number of Di. Therefore, the
stripe Sj is composed of ðDN �j; DN�jþ1; . . . ; DN�ðjþ1Þ�1; PjÞ,
where Pj is the parity of Sj and is equal to DN�j �
DN�jþ1 � � � � �DN�ðjþ1Þ�1. The operator � represents the
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Fig. 2. Multichannel and multiway (four-channel and two-way) SSD
architecture.

Fig. 3. Parallel operation at four-channel and two-way architecture.

Fig. 4. 4þ 1 RAID-5 SSD Architecture.



exclusive ORing (XORing). The chip number of each data is
determined by the parity allocation structure in Fig. 4.

In order to update user data D0, RAID-5 requires the
three following steps:

1. read D0 and P0,
2. compute a new parity P 00 (P 00 ¼ D0 �D00 � P0), and
3. write D00 and P 00.

To change D0 to D00, RAID-5 first reads the old user data
D0 and the old parity P0. Second, it generates a new parity
P 00. Finally, the new user data D00 and the new parity P 00
should be placed into the storage. Therefore, the total
update cost is 2 � Tread þ 2 � Twrite, and the parity handling
overhead is 2 � Tread þ Twrite, where Tread and Twrite are the
read and write costs of the flash memory, respectively.
That is, the total write cost can increase over 50 percent
compared to the case of no redundancy. Therefore, RAID-5
results in poor write performance in flash storage because
even a small random write may incur a parity update.

A more advanced RAID technique such as RAID-6
provides multiple parity data to recover from multiple
failures. In addition, there are more powerful RAID codes
[13] for higher performance and reliability. However, we
focus on only RAID-5 using parity since the benefit of using
the MLC flash memory will be diminished if the redundant
area is large.

3 RELATED WORKS

3.1 HDD-Based RAID

Several techniques such as parity logging [14], floating parity
[15], and fast write [16] have been proposed to reduce the
overhead for small writes in a HDD-based RAID-5. The
parity logging technique writes parity updates into a
dedicated log disk instead of updating the parity in the
parity disk. When the log disk fills up, the logged parity
update images are applied to the out-of-date parity. Such a
logging technique converts small writes of parity into large
sequential writes and combines successive updates of parity
into a single update in the disk array. The floating parity
technique remaps dynamically parity blocks within disk
cylinders to reduce the rotational latency between reading
and writing parity.

Both parity logging and floating parity attempt to reduce
the disk seek time overhead of parity updates. In both
schemes, the old data must be read from the disk to
calculate parity. However, our proposed RAID-5 technique
focuses on the flash memory SSDs. Our technique reduces
the number of read operations for parity update by using a
partial parity scheme while the previous schemes use full
parity schemes.

The fast write scheme uses a nonvolatile write buffer to
reduce write latency. The data in the write buffer and the
corresponding parity are written at disks in the background.
While the parity should be updated at disk when the data is
evicted from the write buffer in the fast write scheme, our
proposed scheme delays the parity update even when the
related data are evicted from the write buffer. Moreover, our
scheme uses partial parities to reduce flash read operations
exploiting the special feature of flash memory.

3.2 Flash Memory SSD

Many commercial products of flash memory SSD have been
introduced by several companies such as Samsung [17],
Intel [18], etc. These products are composed of multiple
flash chips to provide a large storage capacity. To increase
the I/O bandwidth, the user data are interleaved over
multiple flash chips using a multichannel and multiway
controller, an architecture similar to RAID-0.

Park et al. [3] proposed a multichannel and multiway
controller for SSD that supports parallel write operations.
The firmware intervention is minimized by automatic
interleaving hardware logic. A hybrid mapping scheme is
used in the internal FTL.

Kang et al. [19] proposed three techniques to exploit
the I/O parallelism of SSD: striping, interleaving, and
pipelining. The striping technique spreads a request across
multiple channels. In the interleaving technique, several
requests are handled in parallel using several channel
managers. The pipelining technique overlaps the proces-
sing of two requests on a single channel.

Agrawal et al. [20] presented a range of design tradeoffs
that are relevant to SSDs. They analyzed the tradeoffs using
a trace-based disk simulator that can be customized to
characterize different SSD organizations. They considered
two interleaving schemes, i.e., async mode and sync mode.
In async mode, multiple flash chips operate independently,
and there are no relationships between pages assigned to
different flash chips. However, in sync mode, multiple flash
chips simultaneously handle one I/O request on the stripe.
The pages in a stripe are sequential. Generally, the async
mode can provide a better I/O performance, but it requires
a larger mapping table than that of the sync mode.

Shin et al. [21] extended the SSD simulator of [20] and
evaluated various page striping methods for the sync mode.
The page striping method determines the order of pages
within a stripe. They showed that narrow striping has an
inferior performance to that of wide striping, and that using
the striping unit of a block is worse than using that of a page.

These studies did not address the redundancy issue of
SSDs. Instead, similar to RAID-0, their proposed algorithms
use an array of flash chips and stripe (interleave) data across
the arrays only to improve parallelism and throughput.

3.3 SSD with Redundancy

More recently, several approaches have been proposed to
improve both the performance and reliability of SSDs using
redundancy. Greenan et al. [22] proposed a RAID-4 SSD
architecture that uses a page-level interleaving and a
nonvolatile RAM (NVRAM) to hold the parity temporarily
in order to prevent frequent parity updates for write
requests. All parity updates for a page stripe are delayed
in the NVRAM until all of the dependent data have been
written to flash memory. As a result, it reduces the parity
update overhead. However, the technique does not reduce
the parity calculation overhead (i.e., reading the old data
and the old parity) since it must calculate a new parity for
each write request. Therefore, the parity overhead cost is
not negligible.

The FRA [23] scheme also uses a delayed parity update
scheme which can reduce the parity write frequency for
multiple write requests to the same area. The parity is
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calculated and written to the flash storage during idle time.
The main difference between this scheme and that of [22] is
that FRA does not use the NVRAM to store the parity data.
Instead, it uses the dual-mapping scheme in the address
mapping table of FTL to identify which parity has been
delayed. However, FRA has a critical drawback in terms of
reliability; there is no method for recovering failed data for
which the parity update is delayed.

4 PARTIAL-PARITY-BASED DELAYED PARITY

UPDATE

When there is an update request, FTL generally does not
erase or update old data; instead, the data are invalidated
due to the erase-before-write constraint of flash memory.
The invalidated data can be utilized as implicit redundant
data. The proposed delayed parity update scheme is
designed to exploit the implicit redundant data in order
to reduce the parity handling overhead.

We apply page-level striping since it shows better
performance than does block-level striping [21]. When
there is a write request from the host, the RAID SSD
controller determines a stripe number and a chip number
based on the logical page number and sends the data to the
determined flash chip. The normal RAID controller gen-
erates the parity data for the stripe and writes it to the
parity flash chip of the stripe. However, the proposed
scheme delays the parity data update and stores it on a
special device called a partial parity cache (PPC). The stored
parity is a partial parity because it is generated with only
partial data of the stripe. This is a main difference from the
delayed parity scheme in [22], which stores full parities in
the parity cache, and thus, requires many read operations to
calculate the full parities.

Using the partial parity, we can reduce the parity
generation overhead. Instead, we maintain the old version
of the updated data, which is implicit redundant data. In
the case of chip or page failures, we recover the failed data
with the partial parity or the old version of other data. The
delayed parity is written to a flash chip when there is no
free space in the PPC. This step is called a parity commit.

4.1 Partial Parity Cache

The partial parity cache temporarily stores the delayed
parities. In order to avoid losing the parities stored in the
PPC at sudden power failures, it must be implemented with
an NVRAM. We can use a storage class memory (SCM) [24],
such as PRAM and MRAM, or a battery-backed RAM that
has a redundant battery to protect against an external
power failure. The capacity of the battery should be large
enough to flush all delayed parities to the flash chips. Fig. 5
shows the structure of the PPC including the information on
the parities that are not yet written to the flash chips. The
PPC has M number of entries, each of which has a stripe
index, a partial parity bitmap, and a partial parity. The
bitmap represents the data indices associated with the
partial parity. For example, if the bitmap of stripe Sj is
“0110” for a 4þ 1 RAID-5 structure, its partial parity is
made up of the updated pages of fD4jþ1; D4jþ2g. The stripe
whose up-to-date parity is not written to a flash chip is

called an uncommitted stripe. We denote the set of associated
data of the parity Pj as �ðPjÞ.

The size of the PPC can be estimated to be Mðlog2 I þ
N þWÞ bits, where I, N , and W represent the total number
of stripes in SSD, the number of data flash chips (excluding
the extra parity chip), and the bit-width of one page,
respectively.

4.2 Partial Parity Creation and Updating

When an update request changes Di into D0i whose stripe is
Sj, a partial parity is created or updated in the PPC in the
following three cases:

1. If there is no corresponding partial parity of the
target logical stripe in the PPC (i.e., Sj 62 PPC), a new
partial parity ~Pj should be inserted. The value of ~Pj
is same as D0i. There is no flash memory I/O
overhead (Coverhead ¼ 0).

2. If there is a corresponding partial parity of the target
logical stripe in the PPC, but the partial parity is not
associated with the old version of the data to be
written (i.e., Sj 2 PPC ^Di 62 �ð ~PjÞ), a new partial
parity is calculated by XORing the old partial parity
and the new data (i.e., ~Pj ¼ ~Pj �D0i). There is no
flash memory I/O overhead (Coverhead ¼ 0).

3. If there is a corresponding partial parity of the
target logical stripe in the PPC, and the partial
parity is associated with the old version of the data
to be written (i.e., Sj 2 PPC ^Di 2 �ð ~PjÞ), a new
partial parity is calculated by XORing the old
partial parity, the old data, and the new data (i.e.,
~Pj ¼ ~Pj �Di �D0i). One flash memory read cost is
invoked (Coverhead ¼ Tread).

For example, Fig. 6 shows the change in the PPC when
the host sends the update requests on data D1 and D2. The
RAID SSD is composed of four data chips and one spare
chip. We assume that each flash chip is composed of
10 blocks (i.e., B0; B1; � � � ; B9) and each block has four pages.
Before the update requests, D1 and D2 were written to
physical page number (PPN) 40 of chip 1 and PPN 80 of
chip 2, respectively. Their parity datum P0 has been written
to PPN 160 of chip 4. Initially, the PPC has no entry.

The RAID SSD controller first writes the new data D01 at
PPN 42 of chip 1 while invalidating D1 at PPN 40. Since the
corresponding parity datum P0 is not updated immediately
in the delayed parity update scheme, the parity remains
unchanged in flash chip 4. Instead, a partial parity ~P0 for D01
is created in the PPC since there is no partial parity of the
logical stripe S0 ¼ ðD0; D1; D2; D3; P0Þ in the PPC (case 1).
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~P0 is equal to the data D01. While the normal RAID-5
algorithm should read both the old data D1 and the old
parity P0 to calculate the full parity, our scheme does not
require read operations to generate the parity data.

The mapping table for the translation between the LPN
and the PPN is also shown in Fig. 6. The table manages a
PPN, an old PPN, and a physical parity page number
(PPPN) for each LPN. The PPPN is the physical page
number on which the parity data of a stripe are written. The
old PPN points to the physical page on which the old
version of the logical page is contained, where the old
version is associated with the parity data written to the
PPPN. Therefore, the old PPN value of LPN 1 is 40 after the
update of D1.

Generally, flash storage does not maintain the old PPN of

a logical page. Instead, the garbage collector (GC) maintains

the list of all invalid flash pages so as to reclaim them when

there is no sufficient free space. However, our scheme

regards the invalid pages as implicit redundant data that

can be used to recover failed data in the stripe since the old

data are associated with the out-of-date parities. In this

paper, we call such invalid but useful data semivalid data

since it is valid data in terms of failure recovery. The FRA

technique proposed in [23] also uses the old PPN informa-

tion in its dual-mapping scheme. However, the FRA uses

the information to identify delayed parities without an

NVRAM cache for the delayed parity. If the old PPN and

the PPN for an LPN are different, the FRA detects that the

parity of the LPN is not written to the flash chip. However,

our scheme uses this information to recover failed data.
Since the mapping table is maintained at SRAM, its space

overhead should be small. The PPPN field is necessary to
manage RAID-5 striping architecture even when the partial
parity scheme is not used. The only additional overhead
invoked by the proposed scheme is the old PPN field. To
minimize the space overhead, we allocate the memory
space for the old PPN dynamically only when the
corresponding LPN is one of uncommitted stripes, and
use a hashing function to map between an LPN and its old
PPN. The allocated space is freed when the LPN is
committed. The required number of old PPNs is the same

as the number of partial parities in the partial parity cache.

Therefore, the maximum memory space for old PPNs is

limited by the size of PPC.
When the host sends the update request on LPN 2 with

the new data D02, the SSD controller writes it to chip 2 and

updates the partial parity ~P0 by XORing the old value of ~P0

and D02 since there is the corresponding partial parity ~P0 in

the PPC but D2 62 �ð ~P0Þ (case 2). It can be determined

whether a partial parity is associated with a page by

examining its partial parity bitmap information in the PPC.

After the update of D2, the old PPN of LPN 2 becomes 80.
If the host sends another update request on LPN 1 with

the new data D001 , D01 is invalidated and the partial parity ~P0

is updated by XORing ~P0, D001 and D01 (case 3). This case

invokes one read operation for D01. The old PPN of LPN 1 is

unchanged since the old parity P0 is associated with D1 at

PPN 40.

4.3 Partial Parity Commit

There are two kinds of parity commits for which the

delayed parity should be written to the flash chips.

. Replacement Commit: when there is no free space in
the PPC for a new partial parity after handling
several write requests, one of partial parities should
be replaced.

. GC Commit: before the GC erases the semivalid
pages of the uncommitted stripe, the corresponding
delayed parity should be committed.

Since the PPC has only partial information, the semivalid

data are needed to cope with failure. Therefore, we should

commit the corresponding partial parity before the GC

erases semivalid data.
To commit the partial parity, the RAID controller should

first build the full parity with the pages that are not associated

with the partial parity. To reduce the parity commit cost, we

should consider the number of associated pages of a partial

parity ~Pj, which is equal to j�ð ~PjÞj (i.e., the number of

elements in �ð ~PjÞ). The partial parity commit operations can

be divided into two cases for N þ 1 RAID-5 SSD:

. When j�ð ~PjÞj � dN=2e, the full parity is generated by
XORing the partial parity and the nonupdated pages
of the stripe. The maximum number of flash
memory reads for the nonupdated pages is dN=2e.

. When j�ð ~PjÞj < dN=2e, the full parity is generated by
XORing the partial parity, the old full parity, and the
old data of the associated pages. The maximum
number of flash memory reads for both the old full
parity and the old data is dN=2e.

For instance, in Fig. 7a, the set of associated pages of

partial parity ~P0 is fD001 ; D02; D03g. The nonupdated data D0

must be read in order to calculate the full parity. After

writing the full parity at PPN 162, the old PPN information

of the strip is cleared, and the value of the PPPN is updated.

However, in Fig. 7b, the partial parity ~P0 has only one

associated page D01. Therefore, the full parity is calculated

with D1, P0, and ~P0. The physical location of D1 can be

determined from the old PPN field of the mapping table.
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Fig. 6. Partial parity creation and updating.



Therefore, the parity commit cost Ccommitð ~PjÞ for a partial
parity ~Pj is as follows:

ðN � j�ð ~PjÞjÞTread þ Twrite ifj�ð ~PjÞj � dN=2e
ðj�ð ~PjÞj þ 1ÞTread þ Twrite otherwise;

where N represents the number of parallel logical flash
chips; ðN � j�ð ~PjÞjÞTread or ðj�ð ~PjÞj þ 1ÞTread represents the
cost of page reads from the flash chips to generate the full
parity. We can limit the number of flash reads for partial
parity commit to dN=2e. Twrite is the flash write cost of the
full parity. If N flash chips can be accessed in parallel in the
RAID architecture, the read latency for multiple interleaved
pages will be the same as that for one page. However,
the read operations for multiple pages degrade the I/O
bandwidth of SSD, especially when there are many other
read requests from the host. Therefore, it is reasonable to
count the number of pages to read when estimating the
commit cost.

The PPC scheme generates the read requests only when a
partial parity is committed while the previous schemes [22],
[14] should read the old data at each data write to maintain
the full parity. In addition, a partial parity includes most of
the new data of the associated pages due to data access
locality when it is committed, as shown in Fig. 7b. Then, the
PPC scheme reads only a small number of pages in order to
commit a partial parity. For the best case, the PPC scheme
can commit a partial parity without any read operation if it
includes all the associated pages.

4.4 Commit Cost-Aware PPC Replacement

When there is no free space in the PPC, we should commit
at least one partial parity. Therefore, a partial parity

replacement policy is required. General cache systems use

the least-recently-used (LRU) replacement policy, which
will also provide a high hit ratio to the PPC. However, for

the parity cache, we should consider the parity commit
costs that are different depending on the number of

associated pages of the partial parity. Therefore, we propose

a commit cost-aware replacement policy that considers both
the recency and commit cost of a parity. We use the

following priority function to select a victim parity:

� � Probupdateð ~PjÞ þ ð1� �Þ � Ccommitð ~PjÞ; ð1Þ

where Probupdate and Ccommit are the update probability and

the commit cost of a parity, respectively, and � is the weight
value between two metrics. The update probability can be

approximated with the LRU ranking. As the priority value of
a parity is smaller, it has a higher probability to be selected as

a victim. By experimental analysis, we could determine a
proper value for � under the given target workloads.

4.5 Chip Failure Recovery

The SSD controller can fail to read data from the flash

memory due to page-level error, chip-level error, or flash

controller-level error. The page-level error is generated
when it is uncorrectable by the ECC. When there is a read

failure on one flash chip, we can recover the failed data
using its parity data. The recovery steps are divided into

two cases as follows:

. When a delayed partial parity ~Pj is associated with
the failed page D0i (D0i 2 �ð ~PjÞ), D0i can be recovered
using the partial parity ~Pj and other associated
pages in �ð ~PjÞ.

. When no delayed partial parity is associated with
the failed page Di, Di can be recovered using the old
full parity Pj and the associated pages in �ðPjÞ.

For example, assume that we failed to read the data D01
due to the failure of chip 1 as shown in Fig. 8a. The PPC has
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Fig. 7. Partial parity commit. (a) Number of associated pages � dN=2e.
(b) Number of associated pages < dN=2e.

Fig. 8. Failure recovery. (a) A partial parity is associated with the failed
page. (b) No partial parity associated with the failed page.



an uncommitted partial parity ~P0 that is generated with D01
and D02. Since the partial parity is associated with the failed
page D01, we can recover the data by XORing ~P0 and D02. D02
should be read from flash chip 2. If the data D0 cannot be
read due to the failure of chip 0, as shown in Fig. 8b, it
cannot be recovered with the partial parity ~P0 that is not
associated with D0 (case 2). In this case, the old parity P0

and its associated old data are used. By XORing P0, D1, D2

and D3, the data D0 can be recovered. D1 and D2 can be
accessed with the old PPN information in the mapping
table. This second case exploits the semivalid pages to
recover the failed data.

4.6 Parity-Cache-Aware Garbage Collection

When there are many invalid pages in flash chips, the GC is
invoked. It selects a victim flash block that may have many
invalid pages. If the block also has valid pages, the GC
moves them into other clean blocks, changes the page
mapping information and erases the victim block for future
uses. Even when the victim block has semivalid pages of the
uncommitted stripe, the GC removes them since they are
invalid pages in the flash memory. To avoid losing the
semivalid data, we should commit the corresponding
partial parity before the GC erases them (GC commit).
The GC should check whether the invalid page is a
semivalid page by examining the mapping table. If the
physical address of the invalid page is found at the old
PPN field of the mapping table, the page is a semivalid
page. Even when the proposed delayed partial parity
scheme is not used, the mapping table should be accessed
by the GC to read and update the PPN values. Therefore,
the identification of semivalid data imposes no significant
additional overhead. In addition, since the maximum
number of semivalid pages is not too large, the timing cost
to identify the semivalid pages is negligible.

Since the GC commit invokes several flash memory read
and write operations, it is better to avoid this case when
possible. For this purpose, we propose the parity cache-
aware victim selection policy for GC. The general algorithm
for the victim block selection of GC considers the page
migration cost. The algorithm selects the block with the
smallest number of valid pages because it invokes the
lowest page migration cost during the GC. However, in the
parity cache-aware policy, the GC commit cost is taken into
account additionally. This scheme uses the following
equation to estimate the GC cost of block B:

GCcostðBÞ ¼ CmigrationðBÞ þ CcommitðBÞ; ð2Þ

where CmigrationðBÞ denotes the valid page migration cost of
block B and CcommitðBÞ denotes the sum of the GC commit

costs invoked before erasing block B. Therefore, the parity
cache-aware GC selects the victim block whose GCcost is
smallest among all of the victim candidates.

Generally, the victim block selected by the GC is not a
recently-allocated block since the recently-allocated blocks
have a large number of valid pages, and thus, require a
large page migration overhead. Therefore, if the parity
cache size is quite small, and thus, the partial parities
remain in the parity cache during short intervals, compared
to the garbage collection frequency, there is little possibility
for a selected victim block to contain the semivalid data
since the parity cache commits the stripes related to the
victim block prior to the garbage collection.

5 EXPERIMENTS

5.1 Experimental Setup

To evaluate the proposed scheme, we implemented a RAID-
5 SSD simulator as shown in Fig. 9. It is composed of the
RAID-5 controller simulator, the SSD timing simulator, and
the SSD functional simulator. The RAID-5 controller
simulator uses the disk I/O trace as an input. It forwards
the data I/O operations to SSD simulators after inserting the
parity handling operations between the normal operations.
The logical address of each data I/O request is modified
since parities should be inserted at every stripe. The RAID-5
controller simulator internally manages a write buffer and a
parity cache.

To obtain the performance simulation results considering
the parallel I/O architecture of SSD, we used the SSD timing
simulator introduced in [20], exploiting the provided page
striping function. However, this simulator cannot be config-
ured to simulate various FTL mapping schemes and cannot
generate the FTL-related information such as garbage
collection overhead. To compensate for these drawbacks,
we implemented our own SSD functional simulator that can
be configured to use various address mapping schemes and
can report the garbage collection overhead. The RAID
controller simulator sends the same I/O operations to both
SSD simulators. The timing simulator outputs the total
execution times needed to handle the input requests, and the
functional simulator outputs the garbage collection over-
head. Table 1 shows the parameters used to configure the
SSD timing simulator. The simulated RAID-5 SSD has
4 � 8 parallel flash chips, and each chip has its own NAND
controller. Sequential pages from host are distributed across
multiple flash chips. The page size is 2 KB.

We used two real disk I/O traces, OSDB and Financial,
and two benchmark traces generated by Iozone and
Postmark. The OSDB trace was collected by executing the
PostgreSQL 8.4.2 with the Open Source Database Bench-
mark suite in 32 multiuser configuration. The Financial
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Fig. 9. RAID-5 SSD simulator.

TABLE 1
Parameters of SSD Timing Simulator



trace is the OLTP application trace provided in [25]. While
the Iozone trace has many sequential write requests,
random requests are dominant in other traces.

We compared the I/O performances of the four kinds of
RAID-5 SSD schemes: no-PC, FPC, PPC, and CA-PPC. The
no-PC scheme does not use the parity cache, and thus, it is
the same as the native RAID-5 scheme. The FPC scheme uses
the parity cache that maintains the delayed full parities as
proposed in [22]. The PPC scheme is our proposed scheme
that exploits the partial parity cache. The CA-PPC scheme is
the same as the PPC scheme except that it uses the commit
cost-aware PPC replacement policy explained in Section 4.4.
We examined the optimal value for � in (1) using the target
workloads. The performances of the CA-PPC scheme were
best when � ¼ 0, for all workloads. Therefore, we used the
optimal value in all of the CA-PPC experiments.

We assumed that the RAID-5 controller has a nonvolatile
memory space for the write buffer and the parity cache. The
write requests from the host are first stored in the write
buffer. When there is no free space in the buffer, several
pages that belong to one stripe are selected as victims and
are written to the flash chips. Then, the parity of the stripe is
written to the flash chip or to the parity cache, depending
on the RAID-5 controller scheme. Each size of both the write
buffer and the parity cache is 32 KB.

5.2 Overall Performance

Fig. 10 shows the write bandwidth (MB/s) values of the
evaluated schemes. The bandwidths of RAID-0 scheme are
also provided for comparison. (Note that there are many
idle intervals in the input traces, and thus, the bandwidth
values are quite lower than the peak I/O bandwidths of real
storage devices.) Since the RAID-5 schemes should manage
the redundant data, they provide inferior results to those of
RAID-0. The average bandwidths normalized to RAID-0
scheme are 0.46, 0.49, 0.68, and 0.70 for the no-PC, FPC,
PPC, and CA-PPC schemes, respectively. PPC improves the
performance by 47 percent and 38 percent on average
compared to those of no-PC and FPC, respectively.

To analyze the performance improvement of the PPC

scheme, as shown in Fig. 11, we measured the average write
handling overhead that is required to handle the parity for
each write request. The no-PC scheme theoretically
requires two read operations and one write operation
additionally to write the parity for each page write request.
However, it generates smaller numbers of additional read
operations (1:5 � 1:8) due to the write buffer, which invokes

no read operation in calculating the parity if it has all the
pages belong to a stripe. Since the FPC scheme maintains
full parities in its parity cache, the number of read
operations is the same as that of the no-PC scheme.
However, the number of write operations is reduced due to
the delayed parity write scheme of FPC.

The PPC scheme requires read operations for the partial
parity update, and both read and write operations for the
partial parity commit. The average numbers of the addi-
tional reads and writes for each page written in the PPC

scheme are 0.8 and 0.3, respectively. The CA-PPC scheme
shows smaller numbers of read and write operations
compared to those of the PPC scheme for most of workloads
since CA-PPC selects a victim partial parity considering the
commit cost. However, there are no differences between
PPC and CA-PPC in the numbers of operations for the
OSDB workload. This is because most of partial parities in
the PPC have similar commit costs for the OSDB workload.

5.3 The Effect of Commit-Cost-Aware Scheme

Fig. 12 shows the effect of � in (1) on the performance of
CA-PPC scheme. Since the parity commit cost of OSDB does
not change depending on �, the result of OSDB is omitted.
As the value of � decreases, the number of flash read
operations for parity commit decreases while the number of
flash write operations increases. However, the changes of
write counts are insignificant compared to the changes of
read counts. As a result, the performances of the CA-PPC

scheme are best when � ¼ 0, i.e., only the commit cost of the
victim partial parity is considered ignoring the update
probability. If � is 1, CA-PPC is same as PPC. From the
result, we can know that the update probabilities of partial
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Fig. 10. I/O performances of no-PC, FPC, PPC and CA-PPC schemes
(4+1 RAID-5). Fig. 11. Average write handling overheads (4þ 1 RAID-5).

Fig. 12. Parity commit costs varying the value of � in CA-PPC.



parities have no significant effects on the total parity
commit cost, and thus, it is better to use a small value for �.

The OSDB workload requires similar numbers of read
counts both when � ¼ 0 and � ¼ 1. Although the OSDB has
a random IO pattern, most of the requests have the size of
8 KB (four pages), which is same to the stripe size in the
4þ 1 RAID-5. Therefore, there are no large differences
between the commit costs of partial parities, and thus, the
CA-PPC has no chance to reduce the commit cost further.

Fig. 13 shows the superiority of the CA-PPC scheme over
that of the PPC scheme. It compares the average parity
commit costs of the PPC and CA-PPC schemes. We counted
the number of read operations required to calculate the full
parity during the partial parity commit. The CA-PPC

scheme reduces the commit cost significantly compared to
that of the PPC scheme.

The sequential request-dominant Iozone workload has
quite a smaller commit cost than do the random request-
dominant workloads (Financial and Postmark). Especially,
the Iozone workload requires almost no read operation for
the CA-PPC scheme since most of the selected victim
parities in the PPC are full parities due to the highly
sequential access pattern.

Fig. 13 also shows the hit rates of the partial parity cache.
Since CA-PPC prefers the victim parity with the smallest
commit cost to the least-recently-used victim parity, the hit
rates of CA-PPC are lower than those of PPC. However, the
differences in the hit rates are insignificant due to the special
behavior of CA-PPC. CA-PPC tends to give a high priority to
be replaced to sequential request since it has a low commit
cost. Generally, the sequential request has a low temporal
locality. Therefore, it is probable for CA-PPC to select a
victim that will not be accessed within the near future.

5.4 The Effect of Architectural Parameters

5.4.1 Stripe Size

Fig. 14 shows the average write handling overhead of the
PPC scheme when the number of parallel flash devices is
changed, thus changing the size of a strip. We counted the
number of write operations required for the parity commit,
the number of read operations required for updating the
partial parity, and the number of read operations required
for the parity commit. The number of data pages with which
one parity is associated increases as the number of parallel
flash devices increases. Therefore, the number of additional

write operations per one data page write decreases in both
the OSDB and Iozone workloads. However, the changes in
the number of read operations are different depending on
the access pattern of the workload. While the OSDB
workload with a random access pattern has a large number
of read operations when the stripe size is large, the Iozone
workload with a sequential access pattern shows only a
small change as the stripe size changes.

Fig. 15 shows how the performance changes when the
number of parallel flash devices changes. As the parallelism
increases, the performance increases slightly due to the
decrease in the parity handling overhead.

5.4.2 Parity Cache Size

We evaluated the effects of the parity cache size on the
proposed schemes. Fig. 16a shows the parity commit costs
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Fig. 13. Comparisons between PPC and CA-PPC.

Fig. 14. Write handling overhead of PPC while varying stripe size
(write buffer ¼ 32 KB, PPC ¼ 32 KB). (a) OSDB. (b) Iozone.

Fig. 15. Performance comparison while varying stripe size (Iozone,
write buffer ¼ 32 KB, PPC ¼ 32 KB).



of CA-PPC while varying the size of the parity cache. While
the Financial workload is sensitive to the parity cache size
due to its high temporal locality, other workloads with low
localities cause no significant changes to the commit costs as
the parity cache size changes. Fig. 16b shows the hit rates of
the parity caches. The OSDB and Iozone workloads have
higher hit rates. There is no significant change in all
workloads except for Financial as the parity cache size
increases. From this result, we can know that the proposed
delayed parity scheme can improve the I/O performance
even with a small parity cache.

5.4.3 Write Buffer Size

We also evaluated the effects of the write buffer size. Fig. 17a
shows the changes to the average victim size while varying
the buffer size. The victim size represents the number of
pages belonging to one stripe and are evicted as a group
from the write buffer. For an N þ 1 RAID-5 architecture, the
maximum value of the victim size is N . A large victim size is
favorable for reducing the parity handling overhead. For
example, if the victim size is four in the 4þ 1 RAID-5
architecture, the RAID controller can calculate the full parity
without any flash I/O operations. Since the Iozone workload
has a sequential access pattern, its victim size approaches
four pages. However, the victim size is small for the
Financial workload due to its random access pattern, but it
increases as the buffer size increases since a large buffer can
merge more pages of a stripe before they are evicted.

Fig. 17b shows the performance changes while the buffer
size varies. Only the Financial workload shows a signifi-
cant improvement in the bandwidth since it has a high
locality. However, we should consider the tradeoff between

performance improvement and hardware cost of the write
buffer that should be implemented with an NVRAM.

5.5 The Effect on FTL

To show that the proposed techniques also reduce the
garbage collection overheads and the erase counts of blocks
in flash memory, we performed several experiments with
the SSD functional simulator that models the RAID-5 SSD
using the hybrid mapping FTL [7]. We assumed that each
flash chip has 40 � 240 log blocks.

5.5.1 Garbage Collection Overhead

Fig. 18a shows the garbage collection overhead of the PPC

scheme varying the number of log blocks. As the number of
log blocks increases, the garbage collection overhead
decreases. Generally, the hybrid mapping FTL invokes
frequent garbage collections for random access patterns.
Since the OSDB and Financial workloads have random
access patterns, the overheads are reduced significantly
when sufficient log blocks are provided.

Fig. 18b shows the garbage collection overheads of the
PPC scheme normalized to those of the no-PC scheme. The
PPC scheme reduces the overhead by 12 � 40 percent
compared to that of the no-PC scheme. Since the PPC

scheme invokes a smaller number of write operations, it has
a less garbage collection overhead. Moreover, frequent
parity writes of the no-PC scheme have an adverse effect on
the log block utilization since they disrupt the locality of the
write requests. The Financial workload has a high temporal
locality, and the Iozone workload has a high spatial locality.
Therefore, these workloads show large improvements in the
garbage collection overhead for the PPC scheme compared
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Fig. 16. The effects of parity cache size in CA-PPC scheme (4þ 1
RAID-5, write buffer ¼ 32 KB). (a) Commit cost. (b) PPC hit rate.

Fig. 17. The effects of write buffer size in CA-PPC scheme (4þ 1

RAID-5, PPC ¼ 32 KB). (a) Average victim size. (b) Bandwidth.



to its use in the no-PC scheme. For the OSDB workload, the

difference between the no-PC and PPC schemes in the GC

overhead increases as the number of log blocks increases

since the OSDB workload has random accesses for a large

address space.

5.5.2 GC Commit Cost

Fig. 19 shows the GC commit costs of the PPC scheme

explained in Section 4.6. Fig. 19a illustrates the ratio

between the GC commit cost and the total commit cost

(i.e., the GC commit cost plus the replacement commit cost).

When the parity cache size is small, the GC commit costs

are small. However, as the parity cache size increases, the

portion of the GC commit increases because there are a

large number of semivalid pages in the log blocks. The

proportion of the GC commit is greater than 70 percent for

the Iozone workload when the parity cache size is 128 KB.

The workloads with sequential access patterns have larger

ratios than do the workloads with random access patterns.
Fig. 19b shows the number of GC commits of the parity-

cache-aware garbage collection (PC-aware GC) normalized to

those of the parity-cache-unaware garbage collection. The PC-

aware GC reduces the GC commit costs significantly when

the parity cache size is small (up to 12 percent). As the parity

cache increases, it is difficult for the PC-aware GC to find the

victim block that will not invoke the GC commits, since most

of the log blocks have many semivalid pages when the size of

the parity cache is large. Therefore, the difference between

the two schemes decreases as the parity cache increases.

5.5.3 Erase Count

NAND flash memory does not support an overwrite

operation because of its write-once nature. Before writing

new data into a block, the block must be erased by garbage

collector. The total number of erasures allowed for each

block is typically limited to between 10,000 and 100,000

cycles, which determines the lifespan of flash memory SSD.

To increase the lifespan of SSD, the number of erasures of

each block should be minimized. Fig. 20 compares the erase

counts of several schemes. The delayed parity schemes

require smaller numbers of erasures compared to the

no-PC scheme since they reduce the number of write

requests. However, there is no significant difference on the

erase counts between FPC, PPC, and CA-PPC.
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Fig. 19. GC commit cost of PPC in a hybrid mapping FTL (4þ 1 RAID-5,
log blocks ¼ 160� 5). (a) The proportion of GC commit. (b) GC commits
in PC-aware GC.

Fig. 18. GC overheads of PPC in a hybrid mapping FTL (4þ 1 RAID-5,
write buffer ¼ 32 KB, PPC ¼ 32 KB). (a) GC overhead normalized by
40� 5 log blocks. (b) GC overhead normalized by no-PC GC overhead.

Fig. 20. Normalized erase counts (4þ 1 RAID-5, log blocks ¼ 160� 5).



6 CONCLUSION

To build high-performance, reliable and large-scale sto-
rage systems, RAID technologies are popular. They use
the interleaving technique that distributes sequential
pages across multiple parallel operating disks for high
performance, and they utilize redundant data to cope with
disk failures. We proposed efficient RAID techniques for
reliable flash memory SSDs. In order to reduce the I/O
overhead for parity handling in the RAID-4 or RAID-5
SSD, the proposed scheme uses the delayed parity update
and partial parity caching techniques. The delayed parity
update technique reduces the number of flash memory
write operations. The partial parity caching technique
exploits the implicit redundant data of flash memory to
reduce the number of read operations required to
calculate the parity. These techniques also reduce the
garbage collection overheads in flash memory. Even with
a small parity cache, the proposed scheme significantly
improves the I/O performance of flash memory SSDs.

In future works, we plan to build a real RAID-5 SSD and
use it to evaluate the performance gain of the proposed
techniques. In addition, we will study a flash-aware parity
handling scheme for RAID-6 architecture that uses multiple
parities for each stripe.
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