
Task-aware Virtual Machine Scheduling for Multi-core Real-time Systems

Yong Park, Dongkun Shin

School of Information and Communication Engineering

Sungkyunkwan University

Suwon, Korea

pangol@skku.edu, dongkun@skku.edu

Abstract

Virtualization allows running multiple operating

systems providing the performance isolation. Therefore,

it can guarantee the required system utilization to real-

time OS when both real-time OS and non real-time OS

are serviced by virtual machine monitor (VMM).

Virtualization is also an effective technique to manage

multiple processors under recent multi-core systems.

However, current VMMs cannot support a real-time

scheduling in multi-core environment since the real-

time task information is unavailable to VMM .

This paper presents a task-aware virtual machine

scheduling scheme which assigns the required

utilization to each virtual CPU (VCPU) based on the

information on the real-time task allocated to the

VCPU. Experimental results showed that the proposed

scheduling scheme supports real-time systems on

multi-core processor.

Keywords: Virtualization, Real-time scheduling,

Multi-core.

1. Introduction

Virtualization provides an efficient and isolated

duplicate of the real machine called virtual machine

(VM) to guest operating systems (OS). Virtual machine

monitor (VMM) is the software layer that provides the

virtual machine environment [1]. One of advantages of

virtualization is the performance isolation which

guarantees the required system utilization to guest OS.

Therefore, virtualization is useful when both real-time

OS and non real-time OS are serviced by VMM.

Another advantage is that virtualization can manage

multiple processors efficiently under recent multi-core

systems. VMM can provide multiple virtual CPUs

(VCPUs) to guest OS and manage the utilizations of

VCPUs. However, current VMMs cannot support a

real-time scheduling in multi-core environment since

the real-time task information is unavailable to VMM.

For example, Xen VMM provides a simple earliest-

deadline-first (SEDF) real-time scheduler to support

real-time guest OS [2]. While the SEDF scheduler is

useful at single processor VMs, it cannot support

multiprocessor VMs. When a VM has more than one

VCPU, guest OS scheduler should allocate a task to

one VCPU without the information on the VCPU’s

utilization allocated by VMM. In addition, SEDF

scheduler distributes the total utilization of VM to each

VCPU equally. Therefore, the required utilization of a

task may not match the utilization of VCPU at which

the guest OS assigns the task.

In order to support real-time scheduling in multi-

core systems, we propose a task-aware VM scheduling

scheme where VMM allocates the utilization of VM

based on the task information sent from the guest OS

scheduler.

The rest of the paper is organized as follows:

Section 2 introduces the related work. In Section 3, we

describe the task-aware virtual machine scheduling

scheme. Section 4 presents the experimental results.

Finally, Section 5 concludes.

2. Related Works

Xen VMM provides the SEDF scheduler for real-

time systems, where each VM is specified by a tuple (s,

p, x). The slice s and the period p represent the physical

CPU utilization to be allocated to the VM. That is, the

VM will receive at least s units of time in each period

of length p. The boolean flag x indicates whether VM

is eligible to receive extra CPU time.

Janus [3] proposed a VMM for real-time tasks.

Under Janus VMM, real-time tasks are directly

scheduled by the VMM scheduler to guarantee the

timing constraint of each task. Therefore, the

scheduling policy of guest OS ignored.

Kim et al. [4] proposed a task-aware VM scheduler

that took into account the I/O bound nature of guest

level tasks and correlated incoming events with I/O-

bound tasks while making scheduling decisions.

3. Task-aware VM Scheduling

Figure 1: Task-aware VM scheduling architecture

Figure 1 shows the proposed task-aware VM

scheduling architecture. The guest OS scheduler sends

the task information such as the required utilization and

the assigned VCPU to the VCPU manager in VMM.

VCPU manager manages the utilization of each VCPU.

VMM scheduler is responsible for allocating physical

CPUs to VCPUs.

For the task-aware VM scheduling, we modified

Xen VMM as follows: When a task is scheduled to a

VCPU by the guest OS scheduler, the scheduler

determines the required task utilization based on the

deadline and execution time of the task. Then, a hyper

call from the guest OS to VMM delivers the task

information to VCPU manager.

The VCPU manager initializes the utilization of the

target VCPU and manages the changes of utilization

when VMM scheduler schedules the VCPU at a

physical CPU. The VMM scheduler assigns a physical

CPU only when the VCPU has a remaining utilization

budget. While the current VMM considers only the

total utilization of VM, the proposed VMM provides a

VCPU-level utilization management in order to support

real-time systems.

4. Experiment

To evaluate the task-aware VM scheduler, we

modified Xen 4.0.1 and the para-virtualized Linux

Kernel 2.6.18. Experiments are performed at a quad

core Intel Core2 processor.

Since the processor has four cores, the total

available CPU utilization is 400%. We loaded a virtual

machine on the modified Xen and assigned 120%

utilization to the VM. The VM has two VCPUs, each

of which executes one real-time task. We generated

five test cases, where each task requires a different

CPU utilization as show in Table 1. We observed the

deadline miss and the VCPU utilizations under the

original SEDF scheduler and the task-aware scheduler.

Table 1: The required CPU utilizations of tasks
Test Case 1 2 3 4 5

Task1 30 40 60 80 90

Task2 90 80 60 40 30

Figure 2: VCPU utilizations under the task-aware

scheduler

Under the SEDF scheduler, if the required CPU

utilization of a task is higher than 60%, its deadline is

missed since the scheduler gives 60% of CPU

utilization to each VCPU. However, the task-aware

scheduler always meets the deadline of tasks because it

can allocate the required utilization to VCPU exactly as

shown in Figure 2.

5. Conclusion

In this paper, we addressed the need for VPU-level

utilization scheduling under multi-core virtualized

systems and proposed a task-aware VM scheduling

scheme. By using the task information, the task-aware

VMM scheduler can allocate the required CPU

utilizations to VCPUs to support real-time tasks. With

the modified Xen virtual machine monitor, we showed

that the task-aware VM scheduler can guarantee the

real-time constraints in multi-core systems.

6. Acknowledgements
This research was supported by KORUS Tech

Program funded by the KIAT (KORUSTECH(KT)-

2008-DC-AP-FS0-0003).

References
[1] M. Rosenblum, T. Garfinkel, “Virtual Machine Monitors:

Current Technology and Future Trends,” IEEE Computer,

vol. 38, no. 5, pp. 39-47, May 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, A. Warfiled, “Xen and art of

virtualization,” SOSP, pp. 164-177, October 2003.

[3] R. Rivas, A. Arefin, K. Nahrstedt, “Janus: A Cross-Layer

Soft Real-Time Architecture for Virtualization,” HPDC, pp.

676-683, June 2010.

[4] H. Kim, H. Lim, J. Jeong, H. Jo, J. Lee, “Task-aware

virtual machine scheduling for I/O performance,” VEE, pp.

101-110, March 2009.

