
Optimizing Storage Performance of Android Smartphone

Hyukjoong Kim,
College of Information & Communication Engineering

Sungkyunkwan University, Korea

+82-10-9489-8974

wangmir@skku.edu

Dongkun Shin,
College of Information & Communication Engineering

Sungkyunkwan University, Korea

+82-10-6235-3641

dongkun@skku.edu

ABSTRACT

Recently, mobile platform devices such as smartphone and tablet

have spread widely. These devices have embedded NAND flash

storage devices. For example, recent smartphones use embedded

multimedia cards (eMMC) to store application and data. The

performance of smart devices is strongly related with the

embedded storage. Recent products of eMMC provide several

special features for higher performance. In this paper, we

investigated the performance-related features of eMMC device at

Android-based smartphone. First, we study the effect of packed

command which is introduced at eMMC 4.5 specification. Second,

we examine the performance degradation by Least Significant Bit

(LSB) backup on MLC eMMC devices. Finally, we observed the

performance difference under different ext4 file system

configurations such as flex group. From experiments, we found

that the storage subsystem of current Android platform needs

further optimizations considering the special features of eMMC.

Categories and Subject Descriptors

D.4.2 [Storage Management]: Secondary storage, Storage

hierarchies

General Terms

Measurement, Performance

Keywords

eMMC, Android, Smartphone, Storage, IO system, Ext4, NAND

Flash, MLC

1. INTRODUCTION
Mobile platform devices such as smartphones and tablets have

recently become the dominant personnel computing devices.

Generally, these platforms adopt NAND flash storage devices. For

example, Google’s Android-based smartphones use eMMC

(embedded Multi-Media Card) to store user’s application and data

as well as the platform software. As the need for higher

performance at these mobile platform devices, the storage IO

performance cannot be overlooked as examined at a previous

study [18].

The architecture of NAND flash-based storage has been moved

from pure NAND flash memory to fusion NAND flash device. The

pure NAND requires special software, called flash translation

layer (FTL), to handle all idiosyncrasies of flash memory such as

address translation, bad block management, error correction, etc.

As shown in Figure 1, the pure NAND flash memory just handles

the read or write requests sent form host system while all higher-

level operations must be performed by host system.

However, the fusion device such as eMMC has a micro-controller

and RAM that allow it to operate FTL internally. Therefore, the

host system can consider the fusion device as a traditional block

device like hard disk drives, and we can use legacy file systems

and IO subsystems without modifications. The weak point of

eMMC is that eMMC cannot optimize its performance exploiting

the host information. For example, the software module to handle

pure NAND can exploit several semantic information of host

operating system since it runs at the host system. However,

eMMC communicates with host through a standard MMC bus

which does not transfer any additional host information except the

block request information. To overcome such a limitation, recent

eMMC standard specification includes several extended interfaces

through which host can transfer information to eMMC device [2].

EMMC

MMC controller

Pure NAND

Host OS
Block

Management

ECC

Device Driver

NAND

Host OS

Device Driver

NAND

Block
Management

ECC

Pure NAND
Fusion

NAND(eMMC)

NAND
bus

NAND
bus

MMC
bus

Figure 1. Difference between eMMC & Pure NAND.

In this paper, we study the extended features of eMMC 4.5,

examine whether current Android smartphones exploit these

features efficiently, and propose the related techniques to optimize

the storage performance. Firstly, we investigate the internal

features of eMMC such as Least Significant Bit (LSB) backup

issue on Multi-Level Cell (MLC) based NAND flash. Because of

MLC’s characteristics, if power failure is occurred during on write

operation, paired page that was already written will also be

corrupted. To handle this problem, eMMC back up written paired

page to Single-Level Cell (SLC) buffer. This behavior can

produce additional write, therefore we evaluate how LSB backup

can affect to the performance. Secondly, we observe packed

command that is the function of eMMC 4.5 standard. The role of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICUIMC(IMCOM)’13, January 17–19, 2013, Kota Kinabalu, Malaysia.

Copyright 2013 ACM 978-1-4503-1958-4…$15.00.

packed command is ‘packing’ several IO requests at device-driver

level. It is similar to Native Command queuing (NCQ) [3] using

on hard disk or SSD. In our works, we evaluate the usage and

impact of packed command on Android device, and find

optimization points. As third, we study about Flex group on Ext4

file system [8]. Flex group is introduced to unify a bunch of block

groups in order to handle several block group’s metadata into

single management. We evaluate how this feature can affect to

the performance of eMMC. Additionally, Using on the overall

observations, we make Driver-level Block IO Tracer as Linux

kernel patch for eMMC to look up deeper level of eMMC’s IO

behavior.

The rest of this paper is organized as follows. In Section 2, we

describe necessary background about MLC NAND, eMMC

Standard, Ext4 file system. The observations on relationship

between Android and eMMC are presented in Section 3. The

conclusion and future works are described in Section 4.

2. BACKGROUND

2.1 MLC Feature
NAND Flash memory can be separated to two types, SLC and

MLC. SLC stores 1-bit per cell. But in case of MLC, 2 or 3 bits

are stored in one cell. From this architectural difference, MLC has

higher capacity and cheaper price but worse lifespan compared to

SLC.

In case of 2-bit MLC, one page is related to another page called

paired page. The problem is that when power failure is occurred

during programming MSB, page corruption is appeared not only

MSB page but also LSB page that was already written. It is heavy

danger on reliability, therefore LSB page should be backed up to

prepared SLC buffer at MSB page programming. This behavior is

called as LSB backup.

2.1.1 LSB Backup

0 , 2

1 , 4

3 , 6

. . .
121,124

123,126

125,127

WL#0

WL#1

WL#2

. . .

WL#61

WL#62

WL#63

Physical Block
(Word Line)

Written

Written

. . .

writewrite

writewrite

writewrite

Page#0

P #1

P #2

P #3

P #4

. . .

P #127

Page#0

P #1

clean

...

clean

Backup Block
(SLC buffer)

backup

backup

Physical Block
(Page)

2 Pages / 1 Word Line

Figure 2. Paired page on word line and the behavioral

description of LSB backup.

Figure 2 describes the behavior of LSB backup. In case of 2-bit

MLC, 2 pages are stored in one word line, and thus, single block

that has 64 word lines can have 128 pages. Paired pages are

formed as physical block’s figure with word line describes. Word

line #0 has page #0 and #2, and word line #1 has page #1 and #4

as paired pages. If additional write operation is arrived when page

#0 and #1 is already written, like as Figure 2 shows, LSB backup

should be performed to SLC buffer. Writing page #2 will go with

backing up page #0 to SLC buffer and writing page #4 will be

with page #1’s backup. However, writing page #3 does not need

to back up because it is LSB by itself.

With LSB backup, at most, single write operation needs 2 actual

page writes. And also, when the situation that several banks

perform interleaving [9], its harm can be more significant problem

when interleaving is paused because single SLC buffer will be

saturated with backup actions on many MLC banks. Figure 3

describes the behavior of interleaved write and non-interleaved

write because of LSB backup. 4 banks are paired to interleave

and 8 pages perform data program. Data processing (PC)

integrates several jobs to prepare data program like commands,

data transferring, etc. and these jobs cannot be overlapped. Figure

shows that first 4 pages are interleaved. Although unit program

time of single page is , programming 4 pages take only

 by interleaving. However, because second 4 pages

require LSB backup, and LSB backup cannot be overlapped, the

latency of second 4 pages are much longer than first.

MLC NAND0

MLC NAND1

MLC NAND2

MLC NAND3

Write
operation

Data
Processing

Data
ProgramPC PG

PC

PC

PC

PC

PG

PG

PG

PG

BKUP
LSB

backup

PC PGBKUP

PC BKUP PG

PC BKUP PG

PC BKUP PG

PG Х 8

(1) Interleaved

(2) Non interleaved because of LSB Backup

Idle time

Start 1st 4PGStart 1st 4PG Start 2nd 4PGStart 2nd 4PG

Figure 3. Behavior of Interleaved write & Non-interleaved

write because of LSB backup. Total 8 programs, first 4

programs are interleaved; others are not able to be

interleaved because LSB backup cannot be overlapped.

Because word line is tied with two pages that is 3 steps far from

each other, write operation more than 4 pages can reduce LSB

backup overhead gradually because paired pages are programmed

at the same time. On the situation that several banks are

interleaved, that threshold will be 4 super pages rather than 4

pages. Accordingly, enlarging IO size is important thing to

improve performance.

2.2 eMMC Standard
eMMC is, as mentioned above, the device that combines NAND

flash memory and controller. eMMC should be based on

JEDEC’s eMMC Standard, and can use standard interface and

MMC driver. The newest version is eMMC 4.5, and we review

key features like Context ID, Packed command, Trim and Discard.

2.2.1 Context ID
Context ID is formed with 15 IDs that can be sent with IO

operation. Through these IDs, OS-level data information is able

to go to storage. This information is used to determine data’s

tendency, random or sequential, small or large, document or

media, etc. And then storage device can handle data area more

efficiently.

Context ID is already supported, but not used yet. It has variety

of potential application, and should be investigated more.

2.2.2 Packed command
Packed command is the function that can ‘pack’ plural IO requests.

With this function, IO operation on OS acts like NCQ thus large

sequential writes can have benefits of interleaving. But in case of

small random writes, packed command is not used because they

have no profits on interleaving [1]. In fact, small random write

also can enjoy the advantage on packed command a little bit.

Random Packing

No Packing
Total Latency for 2 write request w/o packed CMD

Sequential Packing

SET

SET
command

W
R

Write
command

H
D

R

Packed
command

Header

Data
transfer

through bus

Data
program

time

SET

W
R

SET

W
RINT INT INT

Tran
sfer

Data I/O
Tran
sfer

Data I/O INT

SET

W
R

SET
W

RINT
Transf

er
Data I/O

H
D

R

SET
W

R Data I/O INT Saved latency

Data I/O
Tran
sfer

SET

W
R

SET
W

RINT
Transf

er
Data I/O

H
D

R

SET
W

R Data I/O INT

Saved latency

Interleave

Figure 4. Packed command behavior on 2 write-operations.

Sequential write packing enable interleaving, random write

packing has advantage also by reducing interrupt.

As Figure 4 shown, the fundamental activities of write operation

are performed as follow, sending set command, receiving interrupt,

sending write command and data, and receiving another interrupt.

In this sequence, write operation should receive two interrupts per

single write. However, if using packed command, set commands

and write commands of packed IO requests are all stored in

packed header and additional interrupts are not required.

Therefore, two interrupts per single write can be reduced into two

interrupts per single packed request. Previous research presented

that interrupt overhead will be enlarged because improvement of

IO performance is too rapid [10]. In the result, saving a number

of interrupts is not ignorable and will more important on future.

2.2.3 Trim & Discard
On the situation of previous storage IO system based on HDD, file

system had no responsibility to inform data deletion to storage

because HDD can physically overwrite data. However, in case of

NAND-based storage, because storage cannot overwrite data into

same physical area, information of data deletion is important

things. If data deletion is not informed, the storage device may

consider deleted data as valid data, thus useless copies are created.

Trim command is employed by Solid State Disk (SSD) because of

this phenomenon [21] and eMMC also adopts trim command as

standard. Trim command informs data deletion to storage device,

and then storage device invalidates that and then does not copy

useless data.

Although trim command is useful function, it has a limitation.

Trim command has a responsibility to return null value when host

OS sends read operations on already ‘trimmed’ address. This

limitation makes storage handle an additional data structure to

manage ‘trimmed’ data, therefore it enlarges IO latency. In order

to handle this problem, discard command is suggested. Discard

does not require such null value at read operation, accordingly we

can use discard operation with no additional management when

reliability problem is not presented.

2.3 Ext4 File System
Ext4 file system is what Android platform uses for main

partition’s file system. In this paper, we focus on Flex group that

is a block group management technique on Ext4 file system.

Figure 5 shows the architecture of block group with flex group.

Flex group is the unit that handles one or many block groups, and

at formatting partition, tuning the number of block groups on

single flex group is available. When block groups per flex group

is more than one block group, all block groups metadata are stored

in flex group’s first block group thus metadata are stored on

limited logical area. This phenomenon means spatial locality is

considered on storing metadata. And this also means IO

performance can be improved depending on storage architecture.

Super
Block

Group
Descriptor

Table

Block
bitmap

0

B
B
1

B
B
2

B
B
3

Inode
bitmap

0

B
B
1

B
B
2

B
B
3

Inode
Table

Data
Block

S
B

GDT FB
S
B

GDT FB
S
B

GDT FB

Block Group 0

BG 1 BG2 BG3
Figure 5. Block group architecture with Flex group on Ext4

file system: Block bitmaps, inode bitmaps and inode tables all

are in block group 0.

Previous research emphasized that the increases of the number of

block groups in flex group improved IO performance on the

workload that has large amount of transactions [11]. However

this result can be unlikely according to Flash Translation Layer

(FTL) on eMMC. eMMC that uses hybrid mapping FTL like

FAST [17] is able to achieve reasonable improvement by data

workload considering spatial locality [12], but in case of page

mapping FTL like DFTL [16], there are few advantages because

of out-of-place management on storage area.

3. OBSERVATION
Observations are three contents. Firstly we investigate eMMC

structure and LSB backup on MLC NAND, and secondly we

study about effects and optimization points of packed command,

lastly, we evaluate the effect of flex group depending on devices.

3.1 Tools & Experimental Setups

3.1.1 Drivel-level Block IO Tracer
Blktrace [13] is widely used tracing tool to observe IO behaviors

of block devices. However, because blktrace is located on IO

scheduler, it cannot observe lower driver’s behavior. For example,

packed command that is performed on block interface driver of

eMMC, separating set command overhead from write or read

operation on host driver are not able to be observed from blktrace.

And also, blktrace don’t report about trim command. From this

reason, we develop Driver-level Block IO Tracer. Figure 6

describes the observing points and observing behaviors of blktrace

and Driver-level Block IO Tracer. Blktrace traces IO scheduler,

especially request queue’s behavior, on the other hand, Driver-

level Block IO tracer traces device driver level command handling.

IO scheduler

Device driver

eMMC

Remap
Enqueue/dequeue

Plug/unplug
dispatch
complete

...
Packed command

Trim command
Set/Write command

...

blktrace

Driver-level
Block IO Tracer

Figure 6. Differences between blktrace & Driver-level Block

IO tracer.

Driver-level Block IO Tracer is located on eMMC 4.5 standard

driver, and it observes write/read, trim/discard, packed command

and their corresponding interrupt behavior. Only problem is

tracing latency that takes 50~100 micro seconds per IO. This

latency cannot be ignored at small random IO, Therefore we avoid

using this tool in case of small random IO operation.

3.1.2 Experimental Setups
We use GT-I9100, GT-I9300 and Pandaboard [6] as target devices.

First two devices are commercial Android smartphone on

Samsung, and the latter is android development board. Target

devices have 16GB eMMC, especially GT-I9300 and Pandaboard

use same model of eMMC. Pandaboard is alternative device to

GT-I9300 because GT-I9300 is unable to re-partition storage.

Therefore every option is equivalent to GT-I9300.

Tiobench [24], uFLIP [5] and postmark are used for benchmark

workload. Tiobench creates threaded IO workload, depending on

option, it can simply generate random and sequential I/O

workload. uFLIP directly sends I/O operation into bio structure

rather than through file system, Thus it is useful to evaluate raw

device performance. Postmark is mail server benchmark. It

creates certain number of working files and transactions (create,

delete, append, and read). Real workloads are composed with

local synchronization on Google Drive and application install jobs.

In order to trace the files that are observed by Driver-level Block

IO Tracer, we use Android Block IO Semantic Analyzer [22].

This tool translates block I/O operation into corresponding file,

consequently, we can re-match I/O pattern to file system level.

3.2 Internal features & Effects
In this section, we investigate internal features and effects of LSB

backup on eMMC. GT-I9300 and uFLIP are used for this

experimentation. Based on previous work that estimates internal

architecture of NAND-based storage with uFLIP [23], we find

size of page and super page, and then evaluate the effects of LSB

backup. We perform write operations with various IO size and

aligned to logical address of eMMC device.

Figure 7 describes the bandwidth of write operation with IO size

from 512byte to 8MB. The graph is separated into three parts,

and the first part named ‘Under page size’ appears much lower

performance compared to second part and third part that are

‘Under super page size’ and ‘Interleaved’. This phenomenon

shows that page size is 8KB. The reason is as follows. Because

the minimum write unit of NAND-based storage is page size,

although write operation is performed with IO size under page

size, it takes same latency to write with page size. It means

‘under page size’ IO brings low bandwidth compared to ‘above

page size’ IO. On the other hand, at the second region, because its

IO size is larger than page size, the bandwidth should be improved

gradually depending on IO size due to increasing of interleaving

writes. But as shown in figure, the performance is not that

improved until IO size is larger than 128KB. As explained on

Section 2.1.1, we can assume that this is because of LSB backup.

In case of under super page size, every write operation is single

page operation at the aspect of each bank, therefore LSB backup

is always presented when MSB pages are writing. Therefore, we

also assume that the super page size is 128KB based on figure.

Above 128KB, the performance keeps increasing. This is due to

interleaving and decreasing of the number of LSB backup because

LSB and MSB pages are written at the same time. However,

Android, and its Linux kernel perform write operation with

maximum size of 512KB due to IO scheduler policy. Thus,

packed command is important function to ‘pack’ up diffuse write

operation into large size IO at ‘device driver’.

Figure 7. Write bandwidth depending on IO size (uFLIP,

aligned random IO).

3.3 Effects of Packed Command
On this experimentation, we use GT-I9300 as target device and

tiobench as test benchmark. In case of packed command on

sequential write, tiobench writes 2GB with 8MB block units and

on single thread (tio_seq). On the other hand, experimentation of

packed command on random write, tiobench writes 2GB write

with 4KB block units on 4 threads (tio_rand). And Google Drive

and application install workload are used for real workload.

3.3.1 Packed command on Sequential Write
Packed command can pack 62 IO requests per single packed

command according to standard, however, another limitation is

what each eMMC device has own limitation of write size. In case

of our target device, the limitation on single write size is 4MB. It

means the maximum number of IO request per single packed

request is 8 due to the maximum size of IO at IO scheduler,

512KB. At this point, default option only allows packing

sequential write with no limitation on the number of packed IO

request. Packed request supposes a unified IO request that covers

packed IO requests and packed IO requests means internal IO

requests on packed request.

Figure 8. Bandwidth & full packing ratio depending on # of

maximum packed IO request (enable packed command on

sequential write only, tio_seq).

0

5

10

15

20

25

30

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

B
a
n
d
w

id
th

(M
B
/s

)

Request Size (KB)

Under

page size

Under

super

page size

Interleaved

0

0.2

0.4

0.6

0.8

1

15

20

25

30

35

40

45
#
 o

f
fu

ll
 p

a
ck

e
d
 r

e
q
u
e
st

/#
 o

f
to

ta
l
p
a
ck

e
d
 r

e
q
u
e
st

B
a
n
d
w

id
th

(M
B
/s

)

of maximum packed IO request

Full packing ratio(Full packed/packed)

benchmark performance

Full packed only(device-level)

Device level performance

Figure 8 shows bandwidth and full packing ratio by limiting the

number of maximum packed IO request. Full packing ratio means

the portion of packed request that contains maximum IO request

compared to total packed request. Workload on this

experimentation is tio_seq, and benchmark performance is

reported bandwidth from tiobench. Device level performance is

measured from Device-level Block IO Tracer and full packed only

bandwidth stands for the performance of full packed request only.

It is also measured from Device-level Block IO Tracer. The gap

between benchmark performance and device level performance

can be treated as OS latency.

The bandwidth on benchmark performance is saturated since the

number of packed IO request is 4 on the Figure 8. However, full

packed only bandwidth, the pure performance of packing is still

increasing and full packing ratio is decreasing. This result implies

that packed command is not fully utilized because IO requests are

not fully packed.

Table 1. Reason of halt on packing sequential write, total

packed request: 267 (default option, tio_seq)

NOREQ RAND SYNC REL READ Fully packed

203 58 2 0 0 4

In order to investigate the reason of disutility, we trace ‘the halt of

packing’. Table 1 shows the reason of halt on packing sequential

write. The number of halt from empty request queue (NOREQ),

random write (RAND) is 203 and 58 respectively, and from the

sync write (SYNC) is 2. The effect of sync write and reliable

write (REL) and read operation (READ) are negligible. Focusing

on halt of random write, we use Android Block IO Semantic

Analyzer to find corresponding file of random write. Figure 9

shows that the identity of halting random write is all file system

meta data. This result can be flexible depending on workload

pattern, but implies that interference of file system’s meta data is

fundamental material of halting random write.

Figure 9. Disturbance of random write on packing sequential

write, all of random writes are file system’s meta data (default

option, tio_seq).

Figure 10 represents the bandwidth on different IO schedulers,

and the environment of experimentation is identical to the former.

With default option, as shown in figure, cfq is the lowest, but

deadline and noop scheduler appear similar performance. Figure

11 describes the number of packed IO request according to IO

scheduler. On the figure, the number of packed IO request is

much lower on cfq rather than deadline or noop. This result can

be a reason of lower performance on cfq at Figure 10. And the

reason of low number of packed IO request on cfq is proved on

Table 2. Table 2 describes similar material to Table 1 depending

on IO scheduler and shows that cfq has drastically large number

of halt on packing because of empty request queue compared to

others. It represents that cfq is much slower than deadline or noop

on the aspect of queuing thus it harms application of packed

command.

Figure 10. Bandwidth according to IO scheduler

(default option, tio_seq).

Figure 11. The number of packed IO request depending on IO

scheduler (default option, tio_seq).

Table 2. Reason for halt on packing sequential write

depending on IO scheduler (default option, tio_seq).

cfq deadline noop

NOREQ 203 7 19

RAND 58 48 77

SYNC 2 3 0

From the observations, packed command on sequential write

derives performance benefit but still needs optimization. For

example, interference of random write on packing sequential write

should be fixed by write operation reordering, and a compromise

between cfq and deadline or noop is needed because still cfq

scheduler is good scheduler to provide fair storage performance

on burst jobs.

3.3.2 Packed Command on Random Write
On the current state, packed command is not used on random

write. However packed command can solve the problem of

interrupt latency on small random write as explained at Section

2.2.2. To prove this effect, we have experimentation about small

random write with enabling packed command on random write.

As mentioned above, because of revealing overhead, Driver-level

Block IO Tracer is not used in this section.

0

10

20

30

40

#
 o

f
ra

n
d
o
m

 w
ri
te

Kinds of halting random write

32

34

36

38

cfq deadline noop

B
a
n
d
w

id
th

(M
B
/s

)

IO scheduler

0

50

100

150

200

1 2 3 4 5 6 7 8

#
 o

f
re

q
u
e
st

of Packed IO request

cfq deadline noop

Figure 12. Bandwidth on packing random write depending on

the number of maximum packed IO request (enable packed

command on random write, tio_rand).

Figure 12 is bandwidth graph on packing random write according

to the number of maximum packed IO request on small random

write workload using tiobench. In case of small random write, the

maximum number of packed IO request is 62 because the size

limitation is meaningless. However, as shown in figure, limiting

maximum number of packed IO request into 8 is much better than

packing IO request with no limitation. Increase of bandwidth,

until the number of maximum packed IO request is 8, can be

considered as the reduction of interrupt latency. But in case of

shrink in latter, its reason is unclear. Only reasons that can be

presumed are packing overhead because of de-queuing and re-

queuing IO requests, and eMMC device level overhead that can

be larger when packed IO request is burst random writes.

Because of unavailable tracer and black boxed internal details on

eMMC device, it remains as future work.

Figure 13. CDF graph on the number of IO request per

packed request at packing random write (Full packed (62),

tio_rand).

We measure actual number of packed IO request on small random

write at no limitation for the number of packed IO request.

Because this measurement doesn’t care about latency, Driver-

level Block IO Tracer is adopted. Figure 13 shows that actual

number of packed IO requests is significantly different from

maximum number of packed IO request, 62, and about 60% of

packed requests are packing IO request under 8. According to the

result of Figure 12 and Figure 13, we can at least conclude that

limiting the maximum number of packed IO request is effective to

achieve better performance on packing random write.

3.3.3 Usages of Packed command on Real Workload
In this section, we study about usages of packed command on real

workload. We use Google drive and application installation

workload. Google drive workload is made of synchronization to

local storage of smartphone using Google drive and the

synchronized data is music file and documentation, and

application installation workload performs verbatim application

installation that contains many large size applications. Table 3

directly shows that AppInstall, that has large size IO and utilizes

packed command more, performs better bandwidth compared to

GoogleDrive workload.

Table 3. Usage of packed command on real workload(default

option, GoogleDrive, AppInstall).

GoogleDrive AppInstall

Write size(GB) 0.7 3.1

of request 9912 10126

Bandwidth(MB/s) 24.146 36.179

Packed write/Total write 69.66% 94.47%

Figure 14. The number of packed IO request on real

workload (GoogleDrive & AppInstall).

Figure 14 shows the number of packed IO request on real

workload. In case of AppInstall, most of packed request contains

6 or 7 IO requests per single packed request. But GoogleDrive

workload is not packed much compared to AppInstall. This result

is reasonable based on workload pattern and shows that the more

IO requests are packed, the better performance become.

3.4 Effects of Flex Group
In this section, we investigate the effect of flex group of ext4 file

system that storing metadata with considering spatial locality.

Evaluation is performed using GT-I9100 and Pandaboard as target

devices, and used eMMC device in Pandaboard is same to GT-

I9300. We use postmark as benchmark workload, and perform

10000 transactions within 5000 files, and each file size is 1MB.

Experimentation is performed with increasing the number of

block group per flex group.

Figure 15. Bandwidth according to block group per flex group

on GT-I9100 and Panda board (Postmark).

2

2.5

3

3.5

4
B
a
n
d
w

id
th

(M
B
/s

)

of maximum packed IO request

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

C
D

F
 f

o
r

#
 o

f
p
a
ck

e
d

re
q
u
e
st

of IO request per packed request

0

100

200

300

400

1 2 3 4 5 6 7 8

#
 o

f
re

q
u
e
st

of packed IO request

GoogleDrive AppInstall

4.5

5

5.5

6

6.5

1 2 4 8

B
a
n
d
w

id
th

(M
B
/s

)

Block group / Flex group

GT I9100 Panda board

As Figure 15 shown, the performance of GT-I9100 is increased

between 1 and 2 block groups per flex group. It is because if

plural block groups are presented in single flex group, the meta

data are stored into first block group on flex group, thus spatial

locality of IO operation is improved. But in case of Pandaboard,

improvement is not appeared. This is different result compared to

previous research. As mentioned on Section 2.3, depending on

FTL, considering spatial locality can be useless effort. Thus, we

can assume that eMMC device in Pandaboard, and GT-I9300 uses

page mapping FTL.

4. CONCLUSION & FUTURE WORKS
In this paper, we study about the relationship between Android

and eMMC. Firstly, we investigate internal features of eMMC

and the effects of LSB backup, and conclude that large size write

operation can reduce IO latency, thus, IO pattern and application

of packed command are important. Secondly, we evaluate the

effects of packed command and find optimization points. We

found that packing on sequential write can improve performance

on large size IO, but still has optimization points, and packing on

random write also can improve performance due to reducing

interrupt latency. On the third, we re-evaluate the effect of flex

group, but it is useless on new, high-end eMMC.

For the future works, we ultimately aim to optimize overall IO

system of Android. Based on this paper, we’ll optimize IO

scheduler to pack more IO requests, and reduce interrupt latency

on small random write pattern.

5. ACKNOWLEDGMENTS
This research was supported by Next-Generation Information

Computing Development Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education,

Science and Technology (2012-0006417).

6. REFERENCES
[1] Samsung GT-I9300 open source kernel,

http://opensource.samsung.com

[2] eMMC 4.5 specification, http://www.jedec.org

[3] Serial ATA revision 2.6, http://www.sata-io.org

[4] Google Drive, http://drive.google.com/

[5] uFLIP, http://uflip.inria.fr/~uFLIP/

[6] Panda board, http://pandaboard.org/

[7] Debugfs, http://linux.die.net/man/8/debugfs/

[8] Ext4 filesystem,

http://kernel.org/doc/Documentation/filesystems/ext4.txt

[9] Feng Chen, Rubao Lee and Xiaodong Zhang, “Essential

Roles of Exploiting Parallelism of Flash Memory based Solid

State Drives in High-Speed Data Processing”, HPCA’11,

February 2011

[10] Jisoo Yang, Dave B. Minturn and Frank Hady, “When Poll is

Better than Interrupt”, FAST’12, February 2012

[11] Hyeong-Jun Kim and Jin-Soo Kim, “Tuning the Ext4

Filesystem Performance for Android-Based Smartphones”,

ICFCE 2 011, December 2011

[12] Sungjin Lee, Dongkun Shin, Young-Jin Kim, Jihong Kim,

“LAST: Locality-Aware Sector Translation for NAND Flash

Memory-Based Storage Systems”, SPEED2008, February

2008

[13] Jens Axboe and Alan D. Brunelle, “blktrace User Guide”,

February 2007

[14] Jens Axboe, “CFQ IO Scheduler”, linux. conf. au, January

2007

[15] Marcus Dunn and A. L. Narasimha Reddy, “A New I/O

Scheduler for Solid State Devices”, Department of Electrical

and Computer Engineering Texas A&M University, TR.

TAMU-ECE-2009-02-3, 2009.

[16] Aayush Gupta, Youngjae Kim and Bhuvan Urgaonkar,

“DFTL: A Flash Translation Layer Employing Demand-

based Selective Caching of Page-level Address Mappings”,

ASPLOS’09, March 2009

[17] Sang-won Lee, Dong-joo Park, Tae-sun Chung, Dong-ho Lee,

Sangwon Park and Ha-joo Song, “A Log Buffer-Based Flash

Translation Layer Using Fully-Associative Sector

Translation”, ACM Transactions on Embedded Computing

Systems, Vol. 6, No. 3, July 2007

[18] Hyojun Kim, Nitin Agrawal, Cristion Ungureanu,

“Revisiting Storage for Smartphones”, Usenix FAST’12,

February 2012

[19] Ki Yong Lee, Hyojun Kim, Kyoung-Gu Woo, Yon Dohn

Chung, Myoung Ho Kim, “Design and implementation of

MLC NAND flash-based DBMS for mobile devices”, The

Journal of Systems and Software, March 2009

[20] Jae-Sung Yu, Jin-Hyeok Choi, “Memory Systems Having a

Multilevel Cell Flash Memory and Programming Methods

Thereof”, U.S. Patent 11/796,978, Ju. 24, 2008

[21] Tasha Frankie, Gordon Hughes, Ken Kreutz-delgado, “SSD

Trim Commands Considerably Improve Overprovisioning”,

Flash Memory Summit 2011, August 2011

[22] Sungkyunkwan University Embedded Software Laboratory

TR-10, “Replicant: Semantic Analyzer for Understanding the

Storage I/O Behavior of Android Smartphone”

[23] Byeonggyu Park, Dongkun Shin, “Probing Internal

Architecture of NAND Flash Storage Device”, ITC-

CSCC2011, June 2011

[24] Mika Kuoppala, “Tiobench – Threaded I/O bench for Linux”,

2002

http://opensource.samsung.com/
http://www.jedec.org/
http://www.sata-io.org/
http://drive.google.com/
http://uflip.inria.fr/~uFLIP/
http://pandaboard.org/
http://linux.die.net/man/8/debugfs/
http://kernel.org/doc/Documentation/filesystems/ext4.txt

