
Cross-layered View on Android Storage IO System
Relationship between Android and eMMC

Hyukjoong Kim

College of Information & Communication Engineering

Sungkyunkwan University

Suwon, Korea

wangmir@skku.edu

Dongkun Shin

College of Information & Communication Engineering

Sungkyunkwan University

Suwon, Korea

dongkun@skku.edu

Abstract— Recently, Smart devices and its functions and

applications have flourished. And this development has

brought one important requirement, the performance. Storage

IO performance is especially important because applications

and data are all stored in storage. Smart devices often use

NAND-based storage because of its high performance and

small size. However, storage IO subsystem on operating

system is still not optimized to NAND-based storage. And

more, from high performance on storage device itself,

management overhead in operating system is revealed. On the

other hand, Android, one of most popular platform for smart

devices, uses eMMC as main storage and eMMC has several

features that can achieve much higher performance than

before. In this paper, we measure the overhead of each storage

IO layer on Linux, the kernel of Android. And also we study

about extended features of eMMC.

Index Terms— Smartphone, Android, Storage, NAND flash,

eMMC, IO system, file system

I. INTRODUCTION

Android is one of the most popular smart-device

platforms. An increase of uses and interests on Android and

its applications makes people require more improved

performance on smart-devices. Especially, storage IO

performance is very important factor on end-user’s

performance because every data and applications is stored on

storage. Previous work also verified that storage IO

performance is negligible compared to many other

performance issues[8].

Smart device, especially Android device often adopts

NAND Flash based storage as main storage because of its

advantages, high performance, small size, low heat, silence

and etc. compared to HDD. However, storage IO system in

Linux, low-level kernel of Android, is still optimized based

on HDD, thus it cannot fully utilize high performance of

NAND-based storage. And more, because of high

performance of NAND-based storage, the overhead from

storage IO subsystem of Linux kernel, is revealed. This

overhead was not a problem with HDD because it can be

covered by much long latency of HDD. Previous research

also indicated this problem, and predicted that this overhead

will be bigger as soon because of improvement of NAND

performance [7].

On the other hand, NAND-based storage that is often

used by Android smart-device is embedded Multi-Media

Card (eMMC). This is different from pure NAND storage

because it has own controller, block management policy,

Flash Translation Layer (FTL) and Error Correction Code

(ECC). Consequently, eMMC reduces the responsibility of

host operating system on handling storage IO operation thus

improves IO performance. Figure 1 compares pure NAND

and eMMC storage. Although host OS can get out from the

overhead of managing NAND storage by using eMMC,

however, eMMC has significant weakness. When the host

OS manages block management, the data will be stored more

flexibly based on what data they are. But in case of eMMC,

because the management is separated from host OS, it is

impossible to handle data depending on their types. In order

to solve this problem, eMMC Standard [1] provides several

extended interface for host operating system.

EMMC

MMC controller

Pure NAND

Host OS
Block

Management

ECC

Device Driver

NAND

Host OS

Device Driver

NAND

Block
Management

ECC

Pure NAND
Fusion

NAND(eMMC)

NAND
bus

NAND
bus

MMC
bus

Figure 1 Difference between Pure NAND and eMMC

In this paper, we study about relationship between

Android and eMMC storage. To do this, firstly, we

investigate the overhead of each IO subsystem layer. We

developed synthetic IO android application that can perform

IO operations with various sizes and patterns. And we use

ftrace [6] and blktrace [5] to measure exact latency of each

layer. In result, the overhead of operating system is not

negligible especially on small size random write. Secondly,

we study about eMMC Standard interfaces. Especially, we

measure effects of packed command. Packed command is a

function of eMMC Standard that can ‘pack’ plural write

operations thus improve IO performance. Basically, packed

is used only for sequential write operation, we enable to pack

random write and measure performance.

II. CROSS LAYERED VIEW ON ANDROID

In this section, we measure unit latency of each IO

subsystem and evaluate the overhead and bandwidth of each

layer. It is proved on experimentation that OS overhead is

negligible and the reason of this overhead is additional write

operation performed by OS.

Table 1 Specification of target android device

Platform Android 4.0.4 Ice cream Sandwich

Kernel version Linux kernel 3.0.15-808555

CPU Exynos 4412 Quad Core 1.6GHz

Memory 2048MB RAM

Internal storage eMMC 16GB

A. Experimental Setups and methods

Platform

eMMC device

Operating system

Test application

IO scheduler

File system

App Request
App

Response

Application latency

kernel(filesystem) latency

device latency

blktrace

ftrace

Figure 2 Measurement method, we evaluate the overhead of

each layer, Platform, kernel, device.

We use commercial Android smartphone as target device

and its specifications are on Table 1. To measure the

overhead of each layer, we use synthetic IO benchmark as

Android application, ftrace and blktrace. Ftrace is function

tracing tool provided by Linux kernel system. It can trace all

of kernel functions if target Linux kernel is built with certain

configuration. Thus, we trace the functions that start and

response latency of IO operation on ext4 file system.

Through this, we are able to measure IO latency on the layer

of file system. On the other hand, blktrace is block IO

operation tracing tool that can investigate behavior of IO

scheduler, especially request queue. With use of blktrace,

en-queuing, de-queuing, dispatching, completing, etc. are all

visible behaviors. We specify dispatching and completion

behavior to evaluate device level latency because dispatching

is just before device driver and completing is just after

device driver. Figure 2 summarizes the measurement

method using benchmark application, ftrace and blktrace.

Figure 3 Overhead of each layer on random write operation

with various IO size, we can find that OS overhead is more

negligible on small random write.

Figure 3 shows overhead of each layer on random write

operation with various IO size. This experimentation is

performed with Android benchmark application that is our

own development. Total write size is 256MB and random

write is performed uniformly. From the figure, OS overhead

(Platform + Kernel overhead) is negligible portion,

especially on small write like 32 sectors, OS overhead is

much higher than own device latency.

Figure 4 Throughput measured on each layer, all measured

latencies are divided by application IO except blktrace

(Pure), blktrace (Pure) is pure bandwidth on device. It

0

20

40

60

80

32 64 128 256 512 1024

a
v
e
ra

g
e
 l
a
te

n
cy

(m
s)

IO size(sector)

device overhead kernel overhead platform overhead

0

5

10

15

20

32 64 128 256 512 1024

T
h
ro

u
g
h
p
u
t(

M
B
/s

)

IO size(sector)

App Filesystem

blktrace(App IO) blktrace(Pure)

means that the gap between blktrace (App IO) and blktrace

(Pure) is additional write overhead.

Figure 4 is throughput calculated by response time of

each layer on same experimentation to above. All other

throughput is the value that is total latency divided the

number of IO operations on Application. But in case of

blktrace (Pure), it is blktrace’s total latency divided by the

number of its own IO operations. The remarkable thing is

the truth that the bandwidth of blktrace (App IO) is much

slower than blktrace (Pure). It implies that OS performs

additional write operations and its latency hams user-level, or

application-level IO performance.

From the experimentation, we can find the striking

existence of ‘Operation System Overhead’ when storage IO

operation is performed through Android application. To

solve this problem, we should trace and prove the additional

write operation, and if can, reordering this write operation to

back to user-level IO operation.

III. STUDY ON EMMC

eMMC standard has several extended interfaces for host

OS to communicate with storage device. In this section, we

investigate the eMMC functions especially packed command.

A. Study on Standard Device driver

Standard driver, released by eMMC standard, has

management code for several extended interface. We review

Standard driver code on Open source android kernel [2] to

investigate management of extended features.

eMMC

request queue

mshci

core

block
block IO Issue function

send request and wait

mshci_request

(1)send request

send_command

block driver

issue_fuction

mshci_irq

mshci_tasklet

wait complete

interrupt

(2)wait

Prepare packed command

fetch/requeue

Figure 5 Architecture of MMC Standard Driver, block

interface driver, core driver and host (mshci) driver

Figure 5 describes the architecture of MMC Standard

driver. It is located under block IO layer and directly

operated by issue function of request queue. MMC standard

driver is composed with three particular drivers, block

interface driver, core driver, and host (mshci) driver. Block

interface driver translates block IO request into mmc request,

and also, prepares packed command. Core driver performs

mmc operations like read, write, discard, high priority

interrupt (HPI) and etc., and then waits for rescheduling.

Host (mhsci) driver actually operates mmc request by setting

command, preparing DMA and etc.

B. Study on Packed Command

Packed command is extended interface of eMMC

standard. It can ‘pack’ plural IO requests into single packed

request. Using this feature, scattered sequential write

operations are merged into single write operation. It is

similar behavior to NCQ [3] that is often used by HDD and

Solid State Drive (SSD). Merge a number of small

sequential write into large sequential write is important role

because large size write operation can be interleaved [9].

In this section, we evaluate packed command’s effects on

large sequential write and small random write. Packed

command is used on sequential write only in current state,

but we also measure random write performance and re-

evaluate the value of packing random small write. All

experimentations are performed using tiobench [4].

Sequential write uses 8MB record size, single thread and

total 1GB writes and random write uses 8KB record size, 4

threads and also total 1GB writes.

Figure 6 shows the bandwidth of packing sequential write

depending on the number of maximum packed IO request.

Benchmark performance is measured at tiobench and

blktrace performance is measured by calculating latency

trace of blktrace. The maximum number of packed IO

request can be changed on MMC standard driver. Because

eMMC can write maximum 4MB by single write operation,

and IO scheduler splits write request into 512KB, the

maximum number of packed IO request is 8. Based on

maximum value, we can see that packed command is

effective than non-packing any request. And also, increase

of maximum value can improve performance until the value

is 4, but after that, performance is saturated. The gap

between benchmark performance and blktrace performance

represents the overhead of operating system.

Figure 6 Bandwidth depending on maximum packed IO

request, benchmark performance is bandwidth measured on

tiobench, blktrace performance is measured on blktrace.

The gap represents the OS overhead (Packing sequential

write only, NP: No packed)

15

20

25

30

35

40

NP 2 3 4 5 6 7 8

B
a
n
d
w

id
th

(M
B
/s

)

Maximum packed IO request

benchmark performance blktrace performance

Figure 7 is experimentation on packing random write.

The performance of packing random write is also improved

despite the effect of interleaving cannot be implemented on

random write. It is remarkable result, and should be

investigated more. On the other hand, based on MMC

standard driver, packed command function can pack 62 IO

requests when size limitation is not obstacle. But packing 62

IO requests is not efficient than packing only 8 IO requests

based on figure.

Figure 7 Bandwidth depending on maximum packed IO

request (Packing sequential and random write, NP: No

packed, NL: No limitations on maximum)

Blktrace is not appropriate tool to investigate packed

command because blktrace trace IO behavior on IO

scheduler layer. From blktrace, we only can watch scattered

IO operations rather than packed IO operation. As

mentioned above, ftrace can trace all functions on kernel.

However, in case of ftrace, the internal parameter and

behavior is not visible. The only result that ftrace can

produce is function event occurs. Thus, in order to trace and

estimate MMC standard driver’s behavior, new tracer is

required.

IV. CONCLUSIONS & FUTURE WORKS

In this paper, we studied about relationship between

Android and eMMC device. First of investigation, we

evaluated the overhead of operating system, and result

implied that the overhead of operating system is not

negligible and the reason of this overhead is additional write

operation that is not created by user or application. Secondly,

we review eMMC specification and standard driver, and then

evaluate the effects of packed command that is extended

interface produced by eMMC standard.

On the future, we plan to make new tracer that can

investigate the behaviors of eMMC standard like trim,

discard, read, write and especially, packed command. And

we will also estimate relationship between IO scheduler and

packed command because we consider that optimizing IO

scheduler can improve packing more IO request.

ACKNOWLEDGMENT

This research was supported by Next-Generation

Information Computing Development Program through the

National Research Foundation of Korea (NRF) funded by the

Ministry of Education, Science and Technology (2012-

006417)

REFERENCES

[1] eMMC 4.5 Specification, http://www.jedec.org

[2] Samsung GT-I9300 open source kernel,

http://opensource.samsung.com/

[3] Serial ATA revision 2.6, http://www.sata-io.org

[4] M. Kuoppala, “Tiobench – Threaded I/O bench for Linux”,

2002

[5] J. Axboe and A. D. Brunelle, “blktrace User Guide”, 2007

[6] S. Rostedt, “Ftrace, Linux Kernel Tracing”, Linux Conference

Japan, 2010

[7] J. Yang, D. B. Minturn and F. Hady, “When Poll is Better

than Interrupt”, FAST’12, February 2012

[8] H. Kim, N. Agrawal, C. Ungureanu, “Revisiting Storage for

Smartphones”, Usenix FAST’12, February 2012

[9] F. Chen, R. Lee and X. Zhang, “Essential Roles of Exploiting

Parallelism of Flash Memory based Solid State Drives in

High-Speed Data Processing”, HPCA’11, February 2011

8

8.5

9

9.5

10

10.5

11

NP 2 3 4 5 6 7 8 NL

T
h
ro

u
g
h
p
u
t(

M
B
/s

)

Maximum packed IO request

http://www.jedec.org/
http://opensource.samsung.com/
http://www.sata-io.org/

