
Flash-Aware RAID Techniques for Dependable
and High-Performance Flash Memory SSD

Soojun Im and Dongkun Shin, Member, IEEE

Abstract —Solid-state disks (SSDs), which are composed of multiple NAND flash chips, are replacing hard disk drives (HDDs) in the
mass storage market. The performances of SSDs are increasing due to the exploitation of parallel I/O architectures. However,
reliability remains as a critical issue when designing a large-scale flash storage. For both high performance and reliability, Redundant
Arrays of Inexpensive Disks (RAID) storage architecture is essential to flash memory SSD. However, the parity handling overhead for

1 INTRODUCTION

DURING the last decade, there have been dramatic
changes in data storage systems. The evolution of

NAND flash memory has enabled several portable devices,
such as MP3 players, mobile phones, and digital cameras, to
be accommodated with a large amount of data storage.
Flash memory has the features of low-power consumption,
nonvolatility, high random access performance, and high
mobility, and hence, it is well-suited for portable consumer
devices. Recently, due to the dramatic price reduction, flash
memory has been extending its domain to mass storage
systems for desktop PCs or enterprise servers. As a result,
the flash memory solid-state disks (SSDs), which are
composed of multiple flash chips, are replacing hard disk
drives (HDDs) in the mass storage market [1], [2]. SSDs are
appreciated especially for energy efficiency over HDDs due
to the absence of mechanical moving parts, and thus, they
are attractive to the power-hungry data center.

However, the cost per bit of NAND flash memory is still
high. In recent years, multilevel cell (MLC) flash memories
have been developed as effective solutions to increase
storage density and reduce the cost of flash devices.
However, MLC flash has slower performance and less
reliability than those of single-level cell (SLC) flash for the
sake of its low cost. Therefore, the performance and
from the flash device, the flash memory controller calculates
a new ECC with the page and compares it with the ECC that
is stored in the spare area in order to detect and correct bit
errors before the page data are forwarded to the host.

However, MLC flash memory shows a much higher
bit-error rate (BER) that can be managed with single-bit
error-correcting codes. Multiple bits are stored in each
memory cell of the MLC flash memory by programming
each cell with multiple threshold levels. Therefore, the
reduced operational margin significantly degrades the
reliability of flash memories. In addition, as silicon technol-
ogy evolves, cell-to-cell interference is increasing. As a result,
codes with strong error-correction capabilities, like BCH or
Reed-Solomon (RS) codes, are used. However, these ECCs
require a high hardware complexity and increase the read
and write latencies.

Another approach for reliability is to adopt redundancy
in storage level. The Redundant Arrays of Inexpensive Disks
(RAID) [4] technique uses an array of small disks in order to
increase both performance and reliability. Current SSD
products employ RAID level 0 (RAID-0) striping architec-
ture, which spreads data over multiple disks to improve
performance. Concurrent accesses to multiple flash chips
are allowed so as to improve sequential access. However,
RAID-0 does not improve the reliability, since it does not use
redundant data. RAID-4 and RAID-5 architectures are

80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

. The authors are with the School of Information and Communication
Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-
gu, Suwon, Gyeonggi-do 440-746, Korea.
E-mail: {lang33, dongkun}@skku.edu.

Manuscript received 24 Jan. 2010; revised 05 June 2010; accepted 18 Aug.
2010; published online 28 Sept. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2010-01-0044.
Digital Object Identifier no. 10.1109/TC.2010.198.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

for on-going write requests. This process is referred to as
log block merge [7].

Hybrid mapping requires a small-sized mapping table
since only the log blocks are handled by the page-level
mapping. In addition, unlike block-level mapping, hybrid
mapping does not invoke a large page migration cost for
every write request. As a result, most SSDs are employing
the hybrid mapping or page-level mapping techniques.

2.2 SSD Architecture
To enhance the bandwidth of the flash memory SSD,
interleaving techniques are used. Fig. 2 shows an example
of the multichannel and multiway SSD architecture [3], [12].
The four channels can be operated simultaneously. Two
flash chips using different channels can be operated
independently, and, therefore, the page program times for
the different chips can overlap. In addition, one NAND
controller can access two flash chips in an interleaved
manner, and, therefore, we can write to two interleaved
chips simultaneously. However, since two flash chips
sharing one bus cannot occupy the data bus simultaneously,
the data transfer times cannot overlap.

Fig. 3 shows the parallel operations in 4-channel and 2-way
SSD architecture. If the bus speed is 40 MB/s (100� s=4 KB)
and the program time for a 4 KB page in MLC is 800� s, the
total time to program eight pages is 1 ms. We can program
eight pages in parallel with 4-channel and 2-way SSD
architecture. To utilize such parallel architectures, sequential
data are distributed acrossmultiple flash chips. Therefore, the

parallel architecture can provide a high bandwidth for
sequential requests. However, random I/O performances
are poor compared to those of sequential I/O.

2.3 RAID Technologies
RAID enhances the reliability of storage systems by using
redundant data and improves the performance by inter-
leaving data across multiple disks. There are several levels
of RAIDs; RAID-0 uses only the interleaving technique
without redundant data, therefore, it does not improve the
reliability. Current SSD products use the RAID-0 technique
internally while utilizing the multichannel and multiway
architecture in order to improve the I/O bandwidth.

RAID-4 and RAID-5 use an extra disk to hold redundant
information that is necessary to recover user data when a
disk fails. RAID-4 and RAID-5 stripe data across several
drives, with the parity stored on one of the multiple drives.
In particular, in RAID-5, each stripe stores the parity on a
different drive to prevent one of the disks from being
bottleneck. Therefore, RAID-5 provides high read and write
performances due to parallel access to multiple disks.

The RAID-5 SSD can be implemented using several flash
chips or flash drives, as shown in Fig. 4. Depending on the
striping granularity, ea ch stripe is composed of N +1
logically sequential pages or blocks, where N represents
the number of disks for user data. The RAID controller has a
write buffer that stores data temporarily until it is written to
the flash chips. It also generates a parity of data to be
written and distributes the user data and the parity across
multiple flash chips. The NAND controller writes the data
or parity to the flash chips. The parities are written at
different chips for different stripes. When D1 and D6 are
updated in Fig. 4, flash chips 1, 2, 3, and 4 may become busy
in parallel or in an overlapped fashion, and thus, no single
drive remains in a performance bottleneck.

In RAID-5 SSD, we should distinguish the logical and
physical addresses. The RAID controller determines the
stripe based on the logical address. Therefore, all pages of a
stripe have the same logical offsets within their flash chips,
but the physical offsets can be different since the logical
address is translated into a physical address by the FTL.

The stripe index j of data Di can be defined asj ¼ bi=N c,
where i is the logical page number of Di . Therefore, the
stripe Sj is composed of ðDN �j ; DN �j þ 1; . . . ; DN �ðj þ 1Þ� 1; Pj Þ,
where Pj is the parity of Sj and is equal to DN �j �
DN �j þ 1 � � � � � DN �ðj þ 1Þ� 1. The operator � represents the

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 2. Multichannel and multiway (four-channel and two-way) SSD
architecture.

Fig. 3. Parallel operation at four-channel and two-way architecture.

Fig. 4. 4 þ 1 RAID-5 SSD Architecture.

exclusive ORing (XORing). The chip number of each data is
determined by the parity allocation structure in Fig. 4.

In order to update user data D0, RAID-5 requires the
three following steps:

1. read D0 and P0,
2. compute a new parity P0

0 (P0
0 ¼ D0 � D0

0 � P0), and
3. write D0

0 and P0
0.

To change D0 to D0
0, RAID-5 first reads the old user data

D0 and the old parity P0. Second, it generates a new parity
P0

0. Finally, the new user data D0
0 and the new parity P0

0
should be placed into the storage. Therefore, the total
update cost is 2 � Tread þ 2 � Twrite , and the parity handling
overhead is 2 � Tread þ Twrite , where Tread and Twrite are the
read and write costs of the flash memory, respectively.
That is, the total write cost can increase over 50 percent
compared to the case of no redundancy. Therefore, RAID-5
results in poor write performance in flash storage because
even a small random write may incur a parity update.

A more advanced RAID technique such as RAID-6
provides multiple parity data to recover from multiple
failures. In addition, there are more powerful RAID codes
[13] for higher performance and reliability. However, we
focus on only RAID-5 using parity since the benefit of using
the MLC flash memory will be diminished if the redundant
area is large.

3 RELATED WORKS

3.1 HDD-Based RAID
Several techniques such asparity logging [14], floating parity
[15], and fast write [16] have been proposed to reduce the
overhead for small writes in a HDD-based RAID-5. The
parity logging technique writes parity updates into a
dedicated log disk instead of updating the parity in the
parity disk. When the log disk fills up, the logged parity
update images are applied to the out-of-date parity. Such a
logging technique converts small writes of parity into large
sequential writes and combines successive updates of parity
into a single update in the disk array. The floating parity
technique remaps dynamically parity blocks within disk
cylinders to reduce the rotational latency between reading
and writing parity.

Both parity logging and floating parity attempt to reduce
the disk seek time overhead of parity updates. In both
schemes, the old data must be read from the disk to
calculate parity. However, our proposed RAID-5 technique
focuses on the flash memory SSDs. Our technique reduces
the number of read operations for parity update by using a
partial parity scheme while the previous schemes use full
parity schemes.

The fast write scheme uses a nonvolatile write buffer to
reduce write latency. The data in the write buffer and the
corresponding parity are written at disks in the background.
While the parity should be updated at disk when the data is
evicted from the write buffer in the fast write scheme, our
proposed scheme delays the parity update even when the
related data are evicted from the write buffer. Moreover, our
scheme uses partial parities to reduce flash read operations
exploiting the special feature of flash memory.

3.2 Flash Memory SSD
Many commercial products of flash memory SSD have been
introduced by several companies such as Samsung [17],
Intel [18], etc. These products are composed of multiple
flash chips to provide a large storage capacity. To increase
the I/O bandwidth, the user data are interleaved over
multiple flash chips using a multichannel and multiway
controller, an architecture similar to RAID-0.

Park et al. [3] proposed a multichannel and multiway
controller for SSD that supports parallel write operations.
The firmware intervention is minimized by automatic
interleaving hardware logic. A hybrid mapping scheme is
used in the internal FTL.

Kang et al. [19] proposed three techniques to exploit
the I/O parallelism of SSD: striping, interleaving, and
pipelining. The striping technique spreads a request across
multiple channels. In the interleaving technique, several
requests are handled in parallel using several channel
managers. The pipelining technique overlaps the proces-
sing of two requests on a single channel.

Agrawal et al. [20] presented a range of design tradeoffs
that are relevant to SSDs. They analyzed the tradeoffs using
a trace-based disk simulator that can be customized to
characterize different SSD organizations. They considered
two interleaving schemes, i.e., async mode and sync mode.
In async mode, multiple flash chips operate independently,
and there are no relationships between pages assigned to
different flash chips. However, in sync mode, multiple flash
chips simultaneously handle one I/O request on the stripe.
The pages in a stripe are sequential. Generally, the async
mode can provide a better I/O performance, but it requires
a larger mapping table than that of the sync mode.

Shin et al. [21] extended the SSD simulator of [20] and
evaluated various page striping methods for the sync mode.
The page striping method determines the order of pages
within a stripe. They showed that narrow striping has an
inferior performance to that of wide striping, and that using
the striping unit of a block is worse than using that of a page.

These studies did not address the redundancy issue of
SSDs. Instead, similar to RAID-0, their proposed algorithms
use an array of flash chips and stripe (interleave) data across
the arrays only to improve parallelism and throughput.

3.3 SSD with Redundancy
More recently, several approaches have been proposed to
improve both the performance and reliability of SSDs using
redundancy. Greenan et al. [22] proposed a RAID-4 SSD
architecture that uses a page-level interleaving and a
nonvolatile RAM (NVRAM) to hold the parity temporarily
in order to prevent frequent parity updates for write
requests. All parity updates for a page stripe are delayed
in the NVRAM until all of the dependent data have been
written to flash memory. As a result, it reduces the parity
update overhead. However, the technique does not reduce
the parity calculation overhead (i.e., reading the old data
and the old parity) since it must calculate a new parity for
each write request. Therefore, the parity overhead cost is
not negligible.

The FRA [23] scheme also uses a delayed parity update
scheme which can reduce the parity write frequency for
multiple write requests to the same area. The parity is

IM AND SHIN: FLASH-AWARE RAID TECHNIQUES FOR DEPENDABLE AND HIGH-PERFORMANCE FLASH MEMORY SSD 83

calculated and written to the flash storage during idle time.
The main difference between this scheme and that of [22] is
that FRA does not use the NVRAM to store the parity data.
Instead, it uses the dual-mapping scheme in the address
mapping table of FTL to identify which parity has been
delayed. However, FRA has a critical drawback in terms of
reliability; there is no method for recovering failed data for
which the parity update is delayed.

4 PARTIAL -PARITY-BASED DELAYED PARITY
UPDATE

When there is an update request, FTL generally does not
erase or update old data; instead, the data are invalidated
due to the erase-before-write constraint of flash memory.
The invalidated data can be utilized as implicit redundant
data. The proposed delayed parity update scheme is
designed to exploit the implicit redundant data in order
to reduce the parity handling overhead.

We apply page-level striping since it shows better
performance than does block-level striping [21]. When
there is a write request from the host, the RAID SSD
controller determines a stripe number and a chip number
based on the logical page number and sends the data to the
determined flash chip. The normal RAID controller gen-
erates the parity data for the stripe and writes it to the
parity flash chip of the stripe. However, the proposed
scheme delays the parity data update and stores it on a
special device called a partial parity cache(PPC). The stored
parity is a partial parity because it is generated with only
partial data of the stripe. This is a main difference from the
delayed parity scheme in [22], which stores full parities in
the parity cache, and thus, requires many read operations to
calculate the full parities.

Using the partial parity, we can reduce the parity
generation overhead. Instead, we maintain the old version
of the updated data, which is implicit redundant data. In
the case of chip or page failures, we recover the failed data
with the partial parity or the old version of other data. The
delayed parity is written to a flash chip when there is no
free space in the PPC. This step is called aparity commit.

4.1 Partial Parity Cache
The partial parity cache temporarily stores the delayed
parities. In order to avoid losing the parities stored in the
PPC at sudden power failures, it must be implemented with
an NVRAM. We can use a storage class memory (SCM) [24],
such as PRAM and MRAM, or a battery-backed RAM that
has a redundant battery to protect against an external
power failure. The capacity of the battery should be large
enough to flush all delayed parities to the flash chips. Fig. 5
shows the structure of the PPC including the information on
the parities that are not yet written to the flash chips. The
PPC has M number of entries, each of which has a stripe
index, a partial parity bitmap, and a partial parity. The
bitmap represents the data indices associated with the
partial parity. For example, if the bitmap of stripe Sj is
“0110” for a 4 þ 1 RAID-5 structure, its partial parity is
made up of the updated pages of f D4j þ 1; D4j þ 2g. The stripe
whose up-to-date parity is not written to a flash chip is

called an uncommitted stripe. We denote the set of associated
data of the parity Pj as � ðPj Þ.

The size of the PPC can be estimated to beM ðlog2 I þ
N þ WÞbits, where I , N , and W represent the total number
of stripes in SSD, the number of data flash chips (excluding
the extra parity chip), and the bit-width of one page,
respectively.

4.2 Partial Parity Creation and Updating
When an update request changesDi into D0

i whose stripe is
Sj , a partial parity is created or updated in the PPC in the
following three cases:

1. If there is no corresponding partial parity of the
target logical stripe in the PPC (i.e., Sj 62 PPC), a new
partial parity ~Pj should be inserted. The value of ~Pj

is same as D0
i . There is no flash memory I/O

overhead (Coverhead ¼ 0).
2. If there is a corresponding partial parity of the target

logical stripe in the PPC, but the partial parity is not
associated with the old version of the data to be
written (i.e., Sj 2 PPC ^ Di 62 � ð~Pj Þ), a new partial
parity is calculated by XORing the old partial parity
and the new data (i.e., ~Pj ¼ ~Pj � D0

i). There is no
flash memory I/O overhead (Coverhead ¼ 0).

3. If there is a corresponding partial parity of the
target logical stripe in the PPC, and the partial
parity is associated with the old version of the data
to be written (i.e., Sj 2 PPC ^ Di 2 � ð~Pj Þ), a new
partial parity is calculated by XORing the old
partial parity, the old data, and the new data (i.e.,
~Pj ¼ ~Pj � D i � D0

i). One flash memory read cost is
invoked (Coverhead ¼ Tread).

For example, Fig. 6 shows the change in the PPC when
the host sends the update requests on dataD1 and D2. The
RAID SSD is composed of four data chips and one spare
chip. We assume that each flash chip is composed of
10 blocks (i.e.,B0; B1; � � � ; B9) and each block has four pages.
Before the update requests, D1 and D2 were written to
physical page number (PPN) 40 of chip 1 and PPN 80 of
chip 2, respectively. Their parity datum P0 has been written
to PPN 160 of chip 4. Initially, the PPC has no entry.

The RAID SSD controller first writes the new data D0
1 at

PPN 42 of chip 1 while invalidating D1 at PPN 40. Since the
corresponding parity datum P0 is not updated immediately
in the delayed parity update scheme, the parity remains
unchanged in flash chip 4. Instead, a partial parity ~P0 for D0

1
is created in the PPC since there is no partial parity of the
logical stripe S0 ¼ ðD0; D1; D2; D3; P0Þ in the PPC (case 1).

84 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 5. Partial parity cache.

an uncommitted partial parity ~P0 that is generated with D0
1

and D0
2. Since the partial parity is associated with the failed

page D0
1, we can recover the data by XORing ~P0 and D0

2. D0
2

should be read from flash chip 2. If the data D0 cannot be
read due to the failure of chip 0, as shown in Fig. 8b, it
cannot be recovered with the partial parity ~P0 that is not
associated with D0 (case 2). In this case, the old parity P0

and its associated old data are used. By XORing P0, D1, D2

and D3, the data D0 can be recovered. D1 and D2 can be
accessed with the old PPN information in the mapping
table. This second case exploits the semivalid pages to
recover the failed data.

4.6 Parity-Cache-Aware Garbage Collection
When there are many invalid pages in flash chips, the GC is
invoked. It selects a victim flash block that may have many
invalid pages. If the block also has valid pages, the GC
moves them into other clean blocks, changes the page
mapping information and erases the victim block for future
uses. Even when the victim block has semivalid pages of the
uncommitted stripe, the GC removes them since they are
invalid pages in the flash memory. To avoid losing the
semivalid data, we should commit the corresponding
partial parity before the GC erases them (GC commit).
The GC should check whether the invalid page is a
semivalid page by examining the mapping table. If the
physical address of the invalid page is found at the old
PPN field of the mapping table, the page is a semivalid
page. Even when the proposed delayed partial parity
scheme is not used, the mapping table should be accessed
by the GC to read and update the PPN values. Therefore,
the identification of semivalid data imposes no significant
additional overhead. In addition, since the maximum
number of semivalid pages is not too large, the timing cost
to identify the semivalid pages is negligible.

Since the GC commit invokes several flash memory read
and write operations, it is better to avoid this case when
possible. For this purpose, we propose the parity cache-
aware victim selection policy for GC. The general algorithm
for the victim block selection of GC considers the page
migration cost. The algorithm selects the block with the
smallest number of valid pages because it invokes the
lowest page migration cost during the GC. However, in the
parity cache-aware policy, the GC commit cost is taken into
account additionally. This scheme uses the following
equation to estimate the GC cost of block B:

GCcostðBÞ ¼Cmigration ðBÞ þ Ccommit ðBÞ; ð2Þ

where Cmigration ðBÞdenotes the valid page migration cost of
block B and Ccommit ðBÞdenotes the sum of the GC commit

costs invoked before erasing block B. Therefore, the parity
cache-aware GC selects the victim block whose GCcost is
smallest among all of the victim candidates.

Generally, the victim block selected by the GC is not a
recently-allocated block since the recently-allocated blocks
have a large number of valid pages, and thus, require a
large page migration overhead. Therefore, if the parity
cache size is quite small, and thus, the partial parities
remain in the parity cache during short intervals, compared
to the garbage collection frequency, there is little possibility
for a selected victim block to contain the semivalid data
since the parity cache commits the stripes related to the
victim block prior to the garbage collection.

5 EXPERIMENTS

5.1 Experimental Setup
To evaluate the proposed scheme, we implemented a RAID-
5 SSD simulator as shown in Fig. 9. It is composed of the
RAID-5 controller simulator, the SSD timing simulator, and
the SSD functional simulator. The RAID-5 controller
simulator uses the disk I/O trace as an input. It forwards
the data I/O operations to SSD simulators after inserting the
parity handling operations between the normal operations.
The logical address of each data I/O request is modified
since parities should be inserted at every stripe. The RAID-5
controller simulator internally manages a write buffer and a
parity cache.

To obtain the performance simulation results considering
the parallel I/O architecture of SSD, we used the SSD timing
simulator introduced in [20], exploiting the provided page
striping function. However, this simulator cannot be config-
ured to simulate various FTL mapping schemes and cannot
generate the FTL-related information such as garbage
collection overhead. To compensate for these drawbacks,
we implemented our own SSD functional simulator that can
be configured to use various address mapping schemes and
can report the garbage collection overhead. The RAID
controller simulator sends the same I/O operations to both
SSD simulators. The timing simulator outputs the total
execution times needed to handle the input requests, and the
functional simulator outputs the garbage collection over-
head. Table 1 shows the parameters used to configure the
SSD timing simulator. The simulated RAID-5 SSD has
4 � 8 parallel flash chips, and each chip has its own NAND
controller. Sequential pages from host are distributed across
multiple flash chips. The page size is 2 KB.

We used two real disk I/O traces, OSDB and Financial,
and two benchmark traces generated by Iozone and
Postmark. The OSDB trace was collected by executing the
PostgreSQL 8.4.2 with the Open Source Database Bench-
mark suite in 32 multiuser configuration. The Financial

IM AND SHIN: FLASH-AWARE RAID TECHNIQUES FOR DEPENDABLE AND HIGH-PERFORMANCE FLASH MEMORY SSD 87

Fig. 9. RAID-5 SSD simulator.

TABLE 1
Parameters of SSD Timing Simulator

