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ABSTRACT 

Recently, mobile platform devices such as smartphone and tablet 

have spread widely. These devices have embedded NAND flash 

storage devices. For example, recent smartphones use embedded 

multimedia cards (eMMC) to store application and data. The 

performance of smart devices is strongly related with the 

embedded storage. Recent products of eMMC provide several 

special features for higher performance. In this paper, we 

investigated the performance-related features of eMMC device at 

Android-based smartphone. First, we study the effect of packed 

command which is introduced at eMMC 4.5 specification. Second, 

we examine the performance degradation by Least Significant Bit 

(LSB) backup on MLC eMMC devices.  Finally, we observed the 

performance difference under different ext4 file system 

configurations such as flex group. From experiments, we found 

that the storage subsystem of current Android platform needs 

further optimizations considering the special features of eMMC.  
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1. INTRODUCTION 
Mobile platform devices such as smartphones and tablets have 

recently become the dominant personnel computing devices. 

Generally, these platforms adopt NAND flash storage devices. For 

example, Google’s Android-based smartphones use eMMC 

(embedded Multi-Media Card) to store user’s application and data 

as well as the platform software. As the need for higher 

performance at these mobile platform devices, the storage IO 

performance cannot be overlooked as examined at a previous 

study [18]. 

The architecture of NAND flash-based storage has been moved 

from pure NAND flash memory to fusion NAND flash device. The 

pure NAND requires special software, called flash translation 

layer (FTL), to handle all idiosyncrasies of flash memory such as 

address translation, bad block management, error correction, etc. 

As shown in Figure 1, the pure NAND flash memory just handles 

the read or write requests sent form host system while all higher-

level operations must be performed by host system.   

However, the fusion device such as eMMC has a micro-controller 

and RAM that allow it to operate FTL internally. Therefore, the 

host system can consider the fusion device as a traditional block 

device like hard disk drives, and we can use legacy file systems 

and IO subsystems without modifications. The weak point of 

eMMC is that eMMC cannot optimize its performance exploiting 

the host information. For example, the software module to handle 

pure NAND can exploit several semantic information of host 

operating system since it runs at the host system. However, 

eMMC communicates with host through a standard MMC bus 

which does not transfer any additional host information except the 

block request information.  To overcome such a limitation, recent 

eMMC standard specification includes several extended interfaces 

through which host can transfer information to eMMC device [2]. 
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Figure 1. Difference between eMMC & Pure NAND. 

In this paper, we study the extended features of eMMC 4.5, 

examine whether current Android smartphones exploit these 

features efficiently, and propose the related techniques to optimize 

the storage performance.  Firstly, we investigate the internal 

features of eMMC such as Least Significant Bit (LSB) backup 

issue on Multi-Level Cell (MLC) based NAND flash.  Because of 

MLC’s characteristics, if power failure is occurred during on write 

operation, paired page that was already written will also be 

corrupted.  To handle this problem, eMMC back up written paired 

page to Single-Level Cell (SLC) buffer.  This behavior can 

produce additional write, therefore we evaluate how LSB backup 

can affect to the performance. Secondly, we observe packed 

command that is the function of eMMC 4.5 standard.  The role of 
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packed command is ‘packing’ several IO requests at device-driver 

level.  It is similar to Native Command queuing (NCQ) [3] using 

on hard disk or SSD.  In our works, we evaluate the usage and 

impact of packed command on Android device, and find 

optimization points.  As third, we study about Flex group on Ext4 

file system [8].  Flex group is introduced to unify a bunch of block 

groups in order to handle several block group’s metadata into 

single management.  We evaluate how this feature can affect to 

the performance of eMMC.  Additionally, Using on the overall 

observations, we make Driver-level Block IO Tracer as Linux 

kernel patch for eMMC to look up deeper level of eMMC’s IO 

behavior. 

The rest of this paper is organized as follows.  In Section 2, we 

describe necessary background about MLC NAND, eMMC 

Standard, Ext4 file system.  The observations on relationship 

between Android and eMMC are presented in Section 3.  The 

conclusion and future works are described in Section 4. 

2. BACKGROUND 

2.1 MLC Feature 
NAND Flash memory can be separated to two types, SLC and 

MLC.  SLC stores 1-bit per cell.  But in case of MLC, 2 or 3 bits 

are stored in one cell. From this architectural difference, MLC has 

higher capacity and cheaper price but worse lifespan compared to 

SLC. 

In case of 2-bit MLC, one page is related to another page called 

paired page.  The problem is that when power failure is occurred 

during programming MSB, page corruption is appeared not only 

MSB page but also LSB page that was already written.  It is heavy 

danger on reliability, therefore LSB page should be backed up to 

prepared SLC buffer at MSB page programming.  This behavior is 

called as LSB backup. 

2.1.1 LSB Backup 
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Figure 2. Paired page on word line and the behavioral 

description of LSB backup. 

Figure 2 describes the behavior of LSB backup.  In case of 2-bit 

MLC, 2 pages are stored in one word line, and thus, single block 

that has 64 word lines can have 128 pages.  Paired pages are 

formed as physical block’s figure with word line describes.  Word 

line #0 has page #0 and #2, and word line #1 has page #1 and #4 

as paired pages.  If additional write operation is arrived when page 

#0 and #1 is already written, like as Figure 2 shows, LSB backup 

should be performed to SLC buffer.   Writing page #2 will go with 

backing up page #0 to SLC buffer and writing page #4 will be 

with page #1’s backup.  However, writing page #3 does not need 

to back up because it is LSB by itself. 

With LSB backup, at most, single write operation needs 2 actual 

page writes.  And also, when the situation that several banks 

perform interleaving [9], its harm can be more significant problem 

when interleaving is paused because single SLC buffer will be 

saturated with backup actions on many MLC banks.  Figure 3 

describes the behavior of interleaved write and non-interleaved 

write because of LSB backup.  4 banks are paired to interleave 

and 8 pages perform data program.  Data processing (PC) 

integrates several jobs to prepare data program like commands, 

data transferring, etc. and these jobs cannot be overlapped.  Figure 

shows that first 4 pages are interleaved.  Although unit program 

time of single page is        , programming 4 pages take only 

        by interleaving.  However, because second 4 pages 

require LSB backup, and LSB backup cannot be overlapped, the 

latency of second 4 pages are much longer than first. 
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Figure 3. Behavior of Interleaved write & Non-interleaved 

write because of LSB backup.  Total 8 programs, first 4 

programs are interleaved; others are not able to be 

interleaved because LSB backup cannot be overlapped. 

Because word line is tied with two pages that is 3 steps far from 

each other, write operation more than 4 pages can reduce LSB 

backup overhead gradually because paired pages are programmed 

at the same time.  On the situation that several banks are 

interleaved, that threshold will be 4 super pages rather than 4 

pages.  Accordingly, enlarging IO size is important thing to 

improve performance. 

2.2 eMMC Standard 
eMMC is, as mentioned above, the device that combines NAND 

flash memory and controller.  eMMC should be based on 

JEDEC’s eMMC Standard, and can use standard interface and 

MMC driver.  The newest version is eMMC 4.5, and we review 

key features like Context ID, Packed command, Trim and Discard. 

2.2.1 Context ID 
Context ID is formed with 15 IDs that can be sent with IO 

operation.  Through these IDs, OS-level data information is able 

to go to storage.  This information is used to determine data’s 

tendency, random or sequential, small or large, document or 

media, etc.  And then storage device can handle data area more 

efficiently. 

Context ID is already supported, but not used yet.  It has variety 

of potential application, and should be investigated more. 

2.2.2 Packed command 
Packed command is the function that can ‘pack’ plural IO requests.  

With this function, IO operation on OS acts like NCQ thus large 

sequential writes can have benefits of interleaving.  But in case of 

small random writes, packed command is not used because they 



have no profits on interleaving [1].  In fact, small random write 

also can enjoy the advantage on packed command a little bit. 
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Figure 4. Packed command behavior on 2 write-operations.  

Sequential write packing enable interleaving, random write 

packing has advantage also by reducing interrupt. 

As Figure 4 shown, the fundamental activities of write operation 

are performed as follow, sending set command, receiving interrupt, 

sending write command and data, and receiving another interrupt.  

In this sequence, write operation should receive two interrupts per 

single write.  However, if using packed command, set commands 

and write commands of packed IO requests are all stored in 

packed header and additional interrupts are not required.  

Therefore, two interrupts per single write can be reduced into two 

interrupts per single packed request.  Previous research presented 

that interrupt overhead will be enlarged because improvement of 

IO performance is too rapid [10].  In the result, saving a number 

of interrupts is not ignorable and will more important on future. 

2.2.3 Trim & Discard 
On the situation of previous storage IO system based on HDD, file 

system had no responsibility to inform data deletion to storage 

because HDD can physically overwrite data.  However, in case of 

NAND-based storage, because storage cannot overwrite data into 

same physical area, information of data deletion is important 

things.  If data deletion is not informed, the storage device may 

consider deleted data as valid data, thus useless copies are created.  

Trim command is employed by Solid State Disk (SSD) because of 

this phenomenon [21] and eMMC also adopts trim command as 

standard.   Trim command informs data deletion to storage device, 

and then storage device invalidates that and then does not copy 

useless data.  

Although trim command is useful function, it has a limitation.  

Trim command has a responsibility to return null value when host 

OS sends read operations on already ‘trimmed’ address.  This 

limitation makes storage handle an additional data structure to 

manage ‘trimmed’ data, therefore it enlarges IO latency.  In order 

to handle this problem, discard command is suggested.  Discard 

does not require such null value at read operation, accordingly we 

can use discard operation with no additional management when 

reliability problem is not presented. 

2.3 Ext4 File System 
Ext4 file system is what Android platform uses for main 

partition’s file system.  In this paper, we focus on Flex group that 

is a block group management technique on Ext4 file system. 

Figure 5 shows the architecture of block group with flex group.  

Flex group is the unit that handles one or many block groups, and 

at formatting partition, tuning the number of block groups on 

single flex group is available.  When block groups per flex group 

is more than one block group, all block groups metadata are stored 

in flex group’s first block group thus metadata are stored on 

limited logical area. This phenomenon means spatial locality is 

considered on storing metadata.  And this also means IO 

performance can be improved depending on storage architecture. 
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file system: Block bitmaps, inode bitmaps and inode tables all 

are in block group 0. 

Previous research emphasized that the increases of the number of 

block groups in flex group improved IO performance on the 

workload that has large amount of transactions [11].  However 

this result can be unlikely according to Flash Translation Layer 

(FTL) on eMMC.  eMMC that uses hybrid mapping FTL like 

FAST [17] is able to achieve reasonable improvement by data 

workload considering spatial locality [12], but in case of page 

mapping FTL like DFTL [16], there are few advantages because 

of out-of-place management on storage area. 

3. OBSERVATION 
Observations are three contents.  Firstly we investigate eMMC 

structure and LSB backup on MLC NAND, and secondly we 

study about effects and optimization points of packed command, 

lastly, we evaluate the effect of flex group depending on devices. 

3.1 Tools & Experimental Setups 

3.1.1 Drivel-level Block IO Tracer 
Blktrace [13] is widely used tracing tool to observe IO behaviors 

of block devices.  However, because blktrace is located on IO 

scheduler, it cannot observe lower driver’s behavior.  For example, 

packed command that is performed on block interface driver of 

eMMC, separating set command overhead from write or read 

operation on host driver are not able to be observed from blktrace.  

And also, blktrace don’t report about trim command.  From this 

reason, we develop Driver-level Block IO Tracer.  Figure 6 

describes the observing points and observing behaviors of blktrace 

and Driver-level Block IO Tracer.  Blktrace traces IO scheduler, 

especially request queue’s behavior, on the other hand, Driver-

level Block IO tracer traces device driver level command handling. 
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Figure 6. Differences between blktrace & Driver-level Block 

IO tracer. 



Driver-level Block IO Tracer is located on eMMC 4.5 standard 

driver, and it observes write/read, trim/discard, packed command 

and their corresponding interrupt behavior.  Only problem is 

tracing latency that takes 50~100 micro seconds per IO.  This 

latency cannot be ignored at small random IO, Therefore we avoid 

using this tool in case of small random IO operation. 

3.1.2 Experimental Setups 
We use GT-I9100, GT-I9300 and Pandaboard [6] as target devices. 

First two devices are commercial Android smartphone on 

Samsung, and the latter is android development board.  Target 

devices have 16GB eMMC, especially GT-I9300 and Pandaboard 

use same model of eMMC.  Pandaboard is alternative device to 

GT-I9300 because GT-I9300 is unable to re-partition storage.  

Therefore every option is equivalent to GT-I9300. 

Tiobench [24], uFLIP [5] and postmark are used for benchmark 

workload.  Tiobench creates threaded IO workload, depending on 

option, it can simply generate random and sequential I/O 

workload.  uFLIP directly sends I/O operation into bio structure 

rather than through file system, Thus it is useful to evaluate raw 

device performance.  Postmark is mail server benchmark.  It 

creates certain number of working files and transactions (create, 

delete, append, and read).  Real workloads are composed with 

local synchronization on Google Drive and application install jobs. 

In order to trace the files that are observed by Driver-level Block 

IO Tracer, we use Android Block IO Semantic Analyzer [22].  

This tool translates block I/O operation into corresponding file, 

consequently, we can re-match I/O pattern to file system level. 

3.2 Internal features & Effects 
In this section, we investigate internal features and effects of LSB 

backup on eMMC.  GT-I9300 and uFLIP are used for this 

experimentation.  Based on previous work that estimates internal 

architecture of NAND-based storage with uFLIP [23], we find 

size of page and super page, and then evaluate the effects of LSB 

backup. We perform write operations with various IO size and 

aligned to logical address of eMMC device. 

Figure 7 describes the bandwidth of write operation with IO size 

from 512byte to 8MB.  The graph is separated into three parts, 

and the first part named ‘Under page size’ appears much lower 

performance compared to second part and third part that are 

‘Under super page size’ and ‘Interleaved’.  This phenomenon 

shows that page size is 8KB.  The reason is as follows.  Because 

the minimum write unit of NAND-based storage is page size, 

although write operation is performed with IO size under page  

size, it takes same latency to write with page size.  It means 

‘under page size’ IO brings low bandwidth compared to ‘above 

page size’ IO.  On the other hand, at the second region, because its 

IO size is larger than page size, the bandwidth should be improved 

gradually depending on IO size due to increasing of interleaving 

writes.  But as shown in figure, the performance is not that 

improved until IO size is larger than 128KB.  As explained on 

Section 2.1.1, we can assume that this is because of LSB backup.  

In case of under super page size, every write operation is single 

page operation at the aspect of each bank, therefore LSB backup 

is always presented when MSB pages are writing.  Therefore, we 

also assume that the super page size is 128KB based on figure.  

Above 128KB, the performance keeps increasing.  This is due to 

interleaving and decreasing of the number of LSB backup because 

LSB and MSB pages are written at the same time.  However, 

Android, and its Linux kernel perform write operation with 

maximum size of 512KB due to IO scheduler policy.  Thus, 

packed command is important function to ‘pack’ up diffuse write 

operation into large size IO at ‘device driver’. 

 
Figure 7.  Write bandwidth depending on IO size (uFLIP, 

aligned random IO). 

3.3 Effects of Packed Command 
On this experimentation, we use GT-I9300 as target device and 

tiobench as test benchmark.  In case of packed command on 

sequential write, tiobench writes 2GB with 8MB block units and 

on single thread (tio_seq).  On the other hand, experimentation of 

packed command on random write, tiobench writes 2GB write 

with 4KB block units on 4 threads (tio_rand).  And Google Drive 

and application install workload are used for real workload. 

3.3.1 Packed command on Sequential Write 
Packed command can pack 62 IO requests per single packed 

command according to standard, however, another limitation is 

what each eMMC device has own limitation of write size.  In case 

of our target device, the limitation on single write size is 4MB.  It 

means the maximum number of IO request per single packed 

request is 8 due to the maximum size of IO at IO scheduler, 

512KB.  At this point, default option only allows packing 

sequential write with no limitation on the number of packed IO 

request.  Packed request supposes a unified IO request that covers 

packed IO requests and packed IO requests means internal IO 

requests on packed request. 

 
Figure 8. Bandwidth & full packing ratio depending on # of 

maximum packed IO request (enable packed command on 

sequential write only, tio_seq). 
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Figure 8 shows bandwidth and full packing ratio by limiting the 

number of maximum packed IO request.  Full packing ratio means 

the portion of packed request that contains maximum IO request 

compared to total packed request.  Workload on this 

experimentation is tio_seq, and benchmark performance is 

reported bandwidth from tiobench.  Device level performance is 

measured from Device-level Block IO Tracer and full packed only 

bandwidth stands for the performance of full packed request only.  

It is also measured from Device-level Block IO Tracer.  The gap 

between benchmark performance and device level performance 

can be treated as OS latency. 

The bandwidth on benchmark performance is saturated since the 

number of packed IO request is 4 on the Figure 8.  However, full 

packed only bandwidth, the pure performance of packing is still 

increasing and full packing ratio is decreasing.  This result implies 

that packed command is not fully utilized because IO requests are 

not fully packed. 

Table 1. Reason of halt on packing sequential write, total 

packed request: 267 (default option, tio_seq) 

NOREQ RAND SYNC REL READ Fully packed 

203 58 2 0 0 4 

In order to investigate the reason of disutility, we trace ‘the halt of 

packing’.  Table 1 shows the reason of halt on packing sequential 

write.  The number of halt from empty request queue (NOREQ), 

random write (RAND) is 203 and 58 respectively, and from the 

sync write (SYNC) is 2.  The effect of sync write and reliable 

write (REL) and read operation (READ) are negligible.  Focusing 

on halt of random write, we use Android Block IO Semantic 

Analyzer to find corresponding file of random write.  Figure 9 

shows that the identity of halting random write is all file system 

meta data.  This result can be flexible depending on workload 

pattern, but implies that interference of file system’s meta data is 

fundamental material of halting random write. 

 
Figure 9. Disturbance of random write on packing sequential 

write, all of random writes are file system’s meta data (default 

option, tio_seq). 

Figure 10 represents the bandwidth on different IO schedulers, 

and the environment of experimentation is identical to the former.  

With default option, as shown in figure, cfq is the lowest, but 

deadline and noop scheduler appear similar performance.  Figure 

11 describes the number of packed IO request according to IO 

scheduler.  On the figure, the number of packed IO request is 

much lower on cfq rather than deadline or noop.  This result can 

be a reason of lower performance on cfq at Figure 10.  And the 

reason of low number of packed IO request on cfq is proved on 

Table 2.  Table 2 describes similar material to Table 1 depending 

on IO scheduler and shows that cfq has drastically large number 

of halt on packing because of empty request queue compared to 

others.  It represents that cfq is much slower than deadline or noop 

on the aspect of queuing thus it harms application of packed 

command. 

 
Figure 10. Bandwidth according to IO scheduler  

(default option, tio_seq). 

 
Figure 11. The number of packed IO request depending on IO 

scheduler (default option, tio_seq). 

Table 2. Reason for halt on packing sequential write 

depending on IO scheduler (default option, tio_seq). 

 
cfq deadline noop 

NOREQ 203 7 19 

RAND 58 48 77 

SYNC 2 3 0 

From the observations, packed command on sequential write 

derives performance benefit but still needs optimization.  For 

example, interference of random write on packing sequential write 

should be fixed by write operation reordering, and a compromise 

between cfq and deadline or noop is needed because still cfq 

scheduler is good scheduler to provide fair storage performance 

on burst jobs. 

3.3.2 Packed Command on Random Write 
On the current state, packed command is not used on random 

write.  However packed command can solve the problem of 

interrupt latency on small random write as explained at Section 

2.2.2.  To prove this effect, we have experimentation about small 

random write with enabling packed command on random write.  

As mentioned above, because of revealing overhead, Driver-level 

Block IO Tracer is not used in this section. 
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Figure 12. Bandwidth on packing random write depending on 

the number of maximum packed IO request (enable packed 

command on random write, tio_rand). 

Figure 12 is bandwidth graph on packing random write according 

to the number of maximum packed IO request on small random 

write workload using tiobench.  In case of small random write, the 

maximum number of packed IO request is 62 because the size 

limitation is meaningless.  However, as shown in figure, limiting 

maximum number of packed IO request into 8 is much better than 

packing IO request with no limitation.  Increase of bandwidth, 

until the number of maximum packed IO request is 8, can be 

considered as the reduction of interrupt latency.  But in case of 

shrink in latter, its reason is unclear.  Only reasons that can be 

presumed are packing overhead because of de-queuing and re-

queuing IO requests, and eMMC device level overhead that can 

be larger when packed IO request is burst random writes.  

Because of unavailable tracer and black boxed internal details on 

eMMC device, it remains as future work. 

 
Figure 13. CDF graph on the number of IO request per 

packed request at packing random write (Full packed (62), 

tio_rand). 

We measure actual number of packed IO request on small random 

write at no limitation for the number of packed IO request.  

Because this measurement doesn’t care about latency, Driver-

level Block IO Tracer is adopted.  Figure 13 shows that actual 

number of packed IO requests is significantly different from 

maximum number of packed IO request, 62, and about 60% of 

packed requests are packing IO request under 8.  According to the 

result of Figure 12 and Figure 13, we can at least conclude that 

limiting the maximum number of packed IO request is effective to 

achieve better performance on packing random write. 

3.3.3 Usages of Packed command on Real Workload 
In this section, we study about usages of packed command on real 

workload.   We use Google drive and application installation 

workload.  Google drive workload is made of synchronization to 

local storage of smartphone using Google drive and the 

synchronized data is music file and documentation, and 

application installation workload performs verbatim application 

installation that contains many large size applications.  Table 3 

directly shows that AppInstall, that has large size IO and utilizes 

packed command more, performs better bandwidth compared to 

GoogleDrive workload. 

Table 3. Usage of packed command on real workload(default 

option, GoogleDrive, AppInstall). 

 
GoogleDrive AppInstall 

Write size(GB) 0.7 3.1 

# of request 9912 10126 

Bandwidth(MB/s) 24.146 36.179 

Packed write/Total write 69.66% 94.47% 

 

Figure 14.  The number of packed IO request on real 

workload (GoogleDrive & AppInstall). 

Figure 14 shows the number of packed IO request on real 

workload.  In case of AppInstall, most of packed request contains 

6 or 7 IO requests per single packed request.  But GoogleDrive 

workload is not packed much compared to AppInstall.  This result 

is reasonable based on workload pattern and shows that the more 

IO requests are packed, the better performance become. 

3.4 Effects of Flex Group 
In this section, we investigate the effect of flex group of ext4 file 

system that storing metadata with considering spatial locality.  

Evaluation is performed using GT-I9100 and Pandaboard as target 

devices, and used eMMC device in Pandaboard is same to GT-

I9300.  We use postmark as benchmark workload, and perform 

10000 transactions within 5000 files, and each file size is 1MB.  

Experimentation is performed with increasing the number of 

block group per flex group. 

 
Figure 15. Bandwidth according to block group per flex group 

on GT-I9100 and Panda board (Postmark). 
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As Figure 15 shown, the performance of GT-I9100 is increased 

between 1 and 2 block groups per flex group.  It is because if 

plural block groups are presented in single flex group, the meta 

data are stored into first block group on flex group, thus spatial 

locality of IO operation is improved.  But in case of Pandaboard, 

improvement is not appeared.  This is different result compared to 

previous research.  As mentioned on Section 2.3, depending on 

FTL, considering spatial locality can be useless effort.  Thus, we 

can assume that eMMC device in Pandaboard, and GT-I9300 uses 

page mapping FTL. 

4. CONCLUSION & FUTURE WORKS 
In this paper, we study about the relationship between Android 

and eMMC.  Firstly, we investigate internal features of eMMC 

and the effects of LSB backup, and conclude that large size write 

operation can reduce IO latency, thus, IO pattern and application 

of packed command are important.  Secondly, we evaluate the 

effects of packed command and find optimization points.  We 

found that packing on sequential write can improve performance 

on large size IO, but still has optimization points, and packing on 

random write also can improve performance due to reducing 

interrupt latency.  On the third, we re-evaluate the effect of flex 

group, but it is useless on new, high-end eMMC. 

For the future works, we ultimately aim to optimize overall IO 

system of Android.  Based on this paper, we’ll optimize IO 

scheduler to pack more IO requests, and reduce interrupt latency 

on small random write pattern. 
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