ISCE 2014, June 22 - 25, 2014, Jeju, Korea

Per-Block-Group Journaling for
Improving Fsync Response Time

Yunji Kang and Dongkun Shin

College of Information and Communication Engineering
Sungkyunkwan University
Suwon, Korea
0s041@skku.edu, dongkun@skku.edu

Abstract—The journaling is indispensable to the file systems
of battery-backed consumer devices. It can cope with sudden
power failures guaranteeing the file system consistency. However,
the current compound transaction scheme can incur significantly
long latencies for fsync system calls. This paper proposes a new
more fine-grained journaling scheme called per-block-group
journaling. Experiments show that the proposed scheme can
reduce the average response time of fsync by up to 75%.

Keywords—journaling; fsync; extd; file system; storage

L

Recent consumer devices such as smartphones, tablet PCs,
and smart TVs have a large amount of NAND flash memory
storage to store various multimedia data and applications. The
storage device is accessed via a versatile file system such as
ext4 which is a journaling file system supporting fast file
system recovery [1]. The ext4 journal log is stored on a journal
area reserved at storage. Ext4 groups many pending file system
updates into a single compound transaction that is periodically
committed by journaling thread to the journal area, instead of
using each file system update as a separate transaction. Since
the same structure is frequently updated in a short period of
time, the compound transactions may have better performance
than more fine-grained transactions [2]. The compound
transaction is maintained in the transaction buffer of main
memory until it is committed to the journal area.

By forcing journal updates before updating the original file
system, the journaling can redo or undo any incomplete
committed operations. The ext4 journaling supports three
journaling modes: writeback mode, ordered mode, and data
journaling mode. The ordered mode, which is the default
option, journals only metadata. However, the ordered mode has
an ordering constraint to guarantee file system consistency,
where data writes to their original locations should be
completed before the journal writes of the metadata. Therefore,
the journal write latency will be long if the size of associated
data is large.

The long latency of journal writes may not be a problem
when the journal writes are invoked by a background
journaling thread. However, it can be critical for user’s fsync
system call. The fsync system call for a file should commit all
the file system updates relating to the file to a persistent storage
device. Under the ordered mode journaling of ext4, the fsync
system call wakes the journaling thread up on demand. Then,
the journaling thread writes the compound transaction at the

INTRODUCTION

186

journal area. The compound transaction may include the
metadata updates of other irrelevant files as well as the target
file of the fsync (fsymced file). The fsync operations are
frequently called when databases or xml configuration files are
updated and the relevant data of fsync are generally small.
However, due to the ordering constraint in journaling, the fsync
operation should wait the flush completion of all the dirty
pages related to the compound transaction. For example,
consider the case when a background application of
smartphone is coping a large multimedia file from the USB-
connected host PC to its local storage. Then, the journal
transaction buffer will have the metadata updates by the copy
operation and there are many not-yet-flushed data in the page
cache. At the moment, if another application updates a small
file unrelated with the copy operation, and sends an fsync
request, the response time will be long significantly.

The long latency problem of fsync results from the
compound transaction that includes the metadata updates of
irrelevant file operations. To solve the problem, we propose a
per-block-group (PBG) journaling that extracts a block-group-
level transaction from the compound transaction, and commits
only the target block group’s transaction in order to reduce the
fsync latency.

1L

Ext4 file system splits the storage space into a number of
block groups. Each block group has its own block bitmap,
inode bitmap, inode table, and data blocks. Only the group
descriptor table (GDT) is shared among multiple block groups.
The ext4 block allocator tries to allocate an inode in the same
block group as the parent directory, and allocate data blocks in
the same block group as the inode. If that group has no free
inode or block, other block groups can be used. Therefore,
most of the file operations modify the metadata of only one
block group. If an inode is not located in the same block as its
parent directory or its data blocks, there are metadata updates
at multiple block groups.

PER-BLOCK-GROUP JOURNALING

Fig. 1 demonstrates the journaling operations of ext4. The
transaction buffer in the main memory has the several metadata
updates that are not committed. In this example, four inodes
are updated and the corresponding six metadata blocks are
included at the transaction list. Two block groups, BG 2 and
BG 3, have their updated entries in the GDT block. While the
data sizes of inode 1 and inode 2 are large, the data sizes of
inode 3 and inode 4 are small. In the original ext4 journaling,
when an application calls the fsync, all the metadata in the

transaction buffer should be written at the journal area. In the
ordered mode journaling, the metadata writes can be started
after all the relevant dirty pages (D1, D2, D3, and D4) are
written at the data area. Therefore, the fsync latency will be
long.

fsync (inode 4)

Dirty Inode
List

; s Z
}—H Inode | > Inode2 & Inode3
.] L L] s

GDT
Original DI
Journaling [
BG | BG 4
Journal area
GDT
PBG
Journaling
BG | BG2 BG3 BG 4
Journal area Data Area
Fig. 1. Comparison between the original and PBG journalings.
The proposed PBG journaling commits only the

transactions relevant to the fsynced file. It extracts only the
relevant metadata updates from the compound transaction in
the transaction buffer. Since each block group has its own
metadata not shared by other block groups (except GDT), the
target metadata can be easily separated from the compound
transaction. For example, when the journal transaction buffer
has the metadata updates of inode 1, inode 2, and inode 3, if
user modifies the file of inode 4, the transaction buffer has four
block groups’ metadata as shown in Fig. 1 as long as the
journaling thread is not waken up. The data blocks for D4 are
allocated at BG 3, and thus the block bitmap metadata of BG 3
(M3) is also updated. If an fsync is called for the file, the
journaling thread is invoked on demand, and the PBG
journaling is started instead of the normal journaling. The
journaling thread first identifies the block groups relevant to
the fsynced file. Since both M3 and M4 should be written to
the journal area in order to commit the file system changes by
the fsync, the relevant block groups are BG 3 and BG 4. Before
the journal commit, the PBG journaling flushes all the dirty
pages of inode 3 and inode 4. Compared to the original
journaling, the PBG journaling can reduce the number of
flushed dirty pages significantly as well as reduce the writes on
the journal area. After the PBG journaling, only the committed
metadata updates are removed from the transaction buffer, and
the remaining transactions will be handled by the periodic
journaling thread.

One hurdle in implementing the PBG journaling is the
GDT that is shared by all block groups. In the example of Fig.
1, the compound transaction has an uncommitted GDT block,
which has the modified entries for BG 2 and BG 3. Since the
PBG journaling should commit only the relevant metadata, it
should generate a partially updated GDT block by eliminating
the irrelevant entries, and write the GDT block in the journal
area as shown in Fig. 1. To generate the partially updated GDT
block, the original GDT block committed by the previous
journaling should be maintained in the main memory. By
updating only the target entry from the original GDT block, the

187

ISCE 2014, June 22 - 25, 2014, Jeju, Korea

partially updated GDT block can be generated. Since the total
number of GDT blocks is small, particularly in embedded
systems, the memory overhead is negligible. There is no
change by the PBG journaling in the recovery scheme.

III. EXPERIMENTS

We evaluated the proposed technique with an Android-
based smartphone device equipped with 32-GB eMMC storage.
While an application writes a 2-GB file at the directory of
/data/media, our test program writes 1-KB data to a file in
another directory and generates an fsync after the modification
at every 0.5 second. Fig. 2 compares the average response
times of fsync calls under different journaling schemes. Two
different sizes of flex groups are examined. The PBG
journaling reduced the average response time of fsync by 75%
and 52% when the flex group sizes are 1 and 16, respectively.
Fig. 3 shows the response time variations of fsync calls. There
are large response time fluctuations in the original journaling
due to the undetermined amount of flushed dirty pages. The
PBG journaling shows generally short latencies except only a
few cases. If the fsync is called just when the normal periodic
journaling has been already started, the fsync should follow the
normal journaling policy. Optimizing the case is our future
work.

0.06
® Original Jounaling

0.05 . :
@ Per-Block-Group Journaling

0.04

0.03 -

0.02

0.01

Average response time (s)

0.00
1 16
Size of flex group (group)

Fig. 2. Average response times of fsync calls.

e dﬁ ginal Jounaling
0.4

Per-Block-Group Joumaling

o =
ta w
HEETTTT T

Response time (s)
ol
et

=
o

a1 48

16

(38 76

fsync calls

Fig. 3. Response time variations of fsync calls.

ACKNOWLEDGEMENTS

This work was supported by the Center for Integrated
Smart Sensors funded by the Ministry of Science, ICT &
Future Planning as Global Frontier Project (CISS-2011-
0031863).

REFERENCES

Tweedie, S. Ext3, journaling filesystem. In Proceedings of the Ottowa
Linux Symposium, 2000.
V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.

Analysis and Evolution of Journaling File Systems. In Proc. of the 2005
USENIX, pages 105-120, 2005.

