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Abstract— We describe dynamic voltage scaling (DVS) algo-
rithms for real-time systems with both periodic and aperiodic
tasks. Although many DVS algorithms have been developed for
real-time systems with periodic tasks, none of them can be used
for the system with both periodic and aperiodic tasks because of
arbitrary temporal behaviors of aperiodic tasks. We propose an
off-line DVS algorithm and on-line DVS algorithms that are based
on existing DVS algorithms. The proposed algorithms utilize the
execution behaviors of scheduling server for aperiodic tasks. Ex-
perimental results show that the proposed algorithms reduce the
energy consumption by 12% and 32% under the RM scheduling
policy and the EDF scheduling policy, respectively.

I. INTRODUCTION

Dynamic voltage scaling (DVS) [3] is one of the most ef-
fective approaches in reducing the power consumption of real-
time systems. When the required performance of the target
system is lower than the maximum performance, supply volt-
age can be dynamically reduced to the lowest possible extent
that ensures a proper operation of the system. Recently, many
voltage scheduling algorithms have been proposed for hard
real-time systems [9, 2, 8, 5]. All of these algorithms assume
that the system consists of periodic hard real-time tasks only
and the task release times are known a priori. For periodic
tasks, these algorithms assign the proper speed to each task
dynamically while guaranteeing all their deadlines.

However, many practical real-time applications require ape-
riodic tasks as well as periodic tasks. While periodic tasks
are time-driven with hard deadlines, aperiodic tasks are usually
event-driven (i.e., activated at arbitrary times) with soft dead-
lines. An aperiodic task set is specified by the mean arrival rate
� and the mean service rate �. In this paper, we call a system
with periodic and aperiodic tasks as a mixed task system.

In mixed task systems, there are two design objectives. The
first objective is to guarantee the schedulability of all periodic
tasks under worst-case execution scenarios. That is, aperiodic
tasks should not prevent periodic tasks from completing before
their deadlines. The second objective is that aperiodic tasks
should have “good” average response times. To satisfy these
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objectives, many scheduling algorithms based on the “server”
concept had been proposed [12, 10, 11, 1].

In this paper, we introduce the third design objective for the
energy consumption in the mixed task system. That is, the
third objective is to minimize the total energy consumption
due to both periodic tasks and aperiodic tasks. Although the
existing DVS algorithms can be effective for optimizing the
energy consumption of periodic tasks, they cannot be used for
mixed task systems. The arbitrary behaviors of aperiodic tasks
prevent the DVS algorithms from identifying the slack times.
Therefore, it is necessary to modify the existing DVS algo-
rithms to be applicable to mixed task systems with aperiodic
tasks.

In this paper, we propose DVS algorithms that guarantee the
first objective (i.e., timing constraints of periodic tasks) while
making the best effort of satisfying the third objective (i.e., low
energy) with a reasonable performance bound on the second
objective (i.e., good average response time). First, we describe
an off-line static voltage scaling algorithm which considers the
expected workload of aperiodic tasks. Second, we present on-
line dynamic voltage scaling algorithms by modifying existing
on-line voltage scaling algorithms for a periodic task set.

The modified DVS algorithms utilize the execution behav-
iors of each scheduling server for aperiodic tasks to apply the
key ideas of the existing DVS algorithms such as [9, 2]. The
task schedules generated by the proposed DVS algorithms can
reduce the energy consumption by 12%�32% over the task
schedules which execute all tasks at full speed and power down
at idle intervals (i.e., the power-down mode). To the best of
our knowledge, our work is the first attempt to develop on-line
DVS algorithms for the mixed task set.

The rest of this paper is organized as follows. In Section II,
we summarize the related works on aperiodic task scheduling
and the recent efforts to integrate dynamic voltage schedul-
ing into aperiodic task scheduling. The proposed static DVS
algorithm is described in Section III while the dynamic DVS
algorithms are presented in Section IV. In Section V, the ex-
perimental results are discussed. Section VI concludes with a
summary and future works.

II. RELATED WORKS

In this section, we review the main approaches for schedul-
ing a mixture of aperiodic tasks and periodic hard real-time



tasks.
The easiest way to prevent aperiodic tasks from interfering

with periodic hard real-time tasks is to schedule them as back-
ground tasks. In this approach, aperiodic tasks are scheduled
and executed only at times when there is no periodic task ready
for execution. Though this method guarantees the schedulabil-
ity of periodic task, the execution of aperiodic tasks may be
delayed and their response times are prolonged unnecessarily.

Another approach is to use a dedicated server which handles
aperiodic tasks. The server is characterized by an ordered pair
���� ���, where �� is the period of the server and �� is the
maximum budget. The simplest server is the Polling Server
(PS). PS is ready for execution periodically at integer multi-
plies of �� and is scheduled together with periodic tasks in
the system according to the given priority-driven algorithm.
Once PS is activated, it executes any pending aperiodic re-
quests within the limit of its budget ��. If no aperiodic re-
quests are pending, PS immediately suspends its execution un-
til the start of its next period. Since PS is exactly same to a
periodic task which has the period �� and the worst case exe-
cution time (WCET) ��, we can test the schedulability of the
system using the traditional RM or EDF schedulability test.

The Deferrable Server (DS) [12] was introduced to solve
the poor performance of background scheduling and PS. Un-
like PS, DS can service an aperiodic request at any time as
long as the budget is not exhausted. Though this feature of
DS provides better performance than that of PS, a lower prior-
ity task could miss its deadline even if the task set seemed to
be schedulable by the schedulability test because DS can de-
fer its execution. To solve this problem, the Sporadic Server
(SS) [10] was proposed. SS ensures that each SS with period
�� and budget �� never demands more processor time than the
periodic task (��� ��) in any time interval. Consequently, we
can treat a SS exactly likely the periodic task (��� ��) when we
check for the schedulability of the system.

Though there are the modified DS and SS algorithms for
EDF scheduling, DS and SS are mainly used for RM schedul-
ing due to the complexity of the modified algorithms. For EDF
scheduling, the Total Bandwidth Server (TBS) [11] is more
suitable. TBS is characterized by �� which is the utilization
of TBS. When an aperiodic task arrives, TBS assigns a dead-
line to the task such that the utilization of the aperiodic task is
equal to ��. Since TBS assigns the deadline using the WCET
of the aperiodic task, there can be overrun when the real execu-
tion time is longer than the WCET. (This situation could occur
for aperiodic tasks.) Recently, the Constant Bandwidth Server
(CBS) [1] was proposed to solve the overrun problem of TBS.

A different approach for scheduling aperiodic tasks is the
Slack Stealing technique [7]. It steals all available slack from
periodic tasks and gives it to aperiodic tasks. Though it pro-
vides better performance than the server approaches, i.e., min-
imizes response times of aperiodic requests, its complexity is
very high. In addition, since the main idea of the slack stealing
is to give as much as possible time to aperiodic tasks executing
periodic tasks at full speed, the slack stealing is improper to
be integrated with DVS algorithms. So, we concentrate on the
server techniques in this paper.

Despite of many researches on aperiodic task scheduling,
there have been few studies to adapt the DVS technique to

aperiodic task scheduling. A recent work by W. Yuan and K.
Nahrstedt [13] proposed a DVS algorithm for soft real-time
multimedia and best-effort applications. They handled only
the constant bandwidth server. The target of their algorithm is
aperiodic task systems, not mixed task systems.

Y. Doh et al. [4] also investigated the problem of allocat-
ing both energy and utilization for mixed task sets. They used
the total bandwidth server and considered the static scheduling
problem only. Given the energy budget, their algorithm finds
voltage settings for both periodic and aperiodic tasks such that
all periodic tasks are completed before their deadlines and all
aperiodic tasks can attain the minimal response times. While
their algorithm is an off-line static speed assignment algorithm
under the EDF scheduling policy, our work in this paper con-
siders both static and dynamic algorithms under both RM and
EDF scheduling policies. Another difference is that we con-
centrate on minimizing the energy consumption under the con-
straint on the average response time.

III. STATIC SCHEDULING FOR MIXED TASK SETS

Pillai and Shin [8] proposed the static voltage scheduling al-
gorithms using the RM and EDF schedulability tests. Their
static scheduling algorithm finds a clock speed of periodic
tasks for a hard real-time system. The clock speed is set stat-
ically, and is not changed unless the task set is changed. For
the mixed task set using a scheduling server such as DS or
TBS, Pillai’s static scheduling algorithms can also be used with
the utilization of the scheduling server. For example, in EDF
scheduling using TBS, if the worst case utilization of periodic
tasks is 0.3 and the utilization of TBS is 0.4 at 100 MHz clock
speed, the static scheduling algorithm determines the clock
speed as 70 MHz (� ��� ��� � ���� 	 ��
�).

However, the scheduling server for aperiodic tasks gener-
ally occupies a large utilization compared with the workload
of aperiodic tasks to provide a good responsiveness. If the real
utilization of aperiodic tasks is 0.2 rather than 0.4, it is better
to use a lower clock speed for periodic tasks and a higher clock
speed for aperiodic tasks than 70 MHz. This is because TBS
has many idle intervals. However, we cannot use the clock
speed 50 MHz (� ��� ��� � ���� 	 ����) because it can pro-
duce deadline misses when the real utilization of aperiodic task
is larger than 0.2.

Therefore, in static voltage scheduling, we should consider
both the expected workload and the schedulability condition.
Our static voltage scheduling algorithm selects the operat-
ing speed �� of periodic tasks and the operating speed �� of
scheduling server for aperiodic tasks, respectively. �� and ��
should allow a real-time scheduler to meet all the deadlines for
a given periodic task set minimizing the total energy consump-
tion. Consequently, the problem of the static scheduling can
be formulated as follows:

Static Speed Assignment Problem
Given ��� ��� �� and ��

find �� and �� such that

� � �� � � � �
�

� � � � �
�

� is minimized

subject to
��

��
�

��

��
� �

� and � � ��� �� � ��



�� Energy consumption (mJ) Response time (msec)
UNI OPT Reduction(%) UNI OPT Reduction(%)

0.15 52.02 50.35 3 1.65 1.38 16
0.20 60.73 54.50 10 1.01 0.75 26
0.25 65.81 58.81 11 0.94 0.75 20
0.30 71.19 63.41 11 0.89 0.75 16
0.35 76.66 72.32 6 0.84 0.75 11
0.40 87.28 77.86 11 0.79 0.75 5

�� � ���, � � ����, � � ����

TABLE I
STATIC SPEED ASSIGNMENT FOR TOTAL BANDWIDTH SERVER.

, where �� is the worst case utilization of periodic task set, ��

is the server utilization, � is the average workload ratio of pe-
riodic tasks, and 	 is the average workload ratio of aperiodic
tasks (	 � �
�). � is a metric reflecting energy consumption�.
��, which is the least upper bound of schedulable utilization,
is 1 at the EDF scheduling and ���� at the RM scheduling�,
respectively. Using the Lagrange transform, we can get a fol-
lowing optimal solution for �� and ��.
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Under the assumption that we can know the exact � and 	
values, we can get the optimal static speeds for periodic and
aperiodic tasks. Table I shows the experimental results of the
optimal static speed assignment. The results show the reduc-
tion of energy consumption and response time varying� � with
fixed values of ��, � and 	. Aperiodic tasks are assumed to
be serviced by the total bandwidth server. We assumed that
if the system is idle it enters into the power-down mode. We
compared our optimal speed assignment method (OPT) with
Pillai’s uniform speed assignment method (UNI) which as-
signs the same speed to both periodic tasks and aperiodic tasks
making the total utilization as � �. The optimal speed assign-
ment method reduced the energy consumption and the aver-
age response time up to 11% and 26%, respectively. Since the
scheduling server gets a higher speed than the speed for peri-
odic tasks when � � 	, the optimal speed assignment reduces
the average response time as well as the energy consumption.

From the result, we can see if a higher �� is used, the aver-
age response time of aperiodic tasks decreases and total energy
consumption increases. Since two objectives of the response
time and the energy consumption conflict with each other, it is
recommended to use the constraint on the response time. We
can determine the minimum value of �� which satisfies the
constraint minimizing the energy consumption. For example,
if we have the constraint that the average response time should
be lower than 1 msec, then we can select 0.2 for the server
utilization from the results in Table I.

IV. DYNAMIC SCHEDULING FOR MIXED TASK SETS

There are some problems using existing on-line DVS algo-
rithms such as [9, 2, 8, 5] for mixed task sets. They use three

�Assuming the supply voltage and clock speed are proportional in DVS,
the energy consumption is represented to be proportional to the square of clock
speed.

�When a deferrable server is used, the utilization bound is 0.6518 [12].

kinds of slack estimation methods [6]: (1) stretching-to-NTA,
(2) priority-based slack-stealing, and (3) utilization updating.
The stretching-to-NTA technique stretches the execution time
of the periodic task ready for execution to the next arrival time
of a periodic task when there is no another periodic task in
ready queue. To use the stretching-to-NTA technique in a
mixed task set, we should know the next arrival time of an ape-
riodic task as well as a periodic task. Though the arrival times
of periodic tasks can be easily computed using their periods,
we cannot know the arrival times of aperiodic tasks since they
arrive at arbitrary times. If we ignore the arrival of aperiodic
tasks, there will be a deadline miss of periodic hard real-time
task when an aperiodic task arrives before the next arrival time
of a periodic task. Therefore, we cannot use the stretching-to-
NTA method directly for mixed task sets.

To use the priority-based slack-stealing method or the uti-
lization updating method, we should be able to identify a slack
time due to aperiodic tasks as well as periodic tasks. The slack
time of a periodic task can easily be defined as the difference
between the WCET and the real execution time of the task.
However, for the slack time from aperiodic tasks, we should
be concerned about the scheduling server rather than aperiodic
tasks because the scheduling server is related with the schedu-
lability condition.

Therefore, we need to modify on-line DVS algorithms to
utilize the characteristics of scheduling servers. In this paper,
we handle only DS and TBS because they are simple and rep-
resentative algorithms for the RM scheduling policy and the
EDF scheduling policy, respectivly.

A. Deferrable Server

Figure 1(a) shows the task schedule with a deferrable server.
There are two periodic tasks, � � ��� �� and � � ��� ��, and
one DS � �
� ��. Each periodic task and the DS is scheduled
by the RM scheduler. The utilization of DS is 0.25 (� ��

��
�

�

�
). We assume that periodic tasks have relative deadlines equal

to their periods. DS preserves its budget if no requests are
pending when released. An aperiodic request can be serviced
at any time (at server’s priority) as long as the budget of DS
is not exhausted (e.g., task ��). If the budget is exhausted,
aperiodic tasks should wait until the next replenishment time.
For example, though the task �� arrived at the time of 19, it is
serviced at the time of 20.

Although we have no clairvoyant power to know the arrival
times of aperiodic tasks, the stretching-to-NTA method can be
used if we utilize the execution behavior of DS. There are two
cases the current ready task can be stretched:

� Rule for aperiodic task: If there is no periodic task in the
ready queue, stretch an aperiodic task to min(next arrival
time of a periodic task, next replenishment time).

� Rule for periodic task: If there is only one periodic task
in the ready queue and the budget of DS is 0, stretch a pe-
riodic task to min(next arrival time of a periodic task, next
replenishment time). This is because the arriving aperi-
odic task is delayed until the next replenishment time if
the budget is 0. If budget � 0, we cannot scale down the



speed of the periodic task even though there is only one
periodic task in the ready queue.

Figure 1(b) shows the task schedule using the modified lpp-
sRM algorithm [9] which uses the stretching-to-NTA method.
The aperiodic task �� is stretched to the next arrival time of
periodic task (15) because there is no periodic task in ready
queue. The aperiodic task �� is stretched to the next replenish-
ment time (4) because the replenishment time is earlier than the
arrival time of a periodic task (5). Though there is no deadline
miss even if �� is stretched to 5, we limit the stretching bound
by the replenishment time to bound the delay of response time
of aperiodic tasks. Using this policy, we can guarantee that the
maximum increase of the average response time is �� � ��.
The tasks ��� and ��� are stretched to min(next arrival time,
next replenishment time) because the remaining budget of DS
is 0. We cannot stretch the tasks ��� and ��� because the re-
maining budget of DS is larger than 0.
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Fig. 1. Task schedules with a deferrable server.

B. Total Bandwidth Server

The total bandwidth server is proposed for the EDF schedul-
ing policy. Figure 2(a) shows the task schedule with a TBS.
There are two periodic tasks, � � ��� �� and � � ���� ��,
and one TBS with �� � ���. �� is the utilization of TBS.
If �� 	 �� � �, the periodic tasks are schedulable. When
an aperiodic task �� arrives, TBS sets the deadline of �� to
�� � ������ � ����� 	 ��
��, where ��, �� and �� is the
WCET, the release time, and the deadline of ��, respectively.
For example, when an aperiodic task �� with �� � � arrives at
6, TBS sets ��’s deadline to 11 (� ������ ��	 �
���). When
a task �� arrives at 14, it preempts the task ��� because ��’s
deadline is 18 and ���’s deadline is 24.

With TBS, we cannot employ the stretching-to-NTA tech-
nique used for DS because it is not controlled by the budget.
Instead, we can make use of the fact that TBS sustains the
utilization of aperiodic tasks as ��. If we can endure a little
degradation of aperiodic tasks, we can delay an aperiodic task
�� until ���� when �� � ����. This delay does not affect the

utilization of TBS and does not cause the deadline miss of pe-
riodic task. Delaying an aperiodic task until � ��� is identical
with assuming the earliest arrival time of the aperiodic task � �
as ����. Figure 2(b) shows the task schedule using the modi-
fied lppsEDF algorithm [9] which uses the stretching-to-NTA
method. For example, the remaining part of the task  ��� at the
time of 4 can be stretched to �� � �. When an aperiodic task
�� arrives at the time of 6, it preempts ��� because its prior-
ity (i.e., deadline) is higher than ��� but produces no deadline
miss. If the priority of ��� is higher than ��, the start of ��
will be delayed until 7. In such cases, the maximum delay of
an aperiodic task �� is ���� � ��.

To use the priority-based slack-stealing method for TBS, we
should identify the slack times of TBS. There are two types of
slack times available when TBS is used:

� Inter-slack: If an interval [��� ��] in TBS is not over-
lapped with any active interval of aperiodic tasks [��� ��],
there is ���������� amount of slack time. This is because
the total utilization does not exceed 1 even if an aperiodic
task with the execution time of ��� � ��� � �� is executed
during the interval [��� ��].

� Intra-slack: When an aperiodic task, whose WCET is
�� , consumes only the time of �, there is ������ amount
of slack time.

Figure 2(c) shows the task schedule using the modified DRA al-
gorithm [2] which uses the priority-based slack-stealing. Orig-
inally, in the DRA algorithm, when a task  is to be executed,
the slack times due to the early completions of tasks which
have the higher priorities than the priority of  are computed
and the speed of  is determined using the slack times. The
modified DRA algorithm for TBS uses the same technique ex-
cept that it considers the inter-slack as well as the intra-slack
of TBS.

For example, in Figure 2(c), when a task ��� is scheduled at
the time of 1, there is a slack time 1.5 (1 from the early com-
pletion of ��� and 0.5 from the inter-slack of TBS during the
time interval [0,1]). Using the slack time, the task ��� is sched-
uled with the speed of 0.67 (=3/(3+1.5)). The aperiodic task � �

is also scheduled with the speed of 0.67 (=2/(2+1)) exploiting
the inter-slack of TBS, 1, during the time interval [2,3]. When
the task �� is completed consuming only the time of 1.5, the
remaining slack 1.5 is transferred to the remaining part of the
task ��� lowering its clock speed. Using the modified DRA
algorithm, we can get a better energy efficiency than that of
the modified lppsEDF algorithm because DRA exploits more
slack times. But, the average response time of aperiodic tasks
is longer in DRA than lppsEDF.

V. EXPERIMENTAL RESULTS

We have evaluated the performance of our DVS algorithms
for DS and TBS using simulations. In each experiment, we
first assigned the static speed to periodic tasks and aperiodic
tasks using the static speed assignment algorithm described
in Section III. During run time, the operating speed is fur-
ther reduced by on-line DVS algorithms exploiting the slack
times. The execution time of each periodic task instance was



�
�
�
�

��
��
��
��

8 16 24

UTBS = 0.5

1 =(8,2)

2 =(12,3)

speed

1

1

1

speed

speed




��� ��� ���

��� ���

�� �� �� ��

�� �� �� ��

�� �� �� ��

(a) No DVS

�� ����
8 16 24

UTBS = 0.5

1 =(8,2)

2 =(12,3)

earliest arrival time of
the next aperiodic task

earliest arrival time of
the next aperiodic task

1

1

1

speed

speed

speed




��� ��� ���

��� ���

�� �� �� ��

�� �� �� ��

�� �� �� ��

(b) lppsEDF

8 16 24

TBS

1

2 =(12,3)

inter -slack inter -slack

intra
slack inter -slack

12 24

3 6 14 16� ��
8 16 24

U = 0.5

1=(8,2)

2 =(12,3)

inter -slack inter -slack

intra
slack inter -slack

(1.5)
12 24

3 6 14 16

(1)

(1.5)
(1.5)

(1)���
1

1

1

speed

speed

speed








��� ��� ���

��� ���

�� �� �� ��

���� ���� ���� ����

���� ���� ���� ����

(c) DRA

Fig. 2. Task schedules with a total bandwidth server.

randomly drawn from a Gaussian distribution in the range of
[BCET, WCET] where BCET is the best case execution time.
In the experiments, BCET is assumed to be 10% of WCET.

The interarrival times and service times of aperiodic tasks
were generated from the exponential distribution using the pa-
rameters � and � where �
� is the mean interarrival time and
�
� is the mean service time. Then, the workload of aperiodic
tasks can be represented by 	 � �
�. If there is no interfer-
ence between aperiodic tasks and periodic tasks, the average
response time of aperiodic tasks is given by �� � ���� from
the M/M/1 queueing model.

Varying the server utilization �� and the workload of ape-
riodic tasks 	 under a fixed utilization �� of periodic tasks,
we observed the interactions between the energy consumption
of the total system and the average response time of aperiodic
tasks. (Due to the limited space, we present the experimental
results where �� is controlled by changing the value of �� with
a fixed �� value and 	 is controlled by a varying � with a fixed
� value.)

Figure 3(a) compares the energy consumption of the mod-
ified lppsRM algorithm over that of the power-down method
when a deferrable server is used. In this experiment, �� was
fixed to 0.3. As�� and 	 increase, the energy consumption also
increases as with the results of the static speed assignment. The
energy saving from the modified lppsRM algorithm increases
as 	 increases. This is because there are more chances for DS
to have the zero budget when the workload of aperiodic tasks is
large. When 	 is 0.25, lppsRM reduces the energy consump-
tion by 12% over the power-down method.

Figure 3(b) shows how the average response times of ape-
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(b) Response Time

Fig. 3. Experimental results using a deferrable server.

riodic tasks change. As �� increases, the response time de-
creases, converging on the average response time of M/M/1
because the number of interferences by periodic tasks is re-
duced. As shown in Figure 3(b), the modified lppsRM algo-
rithm does not significantly increase the response time. This is
because there are few cases when tasks can be stretched (as we
can see from Figure 3(a)) and the delay due to the stretching is
smaller than �� � ��.

For TBS, we observed the performance of the modified
lppsEDF algorithm and the modified DRA algorithm with ��

set to 0.4. Figure 4(a) shows the energy consumption by each
algorithm. DRA consumes less energy than lppsEDF. As 	
increases, the energy reduction patterns of DRA and lppsEDF
(over the power-down method) do not change significantly.
Since the number of cases when lppsEDF can stretch the ex-
ecution time of periodic task is determined by the workload of
periodic tasks rather than 	, the relative energy savings from
lppsEDF are similar irrespective of 	. However, the energy
savings from lppsEDF increase as �� increases. This is be-
cause, in the static speed assignment, a higher speed is as-
signed to the aperiodic tasks when a large �� is used, thus the
energy saving from aperiodic tasks increases.

The relative energy savings from DRA also show little vari-
ations depending on 	 because DRA utilizes the inter-slack as
well as the intra-slack. Unlike lppsEDF, the energy savings
from DRA are not different depending on � �. Since DRA iden-
tifies slack times more aggressively during run time, its energy
efficiency is less dependent on the static speed assignment.
When 	 is 0.25, lppsEDF and DRA reduce the energy con-
sumption by 16% and 32% on average over the power-down
method, respectively.

Figure 4(b) shows the average response times of aperiodic
tasks in TBS. Both lppsEDF and DRA have longer response
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Fig. 4. Experimental results using a total bandwidth server.

times than the power-down technique because their operating
speed is lower. As �� decreases and 	 increases, the response
times are further increased. Since the higher �� is, the nearer
the deadline to aperiodic tasks in TBS, the delay times of ape-
riodic tasks by lppsEDF are inversely proportional to ��.

When �� is high, the average response time of DRA is better
than that of lppsEDF because lppsEDF may delay the exe-
cution of the aperiodic task �� by ���� when �� arrives before
���� while DRA does not delay the start time of aperiodic task.
However, DRA increases the response times very quickly when
	 is close to ��. For example, when 	 � ��� and �� � ����,
the response time increases to 13.5 msec. In this case, DRA
stretches each task to complete its execution near its deadline
because DRA can exploit most available slack times. As shown
in Figure 4(b), DRA becomes unusable when 	 � �� although
its energy efficiency is high. When 	 � ���� and �� � ���,
the response time is 44.8 msec.

From the results in Figure 4, we can observe that the on-line
DVS algorithm and the server utilization should be carefully
selected to satisfy the response time requirement. For exam-
ple, assume that 	 is 0.2 and TBS is used for aperiodic task
scheduling. If the average response time should be less than
4 msec, DRA with the server utilization 0.25 is the best choice
because it minimizes the energy consumption while satisfying
the response time constraint.

VI. CONCLUSIONS

We have proposed DVS algorithms for mixed task systems,
which have both periodic and aperiodic tasks. For the static
voltage scheduling algorithm, we proposed the optimal speed
assignment algorithm considering the workload of aperiodic
tasks. For the dynamic voltage scheduling algorithms, we pre-

sented the slack identification methods for the servers dedi-
cated to aperiodic tasks. Existing on-line DVS algorithms,
which cannot be used for mixed task systems, were modified
to use the proposed slack identification methods. The modified
DVS algorithms reduced the energy consumption by 12% and
32% under the RM scheduling policy and the EDF scheduling
policy, respectively.

Our work in this paper can be extended in several direc-
tions. For example, we plan to develop DVS algorithms for
other scheduling servers such as Sporadic Server and Constant
Bandwidth Server. Furthermore, although we focused on the
slack identification based on the characteristics of server algo-
rithms, it will be an interesting future work to study the effect
of the slack distribution methods on the average response time.
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