
Hermes: Scalable and Load Distribution Engine for General-Purpose
Computing on Graphics Processing Units (GPGPU)

Junghee Lee, Chrysostomos Nicopoulos*, Hyung Gyu Lee, Dongkun Shin† and Jongman Kim
Georgia Institute of Technology, *University of Cyprus, † Sungkyunkwan University

{junghee.lee, hyunggyu, jkim}@gatech.edu, *nicopoulos.chrysostomos@ucy.ac.cy, † dongkun@skku.edu

Abstract

Modern Graphics Processing Units (GPU)
constitute typical examples of multicore systems with
more than one hundred processing. However, in order
to efficiently exploit the increasing number of on-chip
processing cores, a scalable enabler of massively
parallel computing is imperative. This paper proposes
Hermes, a scalable and dynamic load distribution
engine that exploits hardware aggressively to reinforce
massively parallel computation in many-core settings.
Our experimental results show that Hermes is scalable.
Given the same amount of jobs, using Hermes is at
least 4.5 times faster than existing techniques when the
number of processing cores is 4096.

Keywords: Load balancing, GPU, Many-core

1. Introduction
Modern Graphics Processing Units (GPUs) are

typical examples of many-core systems with more than
one hundred simple processing cores. Having recently
been provided with extensive programming support,
GPUs are becoming extremely powerful general-
purpose hardware accelerators known as General-
Purpose Computing on Graphics Processing Units
(GPGPU).

Even though many applications running on GPU
have regular computation kernels, the scheduling
mechanism of the GPU itself and the different memory
access patterns can cause load imbalance among the
processing elements. Furthermore, there are many
applications with an inherently irregular computation
kernel – like the hierarchical radiosity method, and
volume rendering [5] – which inevitably lead to load
imbalance. The scalability of dynamic load distribution
is critical for GPU applications. Recent research [1]
has indicated that previously proposed parallel
computing paradigms face scalability issues.

This paper proposes Hermes1, a scalable, hardware-
based, dynamic load distribution engine that enhances
concurrency control and ensures uniform utilization of
computational resources. This engine is overlaid on top
of the existing GPU infrastructure, it is completely
independent of the on-chip interconnection network,
and it is transparent to the operation of the system.

2. Hermes
The programming model of GPU is similar to a

fork-and-join model. The CPU passes a computation
kernel, which is generally a function, with the number
of threads to be created within the GPU. All the
necessary arguments of the function should be
provided at this time. The GPU subsequently creates
all the threads and executes them on multiple
processing elements concurrently. The CPU continues
after the result is returned from GPU, once all the
threads are finished. New threads cannot be created
during execution time on the GPU (within the context
of GPGPU). The number of threads should be
determined at the time when the computation kernel is
passed to the GPU.

Hermes consists of a number of load-balancing
nodes (one such node for each processing element in
the system), arranged as a mesh-based micro network
overlaid on top of the existing GPU infrastructure.
Note that Hermes is a distinct micro-network that is
totally independent of any existing on-chip
interconnection network. In other words, the load
balancing mechanism does not interfere with the
activities of the GPU interconnection backbone. This is
in sharp contrast with Carbon’s approach [2] that
utilizes the same on-chip network as the cache sub-
system.

1 In Greek mythology, Hermes was the messenger of
the gods. Much like this Olympian god, our micro-
network is also a type of messenger, distributing load
between processing cores.

4 16 64 256 1024 4096
104

105

106

107

Number of processing elements

To
ta

l e
xe

cu
tio

n
tim

e

BL
NB
DQ
Hermes

Fig. 2. The total execution time over increasing number of
processing elements

Each Hermes node comprises three main modules:
(1) a Dual-Clock FIFO, (2) a Switch/Router, and (3)
two Selectors, as shown in Figure 1. The Selectors’ job
is to choose the source and destination nodes of the
next job to be transferred. Two Selectors are needed,
one to choose the node with the largest job count (i.e.,
the source of the next job transfer) and one to choose
the node with the smallest job count (i.e., the
destination). The Switch configures itself in such a
way as to make a path between the source and
destination nodes. The Dual-Clock FIFO is the job
queue, where jobs are stored. As the name suggests,
the Dual-Clock FIFO has two clock domains: one is
for the Switch and the other is for the GPU subsystem.
This characteristic allows Hermes to accommodate
processing elements with different operating
frequencies. If a node is chosen by the Selector to be a
source or a destination, its Switch is configured to
route information to/from the Dual-Clock FIFO.

3. Experimental Results
To evaluate the proposed load balancer, a simulator

has been developed with SystemC. Since low-level
details of GPU architectures are not publically
available, we assume a design that is as close as
possible to the high-level architectures attributed to
commercially available GPUs from NVIDIA and ATI.

We compared three alternative approaches – a
blocking centralized queue (BL), a non-blocking
centralized queue (NB), and a distributed queue with
job-stealing (DQ) – to ours (Hermes).

The result shown in Figure 2 demonstrates that by
using the existing techniques (BL, NB, and DQ) the
total execution time drops to some degree, but starts to
remain constant or even increase with an increasing
number of processing elements. The same trend was
also observed in the experiments of [1]. This result
confirms that only Hermes is scalable, regardless of the
length of the execution time.

4. Related Works
There has been prior work on hardware

implementation of the scheduler in CPUs [3-4].
However, load distribution and balancing are not
addressed.

Carbon [2] implements load balancing, as well as a
scheduler, in hardware. Carbon employs centralized
job queues (contained in the Global Task Unit). To
hide latency between the queues and the cores, Carbon
uses task pre-fetchers and small associated buffers
close to the cores (called Local Task Units). However,
as the cores scale to well over one hundred, contention
at the Global Task Unit is expected to be excessive.

5. Conclusions
One of the key emerging challenges in GPGPU is to

ensure that the GPU is scalable with the number of
processing elements. This paper proposes a novel
hardware-based dynamic load distributor and balancer,
called Hermes, which is both scalable with as many as
1024 processing elements.

References
[1] D. Cederman and P. Tsigas, “On dynamic load balancing
on graphic processors,” in Proceedings of the 23rd ACM
symposium on Graphics hardware, 2008, pp.57-64
[2] S. Kumar, C. Hughes, and A. Nguyen, “Carbon:
Architectural Support for Fine-Grained Parallelism on Chip
Multiprocessors,” in Proceedings of the 34th annual
International Symposium on Computer Architecture, USA,
2007, pp. 162-173
[3] J. Agron et al., “Run-time services for hybrid CPU/FPGA
systems on chip,” in Proceedings of the 27th IEEE
International Real-Time Systems Symposium, Brazil, 2006,
pp. 3-12
[4] P. Kuacharoen, M. A. Shalan and V. J. Mooney III, “A
configurable hardware scheduler for real-time systems,” in
Proceedings of the International Conference on Engineering
of Reconfigurable Systems and Algorithms, USA, 2003
[5] M. Korch, and T. Rauber, “A comparison of task pools
for dynamic load balancing of irregular algorithms,”
Concurrency and Computation: Practice & Experience,
Volume 16, Issue 1, pp. 1-47, 2003

Sel Sel Sel

Sel R Sel

Sel Sel Sel

Sel

Sel

Sel

Sel

Sel

Sel

Sel Sel SelSel Sel

Sel Sel SelSel Sel

Selector

Switch

Selector

Router

Dual-Clock FIFO

GPGPU Processing
Element

Fig. 1. Illustration of Hermes Selectors and Switches

