
NAND Flash Storage Device Performance in Linux

File System

Yuanting Wei
School of ICE

Sungkyunkwan University

Suwon, Korea

Email: weiyuantin@skku.edu

Dongkun Shin

School of ICE

Sungkyunkwan University

Suwon, Korea

Email: dongkun@skku.edu

 Abstract- To enhance reliability of the Linux file system, a new

technique for disk storage management called a log-structured

file system for the Sprite operating system was presented. A log-

structured file system writes all modifications to disk sequentially

in a log-like structure, thereby speeding up both file writing and

crash recovery. Presently, NILFS, BTRFS and Ext4 are the most

striking Linux file systems; each of them has its own

characteristics, represents a different design and development of

Linux file system. This paper measures the performance of

NILFS2 comparing with EXT3 and EXT4 file systems by using

SSDs in Linux file system.

I. INTRODUCTION

 The Log-structured File System (LFS) is a little different

than other file systems with both advantages and

disadvantages [1]. Rather than write to a tree structure such as

a b-tree or an h-tree, either with or without a journal, a log-

structured file system writes all data and metadata sequentially

in a continuous stream that is called a log, no blocks are

overwritten, and log-like structures are appended to the disk

instead [2]. A log consists of a series of segments, where each

segment contains both data and inode blocks. The motivation

behind log-structured file system is that typical file systems

lay out data based on spatial locality for rotating media (hard

drives). But rotating media tends to have slow seek times

limiting write performance.

A log-structured file system, because of its design, makes it

very easy to create snapshots (in NILFS they are called

checkpoints) of both the data and metadata. NILFS can then

mount these checkpoints (or snapshots) alongside the primary

NILFS file system. From these checkpoints, you can recover

erased files (if the checkpoint has a date and time prior to

when the file was erased) or you can use it for backups or even

disaster recovery images. Another benefit of log-structured

file systems is that recovering from a crash is easier than the

more typical tree based file system (e.g. ext2, ext3, etc.). After

a log-structured file system crashes, when it is remounted it

can reconstruct its state from the last consistent point in the

log. It starts at the head of the circular log and backs up until

the file system is consistent. This point should be very close to

the head so little if any data or metadata will be lost. This

process is extremely fast regardless of the size of the file

system [3].

A log-structured file system recovers from a crash

extremely fast and the amount of time is independent of the

size of the file system. In contrast, other file systems have to

replay their journal and possibly even walk their data

structures to make sure the file system is consistent. As we

know, it is a so huge job to take how much time when it has

run fsck (file system check) on a very large file system.

Because disk capacity is limited, a Garbage Collection (GC) is

needed to collect deleted file blocks and logically overwritten

blocks. Garbage collection is a major overhead of LFS.

However, the garbage collector can efficiently restore

fragmented file blocks. For efficient garbage collection, whole

disk is divided into fixed sizes (ex. 4 mega bytes). This

management unit is called a full segment. Writing out is done

sequentially in full segments [4].

II. NILFS IMPLEMENTATION

The Nippon Telephone and Telegraph (NTT) CyberSpace

Laboratories has been developing NILFS for Linux. It is

released under the GPL 2.0 license and is included in the

2.6.30 kernel. It spent a great deal of time in the –mm kernels

and underwent much testing since its initial announcement.

NILFS is a log-structured file system supporting continuous

snapshotting. In addition to versioning capability of the entire

file system, users can even restore files mistakenly overwritten

or destroyed just a few seconds ago. Since NILFS2 can keep

consistency like conventional LFS, it achieves quick recovery

after system crashes. NILFS2 creates a number of checkpoints

every few seconds or per synchronous write basis (unless there

is no change). Users can select significant versions among

continuously created checkpoints, and can change them into

snapshots which will be preserved until they are changed back

to checkpoints.

In NILFS, our design goals are to obtain high reliability and

availability of the file system. We have not yet begun

performance tuning. However, to be able to use the NILFS in

the future, the file size and inode numbers are stored in 64-bit-

wide fields, and file blocks are managed by a B-tree [5][6].

The root of the file block B-tree is placed on the inode

mailto:weiyuantin@skku.edu
mailto:dongkun@skku.edu

structure. The inode is managed by the inode block B-tree, the

root of the inode block B-tree is stored in the superblock

structure of the file system.

The disk layout of NILFS is shown in Figure 1, divided into

several parts [4].

Fig. 1. Disk Layout of the NILFS

A. Continuously Snapshot

NILFS is a new implementation of a log-structured file

system (LFS) supporting continuous snapshotting. The current

major version of NILFS is version 2, which is referred to as

NILFS2. NILFS2 realized online garbage collection that

reclaims disk space with keeping multiple snapshots.

Continuous snapshot is the most attractive feature of

NILFS2. It allows NILFS2 users to restore files mistakenly

overwritten or destroyed just a few seconds ago. Since NILFS

can keep consistency like conventional LFS, it achieves quick

recovery after system crashes.

Some other file system also support snapshot, but it often

requires human intervention, users must use the FS command

to create the snapshot comes. However, misuse is often

unpredictable, it is impossible to create a snapshot just before

the mistake. Therefore, other file systems need very

professional staff and tools to recovery files. NILFS2 users are

more fortunate, because the system can automatically backup

all file operations. Therefore, NILFS2 can not only recovery

the deleted files timely, but also can restore the file contents

before any changes. Furthermore, in NILFS2, users no longer

need a special version of the file management tools to manage

different versions. And all of this is automatic.

For system administrators, NILFS2 uninterrupted snapshot

feature allows Online backup and other daily operations more

convenient, do not need to learn complex backup and recovery

commands, and can finally from the daily affairs of these

complex freed.

However, when the users use all checkpoints as the

snapshot, there is no disk space for garbage collection. The

user can select any checkpoints as a snapshot, and the garbage

collector collects other checkpoint blocks. The user does not

need any commands “before” taking a snapshot [4].

B. Efficient Crash Recovery

 For a long time, one of the most concerned issues for file

system designers is to minimize system checks of the file

system after a crash and recovery time. No matter what kind

of file system, when hardware crashes occur, the file system is

very likely in an inconsistent state. So after reboot, they need

to run fsck.

 Ext3 and many other Linux file systems use logging

technology to reduce fsck time. NILFS2 is a log-structured file

system, this is why the fsck time is shorter, and no matter how

big the disk is, how many the files are, the fsck time of

NILFS2 is certain.

 Many studies have shown that the overall efficiency of the

file system mainly by the efficiency of write operation.

Because the efficiency of the read operation depends on cache

design. In Linux, cache unified management by the VFS,

thereby increasing the efficiency of write operations can

improve the efficiency of the overall file system.

Fig. 2. Architecture of the NILFS

C. NILFS Architecture

Figure 2 shows the architecture of NILFS. Rounded box parts

are implemented as NILFS.

Mount/recovery operations call a buffer management module

(line (1) in Figure 2) of Linux Kernel 2.6 to read the

superblock and segment summary that wrote last mounted

time. File page operations use the NILFS’s block management

module (2) to lookup/insert/delete appropriate disk blocks via

the NILFS B-tree operations. Normal file read operations

execute by the file page operations module using buffer

management module directly (3). When amount of dirty pages

are exceeded an internal limits, a segment construction module

is triggered (4) to start a segment construction. The segment

construction module calls the buffer management module (5)

to arrange the dirty pages, and call block I/O operations (6) for

writing out the constructed segments.

Linux Kernel parts (square box) are not modified to

implement the NILFS [4].

D. Transaction Processing and Segment Construction

Many operations on files are formed by multiple sub-

operations, each sub-operation only to modify a specific meta-

data, only if all the sub-operations are completed, the file

operation to be successful; any sub-operation failed, it should

be rolled back to the file system previous state. This sub-

operation is a transaction.

After the transaction is committed, the file system will be in a

consistent state. As mentioned earlier, this is a checkpoint.

Create a checkpoint in NILFS2 terminology is called the

segment construction. NILFS2 adopted a dedicated kernel

thread to handle the segment construction work. The thread

woke up at a definite time, if needed, will create a segment, to

generate a checkpoint. This is the implementation of

continuous snapshot in NILFS2. In addition, each time after

committing the transaction, NILFS2 will wake up the

background thread to create a checkpoint.

E. Garbage Collection

NILFS implements garbage collection in a unique way.

Garbage collection (GC) in NILFS is executed by the user-

mode process which is called “cleanerd”. It uses a user-space

daemon to perform the GC. This daemon is activated when the

file system is mounted via the “mount” command. This also

means that GC can be activated at any time (if the file system

is mounted).

NILFS will delete checkpoints after a certain period of time

unless the checkpoint is converted to a snapshot. The amount

of time when the checkpoint is held before being deleted is

controlled by parameters in the /etc/nilfs_cleanerd.conf file.

You can adjust the garbage collection parameters in the file

and restart the GC daemon so that the new parameter values

are used (or unmounting and remounting the file system).

F. Differences between NILFS2 and Journal File System

Ext3 is a journaling file system while NILFS2 is a log-

structured file system. Journal and log seems to be no

difference in the dictionary, both can be translated into the log.

In modern English, seems to be universal. On the contrary,

log-structured file system and journaling file system are two

different technologies. And the differences between two file

systems are very simple:

1) Journal file system only stores metadata in the log, while

log-structured file system uses logs recording all changes,

including metadata and data.

2) Unlike random writes in the journal file system; there are

only additional writes in the log-structured file system.

III. EXPERIMENT RESULTS

 For the performance evaluation, we used Iozone [7] which is

a well-known file system benchmark tool to measure the

performance of SSDs in Linux 2.6.35. Iozone is useful for

determining a broad file system analysis of a vendor’s

computer platform. We evaluated the performance using

Iozone benchmark tool with several I/O sizes which are from

4Kbyte to 2Gbyte. Iozone executes sequential write,

sequential rewrite, sequential read, random read and random

write, respectively. And we adopted four kinds of SSDs which

are Micron realSSD C300, Samsung 470 series, OCZ

VERTEX2 and Intel X25-M, respectively, to evaluate the

performance of NILFS2 comparing with EXT3 and EXT4.

Fig. 3. Sequential Write (Micron realSSD C300)

Fig. 4. Sequential Rewrite (Micron realSSD C300)

Fig. 5. Sequential Read (Micron realSSD C300)

Fig. 6. Random Read (Micron realSSD C300)

Fig. 7. Random Write (Micron realSSD C300)

In figure 3 and 4, NILFS2 shows poorer performance than

both EXT3 and EXT4 in sequential write and sequential

rewrite operations.

Figure 5 and figure 6 show similar results in sequential read

and random read operations among all the file systems.

In figure 7, NILFS shows high performance than EXT3 and

EXT4 when I/O size is small. This is because being a log-

structured file system, there is no read-and-modify operation

in NILFS. However, with the I/O size increases, EXT3 and

EXT4 shows even more advantages for as a journal file

system.

There are similar distributions in other three kinds of SSDs,

thereby no longer instructions here.

IV. CONCLUSION

 This paper described overview of the log-structured file

system and a promising LFS supporting continuous

snapshotting called NILFS. Snapshot and crash recovery

features make NILFS a potential system administrators dream

file system.

ACKNOWLEDGMENT

 This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education, Science and

Technology (2010-0010387).

REFERENCES

[1] Rosenblum, Mendel and Ousterhout, John K, “The LFS Storage
Manager,” Proceedings of the 1990 Summer Usenix, pp.315-324, June

1990.

[2] Rosenblum, Mendel and Ousterhout, John K, “The Design and
Implementation of a Log-Structured Filesystem”, ACM Transactions on

Computer Systems, 10(1). pp.26-52, February 1992.

[3] Jeffrey B. Layton, “NILFS: A File System to Make SSDs Scream”, Linux
Magazine, June 2009.

[4] Nilfs team, “the Nilfs version 1: overview”, NTT Cyber Space

Laboratories NTT Corporation. http://www.osrg.net/nilfs/nilfs@osrg.net
[5] R. Bayer and E. McCreight. Organization and maintenance of large

ordered indexes. Acta Informatica, 1(3):173-189,1972

[6] Douglas Comer. The ubiquitous B-tree. ACM Computing Surveys,
11(2):121-138,1979

[7] Iozone. http://www.iozone.org/.

http://www.osrg.net/nilfs/nilfs@osrg.net
http://www.iozone.org/

