
Probing Internal Architecture of NAND Flash Storage Device

Byeonggyu Park, Dongkun Shin

School of Information and Communication Engineering

Sungkyunkwan University

pbk85011@skku.edu, dongkun@skku.edu

Abstract
Recently card-type NAND flash memory devices such as

MMC and SD card are widely used at mobile systems.

Since these devices include a flash translation layer (FTL)

to handle several special features of NAND flash memory,

they are considered as block devices and host side

software can be simplified. However, the I/O performance

can be significantly different depending on storage access

patterns. To provide a high performance, when the host

side file systems generate its I/O requests, the internal

architecture of flash device should be considered.

Unfortunately, however, the internal architecture of card-

type NAND flash device is not open to the public. In this

paper, we propose a methodology of identifying the

internal architecture of NAND flash device by analyzing

various performance benchmark results. Two case studies

on MMC and SD card devices are presented.

Keywords: NAND flash memory, FTL, MMC, SD card

1. Introduction

Recently card-type NAND flash memory devices such

as MMC [1] and SD card [2] are widely used at mobile

systems. These devices include a processor and an SRAM

as well as pure NAND flash chips. A flash translation layer

(FTL) software, which translates a logical address into a

physical address, is executed at the processor to handle

several special features of NAND flash memory such as

erase-before-write characteristic. Since the FTL hides the

complicacy of NAND flash memory by providing a block

device interface to host system, the host side file system

can be simplified.

The I/O performance of card-type NAND flash devices

is determined by the internal hardware and software

architectures. The hardware architecture includes the sizes

of page and block, the number of concurrently accessible

flash chips, and the SRAM buffer size. The software

architecture is the address mapping algorithm of FTL.

Different storage device access patterns of host system will

show different I/O performances depending on whether the

access pattern corresponds with the hardware and software

architectures of the target NAND flash device. For

example, if the size of update request is smaller than a

physical flash page size, FTL should perform the read-

modify-write operation thus a low I/O performance is

provided.

Therefore, the host file system developer should

consider the internal architecture of the target device to

optimize I/O performance. Unfortunately, however, the

internal architecture of card-type NAND flash device is not

open to the public because it is a critical issue to device

vendors. Therefore, in order to optimize the performance

of card-type NAND flash devices, we need a methodology

of identifying the internal architecture of flash device

considering it as a black box.

In this paper, we propose a probing technique for card-

type NAND flash devices to identify the internal

architecture of the black box devices. By analyzing

various performance benchmark results, our technique

extracts several hardware and software architectures of the

target flash storage devices.

2. Related works

FTLs can be divided into three categories depending on

the granularity of address mapping: page-level mapping,

block-level mapping and hybrid mapping. The hybrid

mapping FTLs reserve several flash memory blocks for a

log buffer. While the log blocks in the log buffer use the

page-level mapping scheme, normal data blocks are

handled using block-level mapping. A hybrid mapping

FTL therefore requires a smaller mapping table than does a

full page-level mapping technique. When a write request is

sent to the FTL, the data is first written into a log block and

the corresponding old data in the data block is invalidated.
When all log blocks are full and no empty space

remains, one log block is selected as a victim, and all valid
pages in that log block are moved into data blocks to make
free space for subsequent write requests. This step is called
a log block merge. There are two kinds of hybrid mapping
FTLs, BAST and FAST, depending on the association
policy between log block and data block [3].

3. Probing NAND flash storage

We use a performance benchmark tools called uFLIP

[4] to generate various types of write requests. uFLIP is
designed considering the special features of NAND flash
memory. We analyze the performance results of different
write patterns to identify internal architecture of card-type
flash devices as follows.

The page size of flash memory can be identified from
the alignment benchmark of uFLIP. When the write request
is not aligned to the page size, FTL should access one more
page than the aligned requests therefore it provides low
performance. Therefore, we can identify the page size by
analyzing the response times of write requests with
different request size and alignment.

The superpage size can be identified from the
granularity benchmark of uFLIP. The superpage means a
set of pages which can be written simultaneously into
parallel flash chips. The granularity benchmark measures
the response times for different sizes of write requests. As
the size increases, the response time of write requests also
increases since it can exploit the parallel multiple flash
chips. However, if the request size is larger than the
superpage size, there is no change in performance even
though the size increases.

The block size also can be identified from the
granularity benchmark. Generally, for small-sized requests,
a sequential pattern shows a better performance than a
random pattern does. However, if the write request size is
larger than the block size, both performances of sequential
and random write requests are equal.

The address mapping scheme of FTL can be identified
from the locality and partition benchmarks of uFLIP.
While the locality benchmark limits the target address
range, the partition benchmark divides the total address
space into several partitions and accesses the different
partitions alternatively. If both performances of sequential
and random write requests are identical, the device uses a
page mapping. Otherwise, we can consider the hybrid
mapping. When FTL uses the FAST hybrid mapping, there
will be no change in performance when the target address
range is increased. However, under BAST scheme, we can
observe the performance degradation at a large target
address space since the large address space invokes
frequent log block merge operations.

From the results of locality and partition benchmarks,
we can identify the log buffer size as well. Under BAST
mapping, if the target address space is larger than the log
buffer size or the number of partitions is larger than the
number of log blocks, there is performance degradation.

4. Cases Studies

We identified the internal architecture of real card-type
flash memory devices: 4 GB eMMC (KLM4G2DEJE) and
2GB SD card (MBSB2GMAGMAA). Figure 1 shows the

performance results of granularity, locality and partition
benchmarks. Each device shows unique results depending
on its internal architecture. For example, since the response
time of the target eMMC device is increased when the
target address space is larger than 64 MB, we can infer that
it uses 64 MB log buffer. The partition benchmark shows
an identical result since 32 partitions correspond to 64 MB
when the block size is 2 MB. From the performance results,
we can summarize the internal structures of the target
eMMC and SDcard as shown in Table 1.

 (a) Granularity (eMMC) (b) Granularity (SD card)

 (c) Locality (d) Partitioning

Figure 1. uFLIP benchmark results for the target devices.

Table 1. Internal architectures of the target devices.

page

size

super page

size

block

size

log buffer

size

number of

log blocks

mapping

scheme

4 GB eMMC 16 KB 64 KB 2 MB 64 MB 32 BAST

2 GB SD card 8 KB 256 KB 1 MB 2 MB 2 BAST

5. Conclusion

Identifying the internal architecture of card-type NAND
flash storage is important to design a high performance file
system. We proposed a probing methodology which can
identify the internal structure of a black box flash storage
device. Our future work is to design a high performance
file system or I/O scheduler exploiting the extracted
parameters of NAD flash storage devices.

6. Acknowledgement

This research was supported by Future-based

Technology Development Program through the National

Research Foundation of Korea(NRF) funded by the

Ministry of Education, Science and Technology (2010-

0020724).

7. References
[1] Multimedia Card Association, http://www.mmca.org/

[2] SD Association, http://www.sdcard.org/

[3] S.-W. Lee et al. “A log buffer-based flash translation

layer using fully associative sector translation,” ACM

TECS, vol. 6, no. 3, 2007.

[4] uFLIP, http://uflip.inria.fr/~uFLIP/

