Abstract

In modern digital system designs, energy consumption is emerging as a
key issue, especially for battery-powered portable systems. Dynamic volt-
age scaling (DVS), which adjusts dynamically the processor clock frequency
and supply voltage, is one of the most effective approaches in reducing the
energy consumptions of digital systems because energy consumption has a
quadratic dependency on the supply voltage. However, this lead to a per-
formance degradation of the system because the maximum allowable clock
frequency is proportional to supply voltage. For hard real-time systems
where timing constraints must be strictly satisfied, this energy-performance
tradeoff makes it more challenging to adjust the supply voltage dynamically
so that the energy consumption is minimized while not violating the timing

requirements.

In this dissertation, clock and voltage scheduling algorithms for real-
time applications are addressed. We propose a voltage scheduling model
within task boundary, called IntraDVS. The clock frequency and supply
voltage is controlled according to the execution flow of a task within the
task boundary. By fully exploiting all the slack times, a scheduled program

by the proposed technique always completes its execution near the deadline,

thus achieving a high energy reduction ratio.

First, we formulate the IntraDVS problem and propose an IntraDV'S al-
gorithm based on static timing analysis. It exploits the information about
worst-case execution path. We also introduce a software tool that auto-
matically converts a DVS-unaware program into an equivalent low-energy

program using the IntraDVS techniques.

Second, two techniques to improve the energy performance of the In-
traDVS are introduced. One is to use profile information to optimize the
voltage scheduling for the average-case execution path. The other is to use

data flow analysis technique to optimize the locations of scaling points.

Third, how to cooperate with the OS-level voltage scheduler is described.
Though IntraDVS exploits all slack times within a task boundary, there are
cases where it is better to transfer slack times to following tasks. We propose
hybrid DVS algorithms, which determine the slack distribution observing

the current system status.

Each algorithm proposed in this dissertation is evaluated in terms of
energy consumption using simulations and measurements. We compare
our voltage scheduling algorithms with other task-level or OS-level volt-
age scheduling algorithms. The experiments show the efficiencies of the

newly proposed voltage scheduling techniques.

Keywords: dynamic voltage scaling, variable-voltage processor, real-time

systems, power management, low-power design

Student Number: 2000-30298

i

Contents

Abstract i
Glossary xii
1 Introduction 1
1.1 Motivation 1
1.2 Dissertation Goals 5
1.3 Contributions oo 5
1.4 Dissertation Structure 7
2 Background 9
2.1 Real-Time Systems 9
2.2 Dynamic Voltage Scaling 11
2.2.1 Power and Energy 11

2.2.2 Variable-Voltage Processors 14

1l

2.3 Related Works. 16

2.3.1 InterDVS Algorithms 16
2.3.2 IntraDVS Algorithms 19
Intra-Task Voltage Scheduling Framework 21
3.1 Basicldea o 21
3.2 Problem Modeling 24
3.3 Voltage Scheduling Using Reference Path 29
IntraDVS Using Static Timing Analysis 32
4.1 RWEP-based IntraDVS Algorithm 32
4.2 Selection of Voltage Scaling Edges 37
4.2.1 B-type Voltage Scaling Edges 38
4.2.2 L-type Voltage Scaling Edges 41
4.2.3 VSEs in Loops or Functions 43
4.3 Code Transformation 44
4.4 Overall Selection Algorithm 45
4.5 Experiments Lo Lo 49
4.5.1 Experiments with Artificial Workloads 49
4.5.2 Experiments with Real Applications 52
4.5.3 Experiments on a Real DVS-enabled System 57

v

4.6

4.5.4 Comparisons of IntraDVS Algorithms 62

4.5.5 Comparisons of InterDVS and IntraDVS 63
IntraDVS for Soft Real-Time Tasks 66
4.6.1 QoS-driven IntraDVS 66
4.6.2 Experiments 69

5 Energy-Efficiency Improvement Techniques for IntraDVS 73

5.1

5.2

IntraDVS Using Profile Information 73
5.1.1 Motivation Lo 73
5.1.2 Guaranteeing Safeness 80

5.1.3 Comparisons of RWEP-based IntraDVS and RAEP-

based IntraDVS algorithms 85
5.1.4 Experiments oL 87
IntraDVS Using Data Flow Analysis 90
5.2.1 Motivation Lo 90
5.2.2 Single-Step Look-ahead IntraDVS 92
5.2.3 Multi-Step Look-ahead IntraDVS 95
5.2.4 Further Enhancements 100
5.2.5 Experiments Lo oL 103

6 Cooperative IntraDVS under OS-Level Voltage Scheduler 108

6.1 Motivation
6.2 Hybrid DVS algorithms.

6.3 Experiments Lo

7 Conclusions
7.1 Summary and Contributions
7.2 Future Works

7.2.1 IntraDVS Using Frequency-Aware
Timing Analysis.

7.2.2 IntraDVS Using Run-Time Monitoring
7.2.3 IntraDVS Considering Static Power

7.2.4 Inter-Task DVS Using Intra-Task Slack Detection . .

Bibliography

Appendix
A. DVS Hardware Platforms

B. Automatic Voltage Scaler

vi

116

116

119

119

121

122

123

124

132

List of Figures

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

An example program P: (a) an example real-time program

with the 2 sec deadline and (b) its CFG representation Gp . 23

The heuristic search algorithm for IntraDVS problem. 28
A RWEP-based CFG GEWEP 33
The changes of Crwrc(t) over different speed scaling algo-

rithms: (a) no IntraDVS and (b) RWEP-based IntraDVS.. . 35

Speed and voltage changes: (a) without IntraDVS and (b)

with the RWEP-based IntraDVS 38
Code generation for VSEs.o 46
Overall VSE selection algorithm. 48

Normalized energy consumptions of the RWEP-based IntraDVS
(varying the B/W ratio and the slack size). 51

Normalized energy consumptions of the RWEP-based IntraDV'S
(varying the B/W ratio and the slack distribution). 52

vil

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1

5.2

5.3

5.4

)

5.6

Normalized energy consumption and the number of voltage
transitions of the AVS-converted MPEG-4 encoder and de-

coder programs. e e e

Normalized energy consumptions of the on-line and off-line

speed assignment methods (varying the threshold value). . .
The experiment environments for Itsy platform.
Power estimation of MPEG-4 program.
Energy consumption ratio of IntraDVS-P and IntraDVS-S. .

Comparison of InterDVS and IntraDVS in multi-task envi-

ronments. L. e e

Comparison of InterDVS and IntraDVS in different task sets.

The changes of Crwrc(t) over different speed scaling algo-

rithms: (a) Original IntraDVS and (b) QoS-driven IntraDVS.

The experimental results: (a) Energy Consumption and (b)

Deadline Miss.

Example task graphs for RAEP-based IntraDVS.
A RAEP-based CFG GRAEP
Speed and voltage changes by the RAEP-based IntraDVS.
The changes of Cragc(t) over RAEP-based IntraDVS.

Pure RAEP-based IntraDVS.

Safe RAEP-based IntraDVS.

viil

26

o8

70

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

6.1

6.2

6.3

8.1

Profile-aware Safe RAEP-based IntraDVS. 86

Normalized starting speed and energy consumption of the

RWEP-based IntraDVS and the RAEP-based IntraDVS ver-
sus the slack factor. &9

Experimental results of the RWEP-based IntraDVS, the RAEP-

based IntraDVS and the optimal DVS. 90
An example program for look-ahead IntraDVS.. 91
An example program for multi-step look-ahead IntraDVS. . 96
Multi-step LaVSP search algorithm.. 98
Overhead in LalntraDVS. 99
An example program for L-type VSP. 101
Code transformation: loop splitting. 104
Code transformation: function inlining. 105
The framework for look-ahead IntraDVS. 106
Experimental results of look-ahead IntraDVS. 107

Cases where pure InterDVS or pure IntraDVS performs poor. 109

Energy efficiency comparison results of the HybridDV'S algo-

rithms.o 114
Spectrum of HybridDVS heuristics. 115
Dynamic voltage and frequency scaling traces. 138

1X

8.2 Automatic Voltage Scaler.

List of Tables

1.1

2.1

4.1

4.2

6.1

A typical videophone application. 4
Variable voltage processors., 14
DVS experiments on Itsy. 60
Management code overhead. 60
Heuristics for HybridDVS algorithms. 111

X1

Glossary

ACEP (Average-Case Execution Path): An execution path which has the
highest probability to be executed.

AVS (Automatic Voltage Scaler): A software tool which converts a normal
program into a DVS-enabled program.

B-type VSE: A VSE for the slack time generated at a branch statement.
Data flow analysis: A program analysis technique which provides global
information about how a program manipulates its data. Using data flow
analysis, we can know where a variable is defined and used.

Data predecessor: A statement which assigns a value to be used at a
specified program location for a specified variable.

Down-VSE: A VSE where clock speed and voltage level are lowered.
Hybrid DVS: A DVS algorithm which uses both the intra-task voltage
scheduling and the inter-task voltage scheduling.

InterDVS: A DVS algorithm which schedules the supply voltage between
tasks.

IntraDVS: A DVS algorithm which schedules the supply voltage within
task boundary.

LaIntraDVS (Look-ahead IntraDVS): An Intra-task DVS algorithm which

xii

selects voltage scaling points using data flow analysis.

LaVSP (Look-ahead Voltage Scaling Point): A voltage scaling point de-
termined by Look-ahead IntraDVS.

Look-ahead point : An earliest program point from which until a speci-
fied program location the values of specified variables are not changed.
L-type VSE: A VSE for the slack time generated at a loop statement.
RAEC (Remaining Average-case Execution Cycles): A number of cycles
required to execute the average-case execution path starting from a speci-
fied point.

RAEP (Remaining Average-case Execution Path): An execution path which
has the highest probability to be executed among the paths starting from a
specified point.

Reference Path: An execution path whose execution cycles are used to
determine the clock speed in IntraDVS.

RPEC (Remaining Predicted Execution Cycles): A number of cycles re-
quired to execute the predicted execution path starting from a specified
point.

RWEC (Remaining Worst-case Execution Cycles): A number of cycles re-
quired to execute the longest execution path starting from a specified point.
RWEP (Remaining Worst-case Execution Path): An execution path which
has the longest execution cycles among the all paths starting from a speci-
fied point.

Slack Factor: A value representing how much static slack times a task has
comparing its WCET and deadline. (deadline-WCET)/deadline.

SUR (Speed Update Ratio): A ratio between two clock speeds before and

after voltage scaling edge.

xiil

Up-VSE: A VSE where clock speed and voltage level are raised.
Variable-voltage processor: A processor where the clock speed and sup-
ply voltage can be adjusted.

VSE (Voltage Scaling Edge): A program location where the clock speed
and voltage is adjusted.

WCEC (Worst-Case Execution Cycles): A number of cycles required to
execute the worst-case execution path.

WCEP (Worst-Case Execution Path): An execution path which has the
longest execution cycles among the all paths starting from the program en-
try.

WCET (Worst-Case Execution Time): An execution time required to ex-
ecute the worst-case execution path.

WCPU (Worst-Case Processor Utilization): A maximum system utiliza-
tion assuming that all tasks demand the worst-case execution cycles.
Workload-variation slack time: Dynamic slack time. A slack time gen-
erated dynamically when a task execution time is smaller than its worst-case
execution time.

Worst-case slack time: Static slack time. A extra time identified stati-

cally when the worst-case processor utilization is smaller than 1.

Xiv

Chapter 1

Introduction

1.1 Motivation

Recently, the reduction of energy consumption is emerging as a key technol-
ogy in the VLSI system design, especially for battery-powered portable sys-
tems such as digital cellular phones, personal digital assistants, and mobile
videophones. For these systems, the low energy consumption is a primary
design goal, since the battery operation time is one of the most significant
performance measures. Even for non-portable VLSI systems such as high
performance microprocessors, the energy consumption is an important de-
sign constraint, because large heat dissipations in high-end microprocessors
often result in the device thermal degradation, system malfunction, or in
some cases, non-recoverable crash. These problems demand low-power tech-
nologies over a wide range of hardware and software design abstractions,

including device, circuit, logic, architecture, compiler, operating system,

and application levels. Recently, there have been many researches on the
system or software-level low-power techniques using compiler and operating
systems because the opportunities for power reduction at such levels are

larger than those of hardware-level techniques.

Dynamic voltage scaling (DVS) [1] is one of the most effective approaches
in reducing the power consumption of embedded systems, where supply volt-
age can be dynamically reduced to the lowest possible extent that ensures
a proper operation when the required performance of the target system
is lower than the maximum performance. Since the dynamic energy con-
sumption of CMOS circuits, which dominates total power consumption, is
proportional to the square of the supply voltage Vg4, a significant energy
reduction is possible with the DVS scheme. Recently, many commercial
variable-voltage microprocessors (e.g., [2, 3, 4]) have been introduced to the

mobile embedded market, reflecting the effectiveness of DVS techniques.

In the past, various OS-level voltage scheduling algorithms have been
proposed for hard real-time systems [5, 6, 7, 8,9, 10, 11, 12]. Given multiple
tasks, these algorithms assign the proper speed to each task dynamically
while guaranteeing all their deadlines. In real-time systems, since the real
execution time of each task may smaller than the worst-case execution time
(WCET), workload-variation slack times [13] are generated at run time even
though the worst-case utilization of the processor is 1. However, it is difficult
to utilize the workload-variation slack times because we cannot know the
exact amount of slack time before the completion of a task. Therefore, most
of DVS scheduling algorithms [7, 8, 10, 11, 12] transfer the slack time to
the following tasks which can utilize it. These techniques exploit the “slack

estimation and distribution” strategy for the supply voltage determination,

which can be summarized as follows:

1. run the current task.
2. estimate the slack time due to early completion of the current task.

3. distribute the slack time to the next tasks and determining the oper-

ating speed of the tasks.

4. run the next tasks.

These techniques determine the supply voltage on task-by-task basis. For
each task activation, only one supply voltage is assigned to the task, and
it is not changed during the task execution. In this paper, we call these

techniques as inter-task dynamic voltage scheduling (InterDVS).

While generally effective in reducing energy consumption of multi-task
real-time systems, InterDVS has several practical limitations. For example,
since a task scheduler in OS determines the supply voltage of a task, it
requires OS modifications. Furthermore, it cannot be applied to a single-
task environment because there is no another task which can utilize the
slack time generated by the completed task. Considering many small-size
embedded mobile applications are based on a single-task model, this can be

detrimental to a wide adoption of variable-voltage processors in practice.

Even in a multi-task environment, InterDVS may not be effective in
reducing the energy consumption if one task is dominant in both the slack
times and execution times. In this case, a dominant task (with the highest
energy consumption) exploits slack times from other tasks (with small slack

times), thus ineffective in reducing the energy consumption. For example,

Table 1.1: A typical videophone application.

MPEG4 Video | MPEG4 Video | VSELP Speech | VSELP Speech
Encoding Decoding Encoding Decoding
Period (= Deadline) (msec) 66.667 66.667 40.000 40.000
WCET (msec) 50.386 9.826 1.844 1.383
Average Execution Time (msec) 13.099 1.460 0.907 0.680
Energy InterDVS [8] 0.826
Consumption | Off-line Optimal 0.106

*In normalizing energy consumption values, the base case of normalization is DVS-unaware systems

using only power-down mode.

consider a typical mobile videophone application with four tasks shown in
Table 1.1. Using an InterDVS algorithm of [8], only 17% of energy reduction
is observed while an off-line (theoretical) optimal voltage scheduling can

achieve 90% power reduction'.

The limitations of InterDVS algorithms come from their slack estimation
techniques. InterDVS estimates a task’s workload-variation slack time at
the completion of the task. However, it may be too late if there is no or
small task workload to exploit the slack time as shown in the videophone
application. Therefore, we need a new voltage scheduling technique which
can identify the workload-variation slack time instantly during the task

execution.

!The energy reduction by the InterDVS algorithm of [8] was estimated using a simu-
lation. The off-line optimal schedule was calculated by assuming that the real execution

times of tasks are known a priori.

1.2 Dissertation Goals

In this dissertation, we are to provide voltage scheduling algorithms which
can identify the workload-variation slack time within task boundary. The
scheduling algorithm should reduce the energy consumption of real-time
tasks guaranteeing the timing constraints of them. Our goals can be de-

scribed as follows:

e Proposing new voltage scheduling algorithms which can identify and
exploit workload-variation slack times of a task during the task exe-

cution.

e Optimizing the proposed voltage scheduling algorithms to improve the

energy performance.

e Integrating the proposed voltage scheduling algorithms with OS-level
InterDVS algorithms.

e Providing an automatic conversion tool that converts DVS-unaware
programs into DVS-aware ones based on the proposed voltage schedul-

ing algorithms.

e Examining the energy performance of the proposed voltage scheduling

algorithms comparing with other voltage scheduling algorithms.

1.3 Contributions

This dissertation proposes the voltage scheduling technique called the intra-

task dynamic voltage scheduling (IntraDVS) because it adjusts the voltage

5

and clock speed within a task. The technique identifies the slack time gener-
ated from the workload variation and adjusts the clock/voltage to utilize the
slack time at run time. To enable the run-time clock/voltage adjustment,
the application code is preprocessed based on the static timing analysis.
The workload-variation slack times are identified by observing the changes
of the remaining execution times due to the control flow. Specifically, we

present:

e A new IntraDVS algorithm using static timing analysis. The algo-
rithm, entitled RWEP-based IntraDVS [14], finds the voltage scal-
ing points from a target program and determines the clock speed at
the points. It uses the worst-case timing analysis technique to know
the static timing information of the target program. The proposed
IntraDVS algorithm has the following features: (1) It fully exploits all
workload-variation slack times, achieving a significant improvement
in the energy consumption. (2) It is applicable to a single-task en-
vironment, since it controls the supply voltage within each task. (3)
It provides an automatic conversion tool that converts DVS-unaware
programs into DVS-aware ones. This means that a programmer re-
quires no knowledge on DVS, making the proposed algorithm very
practical. (4) It enables each individual task to control supply volt-
age independent of other tasks, without any support from operating
systems. Therefore, it can be directly applied to a conventional DVS-

unaware OS without any modification.

e An extension of the IntraDVS algorithm using profile information.

The algorithm, entitled RAEP-based IntraDVS [15], determines

the clock speed based on the average-case execution information guar-

anteeing the timing constraint of the target program.

e An extension of the IntraDV'S algorithm using data flow analysis. The
algorithm, called Look-ahead IntraDV'S, optimizes the locations of
scaling points by searching the earliest points where we can detect the

change of workload using a data flow analysis technique.

e Techniques for cooperation with InterDVS algorithms. We propose
Hybrid IntraDVS [16] algorithms which cooperate with the Inter-

DVS technique to balance the slack consumption among tasks.

e A software tool for IntraDVS techniques. Based on the proposed
IntraDV'S algorithms, we developed a software tool called Automatic
Voltage Scaler (AVS) that automatically converts a DVS-unaware

program into an equivalent low-energy program.

1.4 Dissertation Structure

The dissertation has seven chapters and two appendices. The first chapter is
this introduction. The last chapter offers conclusions and describes avenues

for future work. The five intermediate chapters address the following.

Chapter 2 provides the background for real-time systems and dynamic
voltage scaling. We introduce the worst-case timing analysis technique for
real-time systems, which is closely related to our work. The fundamental
relations between clock frequency, supply voltage, power and energy are

described. We also serves the related works on dynamic voltage scheduling.

Chapter 3 describes the overall algorithm of the proposed IntraDVS and
the formulation of IntraDVS problem.

Chapter 4 presents details of the IntraDVS algorithm which uses the
static timing analysis technique. We describe how to select the voltage
scaling points and how to transform a target program to make a DVS-aware

program.

Chapter 5 describes two improvement techniques for IntraDV'S, using the

execution profile information and using the data flow analysis.

Chapter 6 shows how to cooperate for IntraDVS with OS-level InterDVS
algorithms. We show that there are cases where the pure IntraDVS or the
pure InterDV'S dose not work well and propose hybrid IntraDV'S techniques
which use both IntraDVS and InterDVS.

Appendix provides the information about several variable-voltage pro-
cessors and the detail description about the automatic voltage scaler, the

software tool for IntraDVS.

Chapter 2

Background

2.1 Real-Time Systems

Real-time systems are considered to be those types of systems which have
to respond to certain stimuli within a finite and specified delay. In other
words, the correctness such systems depends not only on the logical result
of the computations, but also on the time at which the results are produced.
For hard real-time systems, it is imperative that responses occur within the
specified deadline, any exception leading to a total failure of the system. In
soft real-time systems, response times are important, but the system will

still function correctly if some deadlines are occasionally missed.

Various scheduling techniques have been proposed to ensure that tasks
finish before their deadlines. These scheduling algorithms generally require
that the worst-case execution time (WCET) of each task in the system

be known a priori. The worst-case execution time is a possible longest

execution time of a program code on a given hardware. The WCET of a task
depends on many factors including the source code of a target application,
the target machine’s architectural features, compiler and operating system,
etc. There have been several researches focusing on the estimation of the
WCETs of tasks. The estimation of WCET must be safe and accurate.
The safeness means that the estimated WCET is not shorter than the real
WCET. The accuracy means that the estimated WCET is close to the real
WCET. An accurate and safe estimation of a task’s WCET is crucial for

reasoning about the timing properties of real-time systems.

One of most popular static WCET analysis techniques is to use a timing
schema [17]. In this approach, we first build the control flow graph of basic
blocks of a program. Next, we determine the time of each basic block
by adding up the execution time of the machine instructions. Finally, we
determine the WCET of a whole program by using timing schema. The
timing schema is a set of formulas for computing execution time bounds of

language constructs. For example, consider a conditional statement
S :if(F) then S;; else Ss.
We can represent the WCET of the statement S, WCET(S), as
WCET(E) 4+ max(WCET(S,), WCET(Ss))

assuming a simple single-issue architecture without pipeline and cache for

the target machine.

However, for modern RISC processors, such timing information is not
sufficient to accurately account for timing variations resulting from pipelined

execution and cache memory. So, there have been intensive studies about

10

the WCET estimation for modern processors [18, 19, 20]. Especially, Lim
et al. [21] proposed an extended timing schema of RISC processors, which
models pipeline and cache. Using the timing schema, they built a timing
analysis tool. We use the timing analysis tool for our IntraDVS algorithms

to know the static timing information of a target program.

2.2 Dynamic Voltage Scaling

2.2.1 Power and Energy

In order to design energy-efficient systems, one has to understand first the
sources of energy consumption. It is also important to examine the relations
between power, energy, and signal delay in digital CMOS circuits. The
power dissipated on a CMOS circuit can be decomposed into two basic

types, static and dynamic [22]:

PCMOS - Pstatic + denamic (21)

In the ideal case, CMOS circuits do not dissipate static power, since in
steady state there is no open path from source to ground. In reality, there
are always leakage currents and short circuit currents which yield the static
component of the CMOS power consumption. Although the static power
is today about two orders of magnitude smaller than the total power, the
typical chip’s leakage power increases about 5 times each generation, and

will soon become a significant portion of the total power [23].

The dynamic component of the CMOS power is dissipated during the

11

transient behavior, i.e. during switching between logic levels and is repre-

sented as following equation:
denamic = Q- OL . ded : fclk (22)

« is the switching activity factor (the average number of high-to-low tran-
sitions in one clock period), C}, is the load capacitance, Vy, is the supply
voltage and f. is the clock frequency. In CMOS circuits, this component
of power dissipation accounts for at least 85-90% of the total power con-

sumption [22].

From all the considerations made above, we can approximate the power

dissipated on a CMOS circuit node using the following equation:
Poros = Paynamic = o Cr - Vi« fax = Cepp - Viy - fen (2.3)
where C,ys is the effective load capacitance.

This means that the power consumption in a CMOS circuit is propor-
tional to the switching activity, capacitive load, clock frequency, and the
square of the supply voltage. All the power and energy reduction tech-
niques try to minimize one or more of these factors. Especially, supply
voltage (V) reduction appears to be the most promising, because of its
quadratic dependency to power. A decrease in voltage by a factor of two
yields a decrease in power by a factor of four. We call the technique which
adjust the supply voltage to minimize the power consumption as the dy-

namic voltage scaling.

In this dissertation, we focus on energy rather than power consumption.
Although low power and energy efficiency are often perceived as overlapping

goals, there are certain differences when designing for one or the other.

12

Formally, the energy consumed by a system is the amount of power used
during a certain period of time. We can denote the energy consumption £

during the time interval 7" as follows:
T
E = / P(t)dt X Vd2d . fclk; -T = ded . Ncycle (24)
0

P(t) is the power consumption at the time ¢ and Ny, is the number of clock
cycles during the time interval 7. Equation (2.4) tells that reducing only
the clock frequency makes no change in the energy consumption (though it

reduces the power dissipation).

Unfortunately, we can not reduce the supply voltage for free. The circuit

delay A, which sets the clock frequency, depends on the supply voltage [24]:

1
ox A o Vaa

feik (Vaa — V)7

(2.5)

where V is the threshold voltage and + is the saturation velocity index (vy
is between 1 and 2.). For a sufficiently small V; we can rewrite the relation

between clock frequency and supply voltage as:
far o< Vyg ™ (2.6)

For this reason supply voltage and clock frequency should be scaled together.
Consequently, dynamic voltage scaling provides the energy reduction but
lead to a slow system. Real-time scheduling and energy minimization are
therefore closely related problems, that should be tackled in conjunction for

best results.

13

Table 2.1: Variable voltage processors.

Processor H Clock Range ‘ Voltage Range Transition Time
Transmeta Crusoe [26] 200 — 700MHz 1.1 — 1.65V 300us
AMD Mobile K6 [3] 192 — 588MHz 0.9 — 2.0V 200us
Commercial Intel PXA250 [4] 100 — 400MHz 0.85 — 1.3V 500us
IBM PowerPC 405LP [27] 152 — 380MHz 1.0 - 1.8V 400pus
Compaq Itsy [28] 59.0 — 206.4MHz 1.0 — 1.55V 189us
TI TMS320C55x [25] 6 — 200MHz 1.1-1.6V 300us(1.1 — 1.6V)

3.3ms(1.6 — 1.1V)

UC Berkely IpARM [1] 5 — 80MHz 1.2 - 3.8V T0us
Academic 140us(59 «+» 221MHz)
TU Delft LART [29] 59 — 221MHz 0.8 — 1.5V 40us(0.8 — 1.5V)

5.5ms(1.5 — 0.8V)

2.2.2 Variable-Voltage Processors

Recently, many variable-voltage processors have been announced. Table 2.1
shows the representative commercial variable-voltage processors and aca-
demic trials to implement variable-voltage processors. These processors
provide finite numbers of voltage and clock levels within the voltage/clock
range specified. Each processor requires a time delay to change the volt-
age/clock level. Most of variable-voltage processors except Transmeta’s
Crusoe provide the software mechanisms for users to be able to control the
voltage and clock level such as TIT’s Power Scaling Library [25]. Appendix A
contains the detail descriptions of variable-voltage processors. Throughout
this dissertation, we make the following assumptions on a target variable-

voltage processor:

1. The processor provides a special instruction, change _f V(f.;), that
dynamically controls clock frequency f.r and its corresponding volt-

age Vyq of the processor based on Equation (2.6).

14

2. far and Vyg have continuous values within the operational range of

the processor.

3. When the processor changes (fux1,Vaa1) to (fare,Vaaz), there is a clock /voltage

transition overhead period of Cyro cycles!.

4. During clock/voltage transition, the processor stops running.

Assumptions (1), (3) and (4) are valid for most of variable processors. Es-
pecially, assumption (4) is conservative considering recent variable-voltage
processors such as TI’'s TMS320C55x which stops during the clock tran-
sition but operates during the voltage transition. Assumption (2) is not
realistic because most of variable-voltage processors provide only discrete
voltage/clock levels. However, our work can support the processors with
a finite number of voltage/clock levels with a slight modification of speed

selection algorithm.

Generally, dynamic voltage scaling is applied only to processor and on-
chip memory (on-chip cache). Other peripherals and external memory have
their own clock frequencies different from internal processor frequency and
sustain the clock frequencies despite of the clock scaling of processor. In
this dissertation, we consider only the processor’s energy consumption and
assume that the system performance is proportional to the processor’s clock

frequency. The DVS techniques considering other external devices as well

IThe clock/voltage transition time is different depending on the source voltage and the target voltage.
However, we assumed there is a fixed voltage transition time for a simple explanation. Since we represent
the fixed clock/voltage transition overhead period by the number of cycles, it can vary depending on the
current clock frequency. For a simpler analysis, we assume that Cy 1o cycles were counted under the

maximum clock frequency.

15

as processor is one of our future works.

2.3 Related Works

For hard real-time systems where timing constraints must be strictly satis-
fied, a fundamental energy-delay tradeoff makes it more challenging to ad-
just the supply voltage dynamically while minimizing the energy consump-
tion and guaranteeing the timing requirements. For this reason, extensive
studies have been recently carried out on the DVS problems. For hard
real-time systems, there are two kinds of voltage scheduling approaches de-
pending on the voltage scaling granularity: intra-task DVS (IntraDVS) and
inter-task DVS (InterDVS). The intra-task DVS algorithms [14, 30] adjust
the voltage within an individual task boundary, while the inter-task DVS
algorithms determine the voltage on a task-by-task basis at each scheduling
point. The main difference between them is whether the slack times are
used for the current task or for the tasks that follow. InterDVS algorithms
distribute the slack times from the current task for the following tasks,
while IntraDVS algorithms use the slack times from the current task for the

current task itself.

2.3.1 InterDVS Algorithms

The InterDVS algorithms are classified depending on slack estimation method.
Slack times generally come from two sources; worst-case slack times are the
extra times identified statically when the worst-case processor utilization is

smaller than 1, while workload-variation slack times are caused from run-

16

time variations of the task executions.

The worst-case slack estimation methods is to compute the speed of each
task, which is defined as the clock speed to minimize the energy consump-
tion guaranteeing the feasible schedule of a task set [5, 6, 31, 30, 32]. For
example, in EDF scheduling, if the worst case processor utilization (WCPU)
U of a given task set is lower than 1.0 under the maximum speed f,42, the

task set can be scheduled with the speed f =U - [0z

Even though a given task set is scheduled such that there are no worst-
case slack times, since the actual execution times of tasks are usually much
less than their WCETSs, the tasks usually have workload-variation slack
times. One simple method to estimate the workload-variation slack time is
to use the arrival time of the next task [8, 31]. (The arrival time of the next
task is denoted by NTA.) Assume that the current task 7 is scheduled at
time ¢. If NTA of 7 is later than (t4+WCET(7)), task 7 can be executed at

a lower speed so that its execution completes exactly at the NTA.

In the priority-driven scheduling such as RM and EDF, we can exploit
the basic properties of the scheduling to estimate workload-variation slack
times. The basic idea is that when a higher-priority task completes its
execution earlier than its WCET, the following lower-priority tasks can use
the slack time from the completed higher-priority task. It is also possible
for a higher-priority task to utilize the slack times from completed lower-
priority tasks. However, the latter type of slack stealing is computationally
expensive to implement precisely. Therefore, the existing algorithms are

based on heuristics [10, 12].

Another method is to use the processor utilization. The actual processor

17

utilization during run time is usually lower than the worst case processor
utilization. We can estimates the required processor performance at the
current scheduling point by recalculating the expected worst case processor
utilization using the actual execution times of completed task instances [11].
When the processor utilization is updated, the clock speed can be adjusted
accordingly. The main merit of this method is its simple implementation,
since only the processor utilization of completed task instances have to be
updated at each scheduling point. Kim et al. [33] evaluated the energy
efficiencies of state-of-the-art InterDVS algorithms.

There have been studies on InterDVS for special configurations. Im et
al. [34] proposed an InterDVS technique for multimedia applications. Their
algorithm fully utilizes the idle intervals with buffers in a variable speed
processor and determines the minimum buffer size to achieve the maximum
energy saving. The energy performance of the technique is strongly depen-
dent on the available buffer size. This technique has a limitation that it
can be used only when a system can buffer multiple input data or output

results.

Hong et al. [35] have proposed a set of heuristic algorithms to schedule a
mixed workload of periodic and sporadic tasks. Their algorithm optimizes
the energy consumption while ensuring that all periodic tasks meet their
deadlines and accept as many sporadic tasks, which can be guaranteed to

meet their deadlines, as possible.

Shin and Kim [36] have proposed scheduling algorithms for the systems
which have both periodic tasks and aperiodic tasks. The algorithms tries

to minimize the energy consumption guaranteeing the timing constraints

18

of periodic tasks while bounding the maximum increase of aperiodic tasks’
response time. They exploited the behaviors of the bandwidth-preserving
servers [37] for aperiodic task scheduling such as deferrable server, sporadic

server, total bandwidth server and constant bandwidth server.

2.3.2 IntraDVS Algorithms

Comparing with InterDVS techniques, few approaches have been introduced
for IntraDVS techniques. Lee and Sakurai [13] proposed an intra-task volt-
age scheduling where each task is partitioned into fixed-length segments.
After the completion of each segment, the supply voltage is adjusted de-
pending on the slack time made by the previous segment. This is the same
idea of InterDVS if we regard the segment as a task. Although [13] shows
a significant improvement in the energy reduction, it provides no system-
atic methodology for developing DVS-aware intra-task applications. For
example, there exists no systematic guideline of selecting the best program
locations where voltage scaling code is inserted. Consequently, the program-
mer himself should find out proper locations based on his own knowledge. It
implies that the technique described in [13] is very difficult to be applied to
practical applications, since average programmers are generally not familiar

with low-energy software issues as well as timing analysis techniques.

Another approach of IntraDVS is based on the stochastic method [30, 38].
This technique is motivated by the idea that it is usually better to start at
low speed and accelerate execution later when needed than to start at high
speed and reduce the speed later when the slack time is found in the program

execution. However, it requires the probability density function of execution

19

times of a task to calculate the optimal speed schedule. Furthermore, the
stochastic IntraDVS requires OS modification like InterDVS and cannot
utilize all the slack times. In Chapter 4, we compare the energy efficiency of

the stochastic IntraDV'S technique with our proposed IntraDVS techniques.

Hsu and Kremer [39] also proposed a different kind of IntraDVS. While
our IntraDVS estimates the slack times of a task based on the changes of
the remaining execution cycles due to the control flow, their technique finds
the slack times based on the architectural characteristic of microprocessor.
By identifying the program regions in which the CPU is mostly idle due to
memory stalls, their technique slows down the clock speed of CPU in the
regions for energy reduction with negligible performance loss. However, this
technique should be carefully used in real-time systems due to the perfor-
mance degradation. Since this technique is different from our IntraDVS in
the kind of slack times exploited, it can be used together with our IntraDV'S

for a better energy performance.

20

Chapter 3

Intra-Task Voltage Scheduling

Framework

3.1 Basic Idea

Consider a hard real-time program P with the deadline of 2 sec shown
in Figure 3.1(a). The control flow graph (CFG) Gp of the program P is
shown in Figure 3.1(b). In Gp, each node represents a basic block of P
and each edge indicates the control dependency between basic blocks. The
number within each node indicates the number of execution cycles of the
corresponding basic block. The back edge from b5 to b,, models the while
loop of the program P.

In developing hard real-time systems where tasks have strict timing con-
straints (i.e., deadlines), the worst-case execution times (WCETs) of the

tasks are estimated in advance (prior to run time) to guarantee that re-

21

quired timing constraints are met. Such WCETs can be predicted by exist-
ing analysis tools that produce safe and accurate prediction results [40, 21].
Using a WCET analysis tool, we can find the path pyorst = (b1, buwn, b3,
ba, bs, bywh, b3, ba, bs, byn, b3, ba, bs, by, bz‘f, beatia, bs, bio, bi1, b?) as the
worst-case execution path (WCEP) for the example program P, assuming
that the maximum number of while loop iterations is set to 3 by user. The
predicted execution cycles of pyors: i, therefore, 200 x 10° cycles!, which
is the worst-case execution cycles (WCEC). If a target processor operates
at the maximal clock frequency of 100 MHz, the program P completes its

execution in 2 sec, resulting in no slack time.

However, there are large execution time variations among different ex-
ecution paths. In particular, the average-case execution paths (ACEPs)
complete their executions much earlier than the WCEP(s) does [8]. For the
example program shown in Figure 3.1(b), there exist 51 different execution
paths. While the WCEP pyors: takes 200 x 10° cycles, twelve of 51 possible
execution paths take less than 100 x 10° cycles. For such short execution
paths, the workload-variation slack times are generated. If we were able to
identify them in the early phase of its execution, we can lower the clock
speed substantially, thus saving a significant amount of energy consump-
tion. Consider the path p; = (b1, beaun, bs, bo, b11, bif, beana, bs, bio, b11, b7) of
Figure 3.1(b) whose execution takes 95 x 10° cycles. In the ideal case, we

can start the execution with the clock speed of 47.5 MHz without violating

IFor simple explanations, we assume that the number of execution cycles for an ex-
ecution path is the sum of all basic blocks’ execution cycles. This is true when the
target machine is a single issue architecture without pipeline and cache. However, our
algorithms can be used for any architecture if there is a timing analysis tool for the

architecture.

22

main(){
S1;
if (condl) call func;
else
while (cond2) {
S3;
if (cond3) $4;
S5;

main func

}
if (cond4) call func;

S7;

}
the maximum

func() { number of loop

S8; iterations =3

if (cond5) S9;

else S10;

S11;

}

@ (b)

Figure 3.1: An example program P: (a) an example real-time program with

the 2 sec deadline and (b) its CFG representation G p

the 2 sec deadline, if we can perfectly predict that the actual execution
path will be p; before the processor starts ;. Unfortunately, we do not
generally know in advance which execution path will be taken by the next
program execution. Therefore, we cannot start with the 47.5 MHz clock

speed, although this will improve the energy efficiency significantly.

The solution for this problem is to adjust the clock speed within the task
depending on the workload-variations. For example, when the program
control flow follows the execution path p; of Figure 3.1(b), we can reduce
the clock speed at edge (b1, beqy1) because we know this control flow dose not
follow the WCEP. In the proposed IntraDVS algorithm, we identifies the
appropriate program locations where the clock speed should be adjusted,
and inserts clock and voltage scaling codes to the selected program locations

at compile time. The branching edges of the CFG, i.e., branch or loop

23

statements, are the candidate locations for inserting voltage scaling codes

because where the changes of remaining execution cycles are occurred.

3.2 Problem Modeling

We consider a real-time task 7 with the deadline D. The task 7 is rep-
resented by its CFG G,. If the task 7 has N number of basic blocks,
bi, by, - ,by, G, consists of N nodes. (We assume that b; is the entry
basic block of the task 7.) We associate each basic block b; with its basic
block information (BBI) structure. The BBI structure BBI(b;) of the basic
block b; consists of three entries: Cgc(b;), S(b;), and E(b;). Cgc(b;) de-
notes the number of clock cycles? needed to execute b;. S(b;) represents the
processor speed in clock frequency at which b; is executed. E(b;) is defined
as Cpc(b;) - S(b;)* by Equation (2.4). (We assume the supply voltage is
proportional to the clock speed.) E(b;) is the relative energy consumption

during the execution of b;.

Similar notations are defined for execution paths. p; denotes an execution
path of a task 7. p; can be expressed as a sequence of basic blocks. Crc(p;)
represents the number of execution cycles when p; is executed. For paths,
we use a notation ®% which means the set of all the partial execution paths

starting from basic block b;.

2Note that BBI definition above is represented in execution cycles, instead of execution
time. This is because, as we adjust the clock speed on a variable-voltage processor, the
execution time is changing for a given basic block, but the number of execution cycles
remains constant. Given the number of execution cycles, the execution time can be

computed by multiplying the clock cycle time.

24

The IntraDVS algorithm is to find how much we should change the clock
speed at each edge (;,b;) in the CFG of a target program to minimize the
total energy consumption of the program satisfying the timing constraint of
the program. That is, we should find the value r; ; = S(b;)/S(b;) for each
edge (b;, b;). We call this ratio a speed update ratio (SUR). For an execution

path pp,, = (by,--- , by,), S(b;) can be represented as
S:) = So- [rern (S(b:) > Smin and S(b;) < Spaa), (3.1)
k=1

where S is the initial clock speed at the start of a program and S, (Simaz)
is the minimum (maximum) value of the clock speed provided by the target

variable-voltage processor. We can also denote E(b;) as

E(bz) = CEC(bz) . S(bz)z = CEC(bz) . (So HT]C,L/C)% (32)

Then, the energy consumption during the execution of the path p,, is

proportional to

E(py) = Zm:E(bi) = zm: <OEC(bi) - (So Hrkl,k)2> : (3.3)

From this formula, we can represent the target function to minimize as

> Epm)-probpm) = Y li (CEc(bi)-(SOHTk—l,kV) 'prob(pm)] (3.4)

Vpm €P1 Vpme®b1 Li=1

25

prob(pm,) is the probability that the path p,, is executed among all the
paths in @b,

There is a timing constraint for this problem. Since the target program
7 should be completed before the deadline D, we can denote the timing

constraint as

g S) _ f _Ceelb) _ (3.5)
7 i=1 S(bl) i=1 S(] Hi rk;,l’k -

Using a simple inference, we can conclude the optimal solution satisfies

< Crolb < Cpelb;
Vom, Y Cocl) _ oy, > Crell) g, (3.6)
— Solli re-1k — DI\ i1

So, Sp can be estimated when r; ; for each edge (b;,b;) is determined.

Since the formula (3.4) is a non-linear equation for r; ;, this problem is
a Non-Linear Program (NLP) problem. Generally, there is no polynomial
time algorithm for NLP problem. So, we propose an heuristic algorithm

similar to the gradient descent method.

Figure 3.2 shows the heuristic search algorithm. For each r;;, we set
the initial value of it to 1, which means there is no speed update at the
corresponding edge, and constitute the set R which has all edges in G, of
the target program. We change r; ; as the amount of Ar, which is a very
small number between 0 and 1, during the successive iterations in Figure 3.2.
In each iteration, we first find the edge (b;, b;) having the largest AE. AE
means the energy gain when the r; ; is changed to r; ; = r; ;- Ar. From the

formula (3.1), we can represent AE as

26

AE(TZ'J') = S 1 — AT Z prob Pm ZCEC bk k)2- (37)

pm€‘1>
After we change the value of 7; ;, we should check whether the timing con-
straint of formula (3.5) is satisfied in spite of the increased execution time

of p,,. If there is no deadline miss, we try again the same process.

When there is a deadline miss, we can choose two kinds of approaches.
First approach is to admit no speed-up, that is, SURs are always smaller
than 1. In this case, the clock speed only decreases as a target program
executes. So, there is no chance to solve the deadline miss problem by
increasing the clock speed at an edge after (b;, b;). We should restore 7} ; to
r;,; and eliminate the corresponding edge (b;,b;) from the set of candidate
edges, R. Second approach is to admit speed-up. In this case, since the
clock speed can be increased by an edge after (b;,b;), we can decrease r; ;
despite of the deadline miss. To maintain the selected edge (b;, b;) in R, we
should find the other edge, say (by,bx), which has the smallest AE. AE
means the energy loss when the 7, is changed to 7}, , = 7, AT (AT > 1).
After we change 7, the potential energy gain should be checked whether
AFE is larger than AE. If there is no edge satisfying such a condition, we

restore r; ; to r;; and eliminate the corresponding edge (b;, b;) from R.

This heuristic algorithm shows following features: (1) The nearest edge
from the entry basic block is first selected from R because it has the largest
value of AFE. After the corresponding SUR of the selected edge is fixed,
the following edges are processed. (2) The nearest edge from the exit basic
block is first selected to increase its SUR. (3) In the constraint that SURs

should be smaller than 1, S(b;) is determined to be close to the value under

27

Set r =1 for al edges
Set R asthe set of al edges

v

Find the edge (bi,bj) having thelargest AFE
(AE = Energy gain when i is changed to ri= N Ar)

‘ Change rjtor, ‘

47

'R=R{(b,b)} v No
A ‘ Deadline miss? }
No + Yes
rll'HriJ 4—{ Speed-up is possible? ‘
A + Yes

Changer, tor',

Find the edge (b,,b,) which hasthe smallest A F

and makes WCET to be smaller than deadline
(AE=Energy losswhenr, , ischangedto ', = 1., A7)

No

\ ' \

Yes

A

‘ AE> AE ‘

A

Figure 3.2: The heuristic search algorithm for IntraDVS problem.

28

which the target processor can execute MAX) cov (Crc(ps)) cycles until
the deadline. MAX, co0;(Crc(p))) is the remaining worst-case execution
cycle of b;. Namely, the SURs are optimal to the remaining worst-case
execution path. (4) Without such a constraint, the SURs are determined so
that the average energy consumption is minimized satisfying the deadline
constraint. In this case, the determined speed is near to the optimal speed

value for the average-case execution path.

3.3 Voltage Scheduling Using Reference Path

The algorithm shown in Figure 3.2 has several problems. First, it requires
a significant computation time. The computation time is proportional to
the number of basic blocks and execution paths. Considering that general
programs have at least hundreds of basic blocks, it is difficult to use the
algorithm for real applications. Second, we should insert voltage scaling
codes at most of edges in a program. This introduces a significant increase

in code size. Therefore, we need more efficient algorithms.

From the features of the heuristic algorithm, we can modify the algorithm
to the less complex algorithm. We predict an execution path which the
control flow will follow. There can be several methods how to predict the
execution path. A simple method is to use the WCEP. Once the execution
path is predicted, we set the initial clock frequency and its corresponding
voltage assuming that the task execution will follow the predicted execution
path. We call the predicted execution path as the reference path because

the clock speed is determined based on the execution path.

29

When the actual execution deviates from the (predicted) reference path
(say, by a branch instruction), the clock speed can be adjusted depending on
the difference between the remaining execution cycles of the reference path
and that of the newly deviated execution path. If the new execution path
takes significantly longer to complete its execution than the reference execu-
tion path, the clock speed should be raised to meet the deadline constraint.
On the other hand, if the new execution path can finish its execution earlier
than the reference execution path, the clock speed can be lowered to save
the energy consumption. Once the actual execution takes a different path
from the reference path, a new reference path is constructed starting from

the deviated basic block.

In actual implementation of the IntraDVS, we do not need to maintain
the reference path. To implement the IntraDVS algorithm efficiently, we
identifies the appropriate program locations where the clock speed should be
raised or lowered relative to the current clock speed using a static program-
analysis technique. For run-time clock speed adjustment, it inserts voltage
scaling codes to the selected program locations at compile time. The branch-
ing edges of the CFG, i.e., branch or loop statements, are the candidate
locations for inserting voltage scaling codes because where the prediction
miss for the reference path can be occurred. They are called as Voltage
Scaling Edges (VSEs) because the clock speed and voltage are adjusted at
these edges. At each VSE (b;,b;), the clock speed is determined by the
predicted remaining execution cycles (RPECs) of b;, Crprc(b;). The value
of Crprc(b;) depends on the prediction algorithm.

There are two issues in the IntraDVS. One is how to predict the reference

path. Depending on the prediction method, the IntraDVS framework can

30

be implemented into different IntraDVS algorithms. In this dissertation,
we adopt two kinds of reference paths, i.e. remaining worst-case execution
path (RWEP) and remaining average-case execution path (RAEP). Based
on the prediction method, there are two different algorithms, i.e. RWEP-
based IntraDVS and RAEP-based IntraDVS. In the former, the clock speed
is monotonically decreased at all the VSEs. This is correspond to the case
speed-up is not admitted. On the contrary, in the latter, the clock speed
may be increased as well at some VSEs. In this case, we classify VSEs
into Up-VSEs and Down-VSEs. The clock speed is increased at an Up-VSE
while it is decreased at a Down-VSE.

The second issue is how to select VSEs. This is to determine the voltage
scaling points in the program code. The optimal points are the earliest
points where we can detect the changes of the remaining predicted execution
cycles. We use two kinds of selection algorithms, one is to use only the
control flow information and the other is to use the data flow information
in addition. Selecting VSEs, the timing overhead due to voltage transition
and inserted codes should be considered. We provide the solutions for these

issues in Chapters 4 and 5.

31

Chapter 4

IntraDVS Using Static Timing
Analysis

4.1 RWEP-based IntraDVS Algorithm

In the RWEP-based IntraDV'S, we use the remaining worst-case execution
cycles (RWECs) Crwpc(b;) for the predicted remaining execution cycles.
This guarantees that all possible execution paths meet the deadline. Fig-
ure 4.1 shows an augmented CFG GEWEP with Cry pe(b;) values for the
RWEP-based IntraDV'S. Using the static timing analysis tools, we can com-
GRVEP

pute Crwrc(b;) for each basic block b; and construct the graph

statically. To compute the worst-case execution cycles, we use follow equa-

32

[2.0¥108]

%
1.9+109 .9 107]
1.5%108] 9*105
1.1*108]
07%108 [L5* .

[1.7%109]
[1.3109]
[0.9%108]

[1.6%109]
[1.2+109]
[0.8+109]

Figure 4.1: A RWEP-based CFG GREWFP.

tions:

S :if(E) then S;; else Ss.
WCEC(S) = WCEC(E) +max(WCEC(S,), WCEC(S,))
S : while(E) S;.
WCEC(S) = (WCOEC(E) + WCEC(S))) - Nypaw + WCEC(E)

where N, means the maximum number of loop iterations.

For the basic blocks related to the while loop (i.e., by, b3, by, bs), the cor-
responding nodes are associated with multiple Cry pc(b;) values, reflecting

the maximum three iterations of the while loop.

With the graph GEWEP we can identify VSEs that drops the remain-
ing worst-case execution cycles faster than the current execution rate. For
example, in Figure 4.1, five VSEs are identified, i.e., (b1, bcan1), (buwn, bif),
(bif,b7), (bs,b5) and (bs,bg). In Figure 4.1, these edges are marked by the

33

symbol e. When the thread of execution control branches to the next basic
block through one of VSEs, say (b1, beau1), the clock speed can be lowered be-
cause the remaining work is reduced by the difference between Crw g (bwn)
and Crwpc(ber). By reducing the clock speed so that the Crwpe(beann)
cycles can be completed exactly at the deadline, the proposed technique
always meets the required timing constraint. Since the voltage scaling deci-
sions are made at compile time, there exists no run-time overhead directly
related to the selection of voltage scaling edges. In addition, the compile-
time static analysis procedure does not require special programmer’s in-
terventions other than ones typically required in developing normal hard

real-time programs (e.g., the maximum number of loop iterations).

At the entry basic block by, the starting speed is set to Cycpc/D, where
Cwcerpce is the worst-case execution cycles of the whole program. When we
denote Crwpec(t) as the remaining worst-case execution cycles at time ¢,
Crwec(t) is linearly decreased at the rate of clock speed along with the
program execution, as far as the execution follows the worst-case execution
path pyorst. However, if the execution deviates from the basic block b; in
the worst-case execution path p,..s to other basic block b; not included in
Pworsts Crw pc(t) drops by the difference between Cry po(b;) — Cre(b;) and
Crwrc(b;) after the execution of b; is completed. Then, we adjust the clock
speed at the time ¢, S(t) as follows:

_ Crwec(t)

S = =525 (4.1)

Figure 4.2 shows how Cry gc(t) dynamically changes as the path p;=(by,
beati1, s, b, b11,bif, beaiia, bs, bio, b1, b7) of the example program P shown

in Figure 4.1 is executed. In Figure 4.2(a) where no speed scheduling is

34

Crwrc(t)

5 v Crwec(t)
(106¢y cles) RWEC

r'y 10%ygles
200 (ﬂ)

200
150 150
(b1) 100MHz i (ubean) S 100MHz
< 53MHz
100
100+
¥ (b3,)
(bs, bg)
50 - 50l
0 | R, 0 1 X
1 2 1 2
- - >
execution time idleinterval time(see) execution time fime(sec)

(a) (b)
Figure 4.2: The changes of Crypc(t) over different speed scaling algo-
rithms: (a) no IntraDVS and (b) RWEP-based IntraDVS.

35

used, Crwrc(t) drops at two edges, (b1, bequ1) and (bg, bg). Since no speed
scheduling is used, C'rw pc(t) is decreased at the rate of 100 MHz, resulting
in a slack time interval of 1.05 sec. Figure 4.2(b) shows the effect of speed
scheduling for the same execution path assuming there is no voltage transi-
tion overhead. When the remaining worst-case execution cycles drops, the
minimum processor speed that can complete the remaining program execu-
tion before the deadline also drops. Thus, processor speed is changed from
100 MHz to 53 MHz when Crwpc(t) drops right after the execution of b
is completed. When Cry rc(t) drops right after bg, speed is also changed
due to the same reason. Crwgc(t) is dropped vertically at VSEs in Figure

4.2. The number of the reduced cycles of Crwrc(t) at VSEs is denoted as

Csaved .

Theorem 1 If we can use any real value of clock frequency f, 0 < f <
fmaz, ot a variable-voltage processor and there is no overhead time dur-
ing the clock and voltage transition, the execution time of a task scheduled
by the IntraDVS algorithm with a relative deadline D 1is exactly D when
WCOEC/ finaz < D.

Proof. The task starts with the initial speed WCEC/D. Assume the task
meets a VSE at time ¢ but meets no VSE after the time ¢. The IntraDV§
algorithm sets the clock speed S(t) such that

S(t) = _C(Rgfict()t)

as shown in Equation (4.1). Crwgc(t) is smaller than or equal to the
following value:

WCEC —t- werc

36

So,
. CRWEC(t) < WCEC

S() = (D-t) = D

Therefore, we can use the clock speed of S(t) at time ¢. Then, the execution

S fma:c-

time of the task is

CrwEec(t)

t+ S

=t+(D—-t)=D.

Theoretically, since the IntraDVS can fully exploit all workload-variation
slack times, all of task executions are completed exactly at the deadline.
However, some slack time can be generated in real variable-voltage proces-
sors even though we use the IntraDVS technique. This is because variable-
voltage processors provide only finite numbers of clock/voltage levels and
require voltage transition times to change the clock/voltage level. These
two factors prevent IntraDVS from adjusting the clock/voltage level at all

VSE candidates (i.e., branching edges).

Figure 4.3 compares how the speed and voltage change depending on
whether the IntraDV'S is used or not. Assume that no energy is consumed in
an idle state. When the execution follows the path p;, the energy consump-
tion ratio of Figure 4.3(b) to Figure 4.3(a) is 0.288. With the IntraDVS,
the energy consumption is reduced by 71.2%.

4.2 Selection of Voltage Scaling Edges

To adjust the clock speed and voltage at run time, the voltage scaling edges

should be selected at compile time considering the saved cycles and the

37

speed
(voltage)
100MH2z

(2.5V)

b beatt1 bo| buy | by beatt
b b

ideinterval deadine
[>
0 05 10 15 2.0 time
(a)
speed
(voltage)
100MHz,
(25V)
53MHz deadline
(1L32v) 44MHz
by 1) Y
Deatnt b
4
bg by byy bis Cbn bio bu br
8
0 05 10 15 2.3 time

(b)
Figure 4.3: Speed and voltage changes: (a) without IntraDVS and (b) with
the RWEP-based IntraDV'S

overhead cycles. Observing its behavior, VSEs are classified into B-type
VSEs and L-type VSEs.

4.2.1 B-type Voltage Scaling Edges

A B-type VSE corresponds to the CFG edge between two basic blocks that
are part of conditional statements such as the if statement. For the if
statement, the WCET is predicted to be the larger of two execution times,
one for the then path and the other for the else path. Assume that the
condition of the if statement is evaluated in b,,,4, the then path starts from
binen and the else path starts from b.,.. If the condition of the if statement
evaluates to true and the then path is shorter than the else path, Cry rc(t)

is decreased by (Crwrc(beise) — Crwrc(binen)). In this case, the speed can

38

1 1 c b en
be decreased before the by, block is executed by a ratio of %((b”;))

This value is a SUR and is represented by 7(beona; bthen)-

In adjusting clock/voltage at VSEs, several instructions are required
other than voltage-changing instruction (change_f_V(fux)). We denote the
number of cycles needed for these extra instructions at a B-type VSE as
Cysop,- The total number of overhead cycles Coyerneqad, for a B-type VSE,
therefore, is given by Cyro + Cvso,. The SUR 7(b;, b;) for a B-type VSE

(b, b;) is calculated as follows:

CRWEC(bj)
bi; b;) =
T(]) CRWEC(SUCCworst(bi)) - OoverheadB

(4.2)

where succyorsi(b;) is the basic block by that is an immediate successor
of b; and has the largest Crwpgc(by) among all the successors of b;. If
Crwec(b;) > Crwec(succyorst(bi)) — Coverheadys» that is 7(b;, ;) > 1, the
edge (b;, b;) is not selected as a VSE. For a VSE between b; and b;, a SUR
(b, bj) is multiplied to the current speed before b; starts its execution. For
example, assuming Coperneady @S 0, S(beayn) in Figure 4.1 is changed from

100 MHz to 53 MHz (=100 MHz x 100x10%)

190x 106

Theorem 2 Using the IntraDVS algorithm with the speed update rule in
Equation (4.2), the execution time of a task with the relative deadline D is
no more than D at a variable-voltage processor which provides continuous

clock frequency f such that 0 < f < fraz-

Proof. Assume that a task has the worst-case execution cycles W. If the

control flow meets a VSE (b;,b;) at the time ¢ and succyorsi(b;) is b, the

39

speed is changed to

Crwec(b;)

S(J) S() CRWEC(bk) - CoverheadB

where S(b;) < fiaz- Since there is no voltage transition at the edge (b;, by),
S(b;) is same to S(by). Assume that

S(b:) = S(br) = Crwpe(be) /(D — t — 6) (4.3)

where (6 > 0). If the first clock/voltage transition occurs at the VSE (b;, b;),
this assumption is true because S(b;) = W/D and Crwprc(by) =W - (D —
t)/D. For the cases where (b;,b;) is not the first VSE, the assumption will
be shown to be true using S(b;).

Then, we can rewrite S(b;) as follows:

S(bi) - Crwec(b;)

b;) =
S(J) S(bz) . (D —t = 5) — Co'uerheadB

(4.4)

During the clock and voltage transition, there is the overhead time Cyyerneads / fnaz-
If the VSE (b;, ;) is the last VSE which the task meets during execution,

the completion time is as follows:

¢ CoverheadB CRWEC(b])) (S(bz) : (D —t— 5) - Coverheadg)
+ +
fmam S(bl) : CRWEC(bj)
Coverhead Coverhead
= 4 2hds (Dt §) - —2erheds
fmaa: () S(bz)
1 1
= D — (= — <D 4.
(6 + OoverheadB (S(bz) fmam)) =~ (5)

If the task execution meets another VSE (b, b,) after (b;, b;) at time ¢’ and

SUCCyorst (bu) is bw)

C b, C b,
S(b]) - RWEC(CO‘ZJZTheadB - ;Ific_(g/) (46)
D—t—(5+7s(bi))
Crwrc(by) = Crwrc(by) — (' —1)-S(b) (4.7)

40

From Equations (4.6) and (4.7),

_ Crwec(by)

S(by) = (g = S(b) (4)

From Equation (4.8), we can know that the assumption of Equation (4.3)
is true. Consequently, we can conclude that the execution time is smaller

than D. O

4.2.2 L-type Voltage Scaling Edges

Although WCEC is predicted assuming that a loop will be iterated by the
user-provided maximum number of loop iterations, the loop is generally
iterated smaller times than the maximum loop bound. In this case, slack
time occurs and clock speed can be scaled down. We call this type of scaling
L-type scaling. L-type VSEs correspond to the loop-exit edges in a CFG.

In the L-type scaling, the number of saved cycles Clqpeq for a loop [is given

by

Csaved(l) - CWCEC(Z) ' (Nworst(l) - Ne:l:ec(l)) (49)

where Cyycrc(l) is the number of worst-case execution cycles to execute
the loop [once, Nyorst(l) is the number of user-provided maximum loop
bound value for the loop [, and Nege.(l) is the number of actual loop it-
erations measured at run time. Consider the edge (byp, bif) in Figure 4.1.

Assuming Negec(!) = 1, and Coperneaa, = 0, S(bif) is updated as follows:

41

Crwrc(biy)
S, _ bup) - 4.1
(f) S(bun) CRWEC(bif) + Csavea(l) — Coverhead, (410)

60 x 10°
= S(byp) -
Sun) - 505 T05 40 x 10 (3—1)
- S(bwh) : r(bwhabif)

When S(by) is 100 MHz, S(b;s) is reduced to 43 MHz before executing
bis.

Unlike a B-type VSE, calculating the SUR for an L-type VSE requires
the run-time information such as Neze.(I)!. The SUR may be larger than 1
depending on the value of Negee(l) and Copernead, - 10 avoid this problem,
we select an L-type VSE in two phases. First, we select a loop-exit edge
of a loop [as an L-type candidate VSE if Cycpc(l) > Covernead, , Which
means that if Negec(l) < Nyorst(l), the SUR is always smaller than 1. When
Negee(l) = Nyorst(l), the speed is not changed but the timing behavior of
an original program is changed due to the code inserted to check whether
Nezee(l) = Nyorst(l) or not. Among the L-type candidates, we choose the
final L-type VSEs by the algorithm explained in Section 4.4. Although L-
type VSEs are more complicated than B-type VSEs, the contribution of L-
type VSEs on the overall energy reduction is much bigger, since slack times
from loop executions are generally much larger than those from conditional

statements.

I'Note that the selection of L-type VSEs are done in compile time. The run-time information such

as Negec(l) is necessary when calculating the speed update ratio.

42

4.2.3 VSEs in Loops or Functions

The remaining worst-case execution cycles of nodes in loops or functions
are changed depending on the iteration number of the loop or the location
from which the function is called. So, we cannot represent the SUR of a
VSE in loop or function as a fixed value. Instead, the SUR is represented
by a formula using the run-time informations as variables. For example, in

Figure 4.1, the SUR of (b3, bs) is represented as

CEC(bS) + CEC(wh) + CWCEC(Z) (Nworst(l) - ea:ec(l)) + CRWEC(bzf)

r(bs,bs) = Crc(bs) + Cec(bs) + Cre(byn) + Cwerc(l) - (Nworst(l) — Negec(l)) + Crwrc (biy)

where [is the loop in Figure 4.1. r(bs, bs) is 0.957 at the first iteration
but 0.947 at the second iteration of the loop I.

For a basic block b; in the function f, we define C'ry rc(b;) by the remain-
ing worst-case execution cycles of b; in the scope of the function f because
the remaining execution cycles of b; in the overall program are changed de-
pending on where the function f is called. Therefore, we need Crw gc(b;) to
get the speed update ratio of b;, where b; is the return point of the function

f. For example, the SUR of (bg, bg) in Figure 4.1 can be calculated as

Crwrc(by) + Crwrc(bif)
Crwrc(bio) + Crwrc(bif)

when the function is called from b,y .

T(bg, bg) =

However, denoting the SUR as the formula using the run-time informa-

tions is an obstacle to select VSEs statically and insert the voltage scaling

43

code. To avoid this problem, we propose a simple solution as follows. We
denote all the possible SUR values of edge (b;,b;) as ril,j, -, ri. For exam-
ple, the VSE candidate (b3, b5) in Figure 4.1 has three possible SUR values,
735,755 T35 because it can be executed three times in the loop. If any rf;

h are also smaller than 1. The is based on the

is smaller than 1, all other 7',

following simple formula.

a—+1 a—I a
1 — <1 if =<1 .
b+l< andb_l< i b< ,a>1, and b > 1

a

If we represent any SUR, rzl-fj of a VSE candidate in loop or function as ,
the other SUR rzlfj of the VSE can be denoted by ‘;—Ll or ‘;—:ll, where [is the

execution cycles between two instances of the VSE candidate. Since ’;—if or

‘g—:; is also smaller than 1 if § < 1, we can say that rZ’-fj is also smaller than 1
if rzl-fj < 1. This means that it is sufficient to check only one instance of the
VSE candidate to know whether an edge in loop or function can be selected

to a VSE.

4.3 Code Transformation

Since the SUR value of a VSE may not be determined as a fixed value at
compile time as mentioned, the target program should calculate the SUR
using the VSE information at run time. The VSE information consists of 5
elements, i.e., Type, preRWEC, postRWEC, 1oopWCEC, and MI. The preRWEC
and postRWEC are Crwpc(bi) — Cre(b;) and Crwpe(b)) for a VSE (b;, b)),

respectively. These values are used to calculate the speed update ratio. For

44

B-type VSE, the SUR is postRWEC/prePWEC. For L-type VSE, 1oopWCEC
and MI are used additionally. The 1oopWCEC is the worst-case execution
cycles of L-type VSE’s corresponding loop (Cwerc(l) in Equation (4.2)).

MI is the maximum number of loop iteration.

Figure 4.4 shows the code examples for VSEs. Voltage scaling codes
for VSE includes a code segment that calculates the SUR and updates the
current speed by multiplying with the SUR (code B and code L in Figure
4.4). These voltage scaling codes are different in B-type VSE and L-type
VSE. In L-type VSE, the voltage scaling codes calculate the speed update
ratio using the iteration number (LoopIter Num(byy)) of the corresponding
loop. Therefore, several codes are needed to maintain the iteration number

of the loop (code 2 and 3 in Figure 4.4).

To calculate Cry pc(b;), where b; is in the loop [, a code is needed to
transfer the Cp,s:({) (the remaining execution cycles after a loop) to the
loop (code 1 in Figure 4.4). The same code is inserted for functions (code
5 in Figure 4.4). As the loop or function can be nested, Cp,s(1) is saved at
a stack. When the loop or function is completed, the stack index (top) is

decreased (code 4 and 6 in Figure 4.4).

4.4 Overall Selection Algorithm

While voltage scaling codes for B-type VSEs does not increase Cycgc of
a given program, those for L-type VSEs can increase Cycpc depending
on the number of loop iterations executed. If a loop iterates its maximum

number of iterations (i.e., the maximum number of loop iterations given

45

code B

_ vsel. postRWEC

"~ vsel. preRWEC- C g,
NewSpeed = CurJpeed* SUR
change _f_V (NewSpeed)

code 1
Stack . [++top] = 60

code 2
code 5

LooplterNum(b,,)=0
Stack g e [++top] = 60

code 6

scaling code of
vsel

if (LooplterNum(b,;,) = vse2. MI) goto by
R= vse2. postRWEC
vse2. postRWECH+ vse2.100pWCEC* (vse2. MI - LooplterNum(b,;,)) - Coanead,

NewSpeed = CurSeed * SUR
change f_V (NewSpeed)

Figure 4.4: Code generation for VSEs.

46

by user) and the loop exit edge was selected as a candidate L-type VSE,
Cwcerce of the program will increase by the number of cycles to execute the
code checking the number of loop iterations. This increase, if accumulated,
may make the modified program violate the timing constraint of the original

program.

To avoid this problem, we select the final L-type VSEs from the candidate
L-type VSEs by the algorithm shown in Figure 4.5. Assuming that the
target processor can execute M cycles at its full speed within the given
deadline interval, we first select the candidate VSEs using the selection
algorithms in the previous section. Then we calculate the increase of worst-
case execution cycles. To calculate the increase, we should know how much
cycles are needed for voltage scaling codes. We denote these values as
Cine(B)? and Cy,.(L). If the total worst-case execution cycles Cycopc is
larger than M, we exclude some candidate VSEs until the increase in Cycge
will be smaller than M. How many candidate VSEs should be excluded is
easily known with the values of Cj,.(B) and Cj,.(L). The VSE with little
effect on energy reduction is preferred to be excluded. Crwprc(b;)’'s are
recomputed after some candidate VSEs are excluded. When Cycpec < M

is satisfied, the final VSEs are determined.

Since the inserted voltage scaling codes change the timing behaviors of
the target program, we should analyze the timing information of the pro-
gram again after the VSE selection. The change of the timing information

affects the speed update ratios of the selected VSEs. So, we recompute the

2In the RAEP-based IntraDVS to be explained in Chapter 5, the B-type VSEs can
increase the worst-case execution cycles. So, we consider the B-type VSEs as well in this

algorithm.

47

Given adeadline D, compute the maximum
number of execution cycles M within thetime
interval D when a processor runs at its full speed.

v

| Compute Cyygc(b) for each basicblock b, |

!

—>| Generate the V SE informations

| Select candidate VSEs | Recompute CRWEC(bI)
* with the increased code in VSEs
Get the C, (B) and C, (L) which arethe cycle *

increases due to the inserted codes of V SEs. Re-compute the SUR of each VSE

Re-compute C,, (b)) *
) . . Exclude VSEs
with the increased code size with SURs larger than 1

v

No
@ Generate the final V SE informations

Yes

Exclude some candidate VSEs such that C,...-
— C_(B)*b-C_(L)*I <M whereb and | arethe

inc inc

number of exculded VSEs

Figure 4.5: Overall VSE selection algorithm.

speed update ratio of each VSE. If the speed update ratio of a VSE is larger
than 1, we should exclude the VSE. This examination continues until there

is no VSE which has a SUR larger than 1.

Based on the proposed IntraDVS algorithm, we have developed the Au-
tomatic Voltage Scaler (AVS), a software tool that automates the develop-
ment of hard real-time programs on a variable-voltage processor. AVS takes
a DVS-unaware (thus regular) program P and its timing requirements as
inputs, and produces a DVS-aware low-energy program Ppy g that satisfies
the same timing requirements. The converted program Ppy g contains volt-
age scaling code that handles all the idiosyncrasy of scaling clock/voltage

on a variable-voltage processor. Using AVS, DVS-unaware hard real-time

48

programs can be converted to DVS-aware low-energy programs in a com-
pletely transparent fashion to software developers. The detail description

of AVS is provided in Appendix B.

4.5 Experiments

To evaluate the energy reduction performance of the RAEP-based IntraDV'S
algorithm, we have experimented with both a simulation and a real DVS-
enabled systems. The experimental results on a real DVS-enabled system

are described at Section 4.5.3.

4.5.1 Experiments with Artificial Workloads

We first experimented with artificial workloads. An artificial workload of
a task can be represented by the tuple (W, C, ¥), where W is the WCEC
(= deadline) and C'is the real execution cycles. WU is the set of slack infor-
mations denoted by ¥ = {(t1,w1), -, ((tn,wn))} where t; and w; are the
location and the size of the i-th intra-slack respectively. For example, the
artificial workload (10,6, {(1,2), (3,2)}) means that the task consumes only
6 cycles and the 4 cycles of slack times are identified after 1 cycle execution

and 3 cycles execution. The sum of slack sizes in U ("] w;) is same to

w—-C.

We assume that the execution cycles of a task is drawn from a random

Gaussian distribution with mean, denoted by m, and standard deviation,

49

denoted by o, given by

_ BCEC+WCEC and o — WCEC — BCEC

2 6

m

We varied the B/W ratio (=BCEC/WCEC) from 0.1 to 0.9. The slack loca-
tions (¢;) are assumed to be distributed uniformly. The slack sizes (w;) are
generated by an exponential distribution function with a mean A. Figure 4.6
shows the normalized energy consumption of the RWEP-based IntraDVS
varying the B/W ratio and the average slack size (\). The graph also shows
the energy performance of the optimal DVS, which uses the single clock
speed of S = C/W. The energy consumption decreases as the slack size
increases. This is because the small slack times are excluded from VSEs by
the IntraDVS. The change of energy consumption is obvious when the B/W
ratio is small. But, the difference with the energy performance of optimal

DVS is also large when the B/W ratio is small.

Figure 4.7 shows the energy performance of RWEP-based IntraDVS un-
der various distribution functions for slack information. We used four kinds
of distributions for the slack locations, i.e., L, U, N and H. N and U mean
the normal distribution and the uniform distribution respectively. H and L
mean the skewed distributions. While most of slack times are identified at
the front part of a program execution in L distribution, they are identified
at the rear part of a program execution in H distribution. The energy per-
formances are superior in the L distribution. This is because we can know
the workload at the front part of a program. Extremely, if we can know all
the slack information at the start of a program, the IntraDVS shows the
same energy performance of the optimal DVS. However, the slack locations

in general applications follow the uniform distribution.

20

™~
S n
© m

o

. —
B/W ratio S

Figure 4.6: Normalized energy consumptions of the RWEP-based IntraDV$S

(varying the B/W ratio and the slack size).

ol

Normalized Energy

o B
©

0.8

ed Energy

PN WD o g
Normaliz

o

Figure 4.7: Normalized energy consumptions of the RWEP-based IntraDV'S
(varying the B/W ratio and the slack distribution).

For the slack size, we used three kinds of distributions, i.e., U (Uniform),
N (Normal) and E (Exponential). The energy performances under the expo-
nential distribution are worse than the results under the normal distribution
or the uniform distribution. This is because the number of the large slack

times is small under the exponential distribution. The slack times in general

applications follow the exponential distribution.

4.5.2 Experiments with Real Applications

We have experimented with software MPEG-4 video encoder and decoder.

For a simulation, we developed an energy simulator for the simulation exper-

52

iments. The energy simulator takes an assembly program and its execution
trace as inputs, and calculates total energy consumption by emulating the
program execution on the target variable-voltage processor. We assume
that both DVS-aware and DVS-unaware systems enter into a power-down
mode when the system is idle. Supply voltage for a given clock frequency is
obtained from fu = 1/Tp o (Vag — V)7 /Vaa [24] where Vg, Vi, and ~y are
assumed to be 2.5 V, 0.5 V, and 1.3, respectively. Since recent frequency
synthesizers and DC-DC converters achieve clock/voltage transition time of
less than 200 usec, clock/voltage transition overhead Cy¢ is assumed to
be 0~20,000 cycles, corresponding to 0~200 usec of transition time with
100 MHz clock frequency. For non-zero Cyro values, the processor stops its
execution and enters into a power-down mode during clock/voltage transi-

tion.

Figures 4.8(a) and 4.8(b) show the energy consumption of the AVS-
converted MPEG-4 encoder and decoder programs, respectively. Simulated
results were normalized over the energy consumption of the original program
running on a DVS-unaware system with the power-down mode. [t was as-
sumed that the power-down mode consumes no energy. The AVS-converted
MPEG-4 encoder and decoder programs consume less than 38% and 29%
of the original program, respectively. Figures 4.8(a) and 4.8(b) also show
the number of voltage transitions which represents how many times voltage
scaling code were executed during the program execution. When Cyro <
3,000 cycles (=30 psec) in the MPEG-4 encoder, the number of voltage
transitions decreases sharply, and the energy consumption increase rapidly.
When Cyro > 5,000 cycles (=50 usec) in the MPEG-4 encoder, the energy

consumption does not increase rapidly. This is because the number of dis-

23

carded voltage scaling edges (due to clock/voltage transition overhead) is

small.

The number of VSEs, which represents how many copies of voltage scal-
ing codes were inserted into the AVS-converted program, indicates the de-
gree of code size increment by inserting voltage scaling codes using in-line
expansions. For the AVS-converted MPEG-4 encoder and decoder pro-
grams, about 20 VSEs are inserted when Cypo > 5,000 cycles, meaning
that insertion of voltage scaling code hardly increases the total code size.
This is because a small number of voltage scaling edges occupies quite a

large portion of the total power reduction.

In the proposed IntraDVS algorithm, there are some unselected VSEs
because VSE is selected or neglected by considering the transition time
overhead of speed change. Unfortunately, the slack times generated by
these unselected VSEs cannot be exploited by the IntraDVS algorithm.
This limitation comes from the fact that the proposed algorithm does not
use the run-time timing information. We call such a speed assignment an

off-line speed assignment method.

The described IntraDV'S can be improved if we can get an elapsed time
at run time. In order to reclaim these slack times, the new clock speed
should be set to the remaining cycles divided by the remaining time (=
deadline-elapsed time). This method is called an on-line speed assignment
method. For the on-line speed assignment method, a target system should
support efficient real-time counter accesses to get the elapsed time at run

time3.

3 Although many embedded processors for real-time applications have an on-board

RTC (real time clock), the resolution of RTC can be too low to use for IntraDVS.

o4

Normalized . i # of Voltage
Energy ‘ —=— normalized energy —e— # of voltage transitions ‘ Transitions
0.40 1000000

030 [3

0 50 100 150 200
Voltage Transition Time (usec)

(a) MPEG-4 encoder

N(:Ernm;‘;;ed ‘ —=— normalized energy —e— # of voltage transitions ‘ #Tcr)far\\/sﬁlit:‘r?s?
0.30 1000000
0.29

L\ T
ol e

0.25 — 100
0 50 100 150 200
Voltage Transition Time (usec)

(b) MPEG-4 decoder
Figure 4.8: Normalized energy consumption and the number of voltage

transitions of the AVS-converted MPEG-4 encoder and decoder programs.

25

0.4 T T T T
off-line RWEP-based ——
on-line RWEP-based -~ + -~
off-line RAEP-based —&—
0.35 - on-line RAEP-based - ¢ - —

Normalized Energy Consumption

20 40 60 80 100 120 140 160 180 200
Voltage Transition Time (usec)

Figure 4.9: Normalized energy consumptions of the on-line and off-line

speed assignment methods (varying the threshold value).

When the voltage transition overhead is small and the number of uns-
elected VSEs is small, the off-line assignment method work relatively well
compared to the on-line assignment method. On the other hand, when the
voltage transition overhead is large, the on-line speed assignment becomes
more effective than the off-line speed assignment, because the number of

unselected VSEs increases.

Figure 4.9 shows the energy consumption of the off-line speed assignment
and the on-line speed assignment. We assumed that on-line speed assign-
ment does incur additional 40 overhead cycles. When the voltage transition
time is small, there is little differences in energy consumption between the
on-line and off-line speed assignment methods. However, the difference in-
creases up to 10% as the voltage transition time increases because a large

voltage transition time deselects more VSE candidates.

Moreover, the system call to access a RTC may incur a large overhead. So, we specify

this assumption.

26

4.5.3 Experiments on a Real DV S-enabled System

For experiments on a real DVS-enabled System, we used Itsy pocket com-
puter v2.6 from Compaq [28] as our experimental platform. The platform is
equipped with a StrongARM SA-1100 processor as a main processor. The
SA-1100 processor uses the phase-locked loop (PLL), allowing to change
the CPU core frequency to one of 11 levels between 59.0 MHz and 226.4
MHz. Furthermore, Itsy v2.6 has a programmable core voltage regulator;
supply voltage can scale to one of 30 levels between 1.00 V and 2.00 V. The
overhead time to change the clock and voltage level is different depending
on the current and target value of clock level, and is 189 usec at maximum.
Itsy runs the Linux operating system (ver. 2.0.30) with a kernel support for
dynamic voltage scaling. Applications can change the clock frequency and

supply voltage by the ioctl system call to the “/dev/clkspeed” device file.

Since it is difficult to establish the execution time model of a Stron-
gARM SA-1100, we analyzed the timing behavior of a target application by
the hybrid method which uses both the static analysis technique and the
execution time profiling on the Itsy platform. Figure 4.10 shows the flow
of experiment for Itsy platform. The target application (e.g., mpegddec.c)
is compiled into an assembly code (mpegddec.s) by the arm-linux-gec com-
piler. The Static Analyzer selects the execution time profiling points by
the static timing analysis technique. It enables the efficient profiling for
the execution time by choosing only small number of candidate VSEs from
the target application. The Static Analyzer uses the assumption of one
cycle for each instruction for the timing analysis. The Profiler generates

the annotated assembly code (mpegddec-profile.s) which has the execution

o7

mpeg4dec.s

profiling points

v

profile data

mpeg4dec-profile.s mpeg4dec-dvs.s
+ Power Consumption
)) A
arm-linux-gcc arm-linux-gcc
Digitial O
[Multimeter O }
0o O

COMPAG Itsy

Figure 4.10: The experiment environments for Itsy platform.

time profiling code at the location specified by the Static Analyzer. The
profile-enabled assembly code is compiled and executed at the Itsy plat-
form. During the execution, the target application outputs the profile data
which has the timing informations of the candidate VSEs. Using this data,
AVS analyzes the timing informations of candidate VSEs, selects the VSEs
and generates the DVS-aware assembly code (mpegddec-dvs.s). At VSEs
in the DVS-aware assembly code, the DVS function is called to adjusted
the clock speed and voltage. The digital multimeter measures the power
consumption of Itsy system while the DVS-aware code is executed at the

Itsy platform.

We have experimented with the same MPEG-4 programs used at the

28

simulation experiments. We assumed that each task processes 10 frames
(IPPPPIPPPP) before deadline?. Table 4.1 shows the comparison between
DVS-aware programs and DVS-unaware programs. The energy reductions
are 49% and 65% for the decoder and the encoder, respectively. The ex-
ecution times of DVS-aware programs are shorter than WCETSs of them
because there are unselected VSEs and the Itsy platform provides discrete
clock and voltage levels. Especially, when the adjusted clock speed reaches
at 54 MHz which is the lowest clock speed, the speed adjustments at VSEs

do not occur.

For DVS-aware programs, Table 4.1 also shows the number of selected
VSEs and the number of functions and loops where management codes (such
as code 1-6 in Figure 4.4) are inserted. Since these numbers are small, we
can conclude the additional overhead for IntraDVS is little. The AVS does
not significantly increase the WCEC and the code size of target programs
as shown in Table 4.1. We can also know each VSE and management code

requires very small instructions in Itsy platform as shown in Table 4.25.

Figure 4.11(a) and (b) show the graphs of power consumption measured
during the executions of the DVS-aware MPEG-4 program and the DVS-
unaware MPEG-4 program. The digital multimeter sampled the power
consumption at the period of 20 msec. The DVS-aware programs set the
clock and voltage to the maximum level at the start of the execution, and

reduce the clock and voltage at VSEs. The DVS-unaware programs execute

4Due to the low resolution of multimeter, we increased the size of a task artificially

for a better observation.
®Since the number of instructions for VSEs are different depending on the location,

we show the average values.

29

Table 4.1: DVS experiments on Itsy.

MPEG-4 Decoder

MPEG-4 encoder

Factors DVS-aware ‘ DVS-unaware | DVS-aware ‘ DVS-unaware

Energy (mJ) 0.11 0.22 0.28 0.81
Normalized Energy 0.51 1 0.35 1

Execution Time (sec) 1.18 0.46 5.34 1.54
Normalized WCEC 1.0003 1 1.003 1
Selected B-VSE 2 - 1 -
VSEs L-VSE 1 - 2 -
Management | Function 1 - 3 -
Code Loop 2 - 5 -
Normalized Code Size 1.026 1 1.027 1

Table 4.2: Management code overhead.

Management Code H Code Number in Figure 4.4 ‘ Number of Assembly Instructions

Loop Enter code 1 and 2 23
Loop Header code 3 12
Loop Exit code 4 12
Function Enter code 5 10
Function Return code 6 8
B-type VSE code B ~ 200
L-type VSE code L ~ 200

60

Power (mW)

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

Power (mW)

0.05 ¥

0.00

—e— DV S-unaware

—a—DVSaware |

0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1 11
Time (second)

(a) MPEG-4 decoder

—e— DV S-unaware

—a—DVSaware -

0 0.5 1 15 2 25 3 35 4 45 5

Time (second)

(b) MPEG-4 encoder

Figure 4.11: Power estimation of MPEG-4 program.

at the full speed (and the maximum power) until completion and has the

idle interval. This experiments verify the effectiveness of the IntraDVS

technique on a real variable-voltage system.

61

4.5.4 Comparisons of IntraDVS Algorithms

We have evaluated the energy efficiency of our reference path-based In-
traDVS algorithm (IntraDVS-P) and the stochastic IntraDVS algorithm
(IntraDVS-S) [30, 38] using an MPEG-4 video decoder and an MPEG-4
video encoder. The execution times of both the MPEG-4 decoder and en-
coder were assumed to follow a normal distribution N, = N(mq, (22)?)

6
where m; = :XxWCET and my = - XxWCET.

Since the energy efficiency of IntraDVS-S largely depends on the slack
ratio® given in the on-line phase and the accuracy of the execution time
distribution used in the off-line profiling, we performed experiments vary-
ing these two factors. Figure 4.12 shows the relative energy consumption
ratio of IntraDVS-S over IntraDVS-P. If the ratio is larger (smaller) than
1, IntraDVS-S performs better (worse) than IntraDVS-P. In Figure 4.12,
the N, line represents the case when the actual execution times follow the
assumed N, distribution. The NV, line indicates the case where the actual
execution times follow different normal distributions from the assumed N,,

where N, = N(1.5 - my, (%2)?).

When the slack ratio is less than 1.2, IntraDVS-P outperforms IntraDVS-S
because IntraDVS-P spends more time in the lower speed region than IntraDVS-S.
When the slack ratio is increased, IntraDVS-S spends more time in the lower
speed region than IntraDVS-P. Figure 4.12 also shows that IntraDVS-P
works better than IntraDVS-S when the distribution of actual execution
times is significantly different from the assumed distribution, as shown in

the N, line.

6The slack ratio is defined as the ratio of the assigned execution time to WCET.

62

150 150

& M 5
9 i)
g 1.25 g— 1.25
3 3
5 s
o o
P >
S 100 — 5 100
C C
w L
g g
ko =
g 0.75 i % 0.75 A 4
z —e—No z —o—No
—a—NC ——Nc
0.50 : 0.50 :
1.0 12 14 1.6 1.8 20 1.0 12 14 1.6 1.8 20
Slack Ratio Slack Ratio
(a) MPEG-4 decoder (b) MPEG-4 encoder

Figure 4.12: Energy consumption ratio of IntraDVS-P and IntraDVS-S.

Another comparisons between two IntraDVS algorithms have been pre-
sented by Gruian [41]. Since the energy performance of our IntraDVS algo-
rithm is dependent on the internal task structure, two IntraDV'S algorithms
were compared varying the unawareness factor, which represents how early
we can know the exact value of the execution cycles of a task during the
task execution. When the unawareness factor is small (large) (i.e., VSEs are
located close to the entry (exit) block), the performance of our IntraDVS is

better (worse) than that of the stochastic IntraDVS.

4.5.5 Comparisons of InterDVS and IntraDVS

Although the IntraDVS algorithm is mainly proposed for single-task envi-
ronments, it is also useful for multi-task environments. When a task sched-

uler assigns a time slot and its speed for each task at run time, our proposed

63

algorithm can additionally adjust the execution speed at the intra-task level.
The proposed IntraDVS algorithm forces each task to use only the time slot
assigned by the OS scheduler in multi-task environments. When an Inter-
DVS algorithm determines a time slot for a task at run time, the IntraDV$S
has only to adjust the initial start speed of the task based on the assigned

time slot.

To evaluate the feasibility of the IntraDVS algorithm in the multi-task
environments, we compared the energy performance of the IntraDVS algo-
rithm with several InterDVS algorithms. Figure 4.13 shows the normalized
energy consumptions of two typical InterDVS algorithms, i.e. 1ppsEDF [31]
and DRA [10], over the RWEP-based IntraDVS algorithm. The videophone
task set shown in Table 1.1 and randomly generated task sets with 2, 3, 4,
and 5 tasks were used in the experiment. Note that the randomly generated
task sets do not represent normal program execution. Also note that they
are not favorable to the IntraDV'S, because they don’t have a dominant task

as in the videophone task set.

As shown in Figure 4.13, IntraDVS outperforms InterDVS in the video-
phone task set. In the randomly generated task sets, IntraDVS defeats
1ppsEDF, but it shows similar or worse performance with DRA when it has
3 or more tasks. This is because DRA uses a more sophisticated algorithm
to utilize the slack time. Especially, when the number of task is 5, DRA
algorithm shows a better performance than IntraDVS. From above results,
we can know that IntraDVS outperforms InterDVS even in multi-task en-
vironments regardless of the existence of dominant tasks when the number
of tasks is small. However, it could be better to use InterDVS when the

real-time system has many tasks.

64

20

@ IppsEDF W@ DRA

Normalized Energy
Consumption

Videophone 2
task set

3 4
Random Task
Sets

Figure 4.13: Comparison of InterDVS and IntraDVS in multi-task environ-

ments.

To observe the effect of the task set characteristics, we simulated the
conventional InterDVS algorithms and the proposed IntraDVS algorithm
with two different task sets. Two tasks sets, task set A and B, have 6 tasks
but the characteristics are quite different. The task set A is homogeneous
(i.e. the tasks in A have similar periods and WCETSs) while the task set B is
heterogeneous (i.e. the tasks in B have large variations in their periods and
WCETS). Figure 4.14 shows the normalized energy consumption of several
InterDVS algorithms such as 1ppsEDF [31], ccEDF [11], 1aEDF [11], and
DRA [10] over IntraDVS. Except for DRA, IntraDVS algorithm outperforms
most InterDVS algorithms tested.

It is also observed that InterDVS algorithms show poor energy perfor-
mance when the worst-case processor utilization” (WCPU) is small. This is

because following tasks cannot fully exploit all slack times generated by past

"The worst-case processor utilization means the total WCETs of all task instances

divided by the hyper period.

65

and current tasks, when WCPU is too small. Some slack times are disap-
peared before following tasks are released. In this case, IntraDV'S performs

much better than InterDVS, because it utilizes all slack times.

The performance of DRA algorithm is significantly different in two task
sets. As shown in Figure 4.14(a), DRA outperforms both 1aEDF and In-
traDVS when the task set A is used. However, when the task set B is used,
DRA is inferior to IntraDVS, as shown in Figure 4.14(b). This is because
the slack estimation method in DRA does not work well with non-uniform
task utilizations. From this results, we can know that IntraDVS is bet-
ter than InterDVS especially when the WCPU is small and the task set is

heterogeneous.

4.6 IntraDVS for Soft Real-Time Tasks

4.6.1 QoS-driven IntraDVS

Battery-powered mobile devices are becoming important platforms for pro-
cessing multimedia data such as audio, video, and images. Such mobile
systems need to support quality of service (QoS) requirements. Unlike hard
real-time tasks, they require only statistical performance guarantees (e.g.,
meeting 95% of deadlines)® and are called soft real-time tasks. In this sec-
tion, we present how we can use the IntraDVS algorithm for soft real-time
tasks. If a task has 95% QoS constraint, deadline misses are permitted

within 5% bound. For example, consider an MPEG video player, which

8In a general framework, we can consider that hard real-time applications require

100% QoS constraint.

66

L g _

Normalized Energy Consumption

B‘"“*—-<
s IntraDV'S
1 '—'—'"""'—'»"»'—]3'_"_';;'_"_,’;'_"_'E """" |
XKoo X oo Koo o %
1 1 1 1 1
05 0.6 07 08 0.9
Worst Case Processor Utilization
(a) Task set A
2 T T T
|ppsEDF —o—
I CCEDF -+
o laEDE -5 - -
= DRA
e L +-. i
3
Q
8 t
>
o
35 | -
c
L
B
N
B _
e
S
o
Z = —
1 1 1 1 1

0.5 0.8 0.9

0.6 0.7 B
Worst Case Processor Utilization
(b) Task set B

Figure 4.14: Comparison of InterDVS and IntraDVS in different task sets.

67

should decode one frame within 30 ms, with 95% QoS constraint. The de-
coding times for 5% of all video frames might be over 30 ms. If the jobs
(task instances) demanding more than 10° cycles occupy only 5% among all
jobs, it is best to give up to meet the deadlines for the jobs demanding more
than 10° cycles to minimize the energy consumption. This is because we
can use a lower clock speed if we care only the jobs which demand no more

than 10° cycles. We call this techniques as the QoS-driven IntraDVS.

For example, consider a task whose WCEC and deadline is W and D
respectively. The cumulative distribution function (CDF') of the task’s cycle

demands is
f(z) = P[X < 1] (4.11)

where X is the random variable of the task’s demands. Let p be the sta-
tistical performance requirement of the task. The task needs to meet p
percentage of deadlines. In other words, each job of the task should meet
its deadline with a probability p. To support this requirement, the QoS-
driven IntraDVS allocates V' cycles to each job of the task, so that the
probability that each job requires no more than the allocated V' cycles is p,

fV)=PX <V]=p (4.12)

It also uses the value V as a virtual RWEC GRWEC. The start speed .S
of the task is determined with the virtual RWEC, i.e., Sy = V/D. GRWEC
is reduced at the speed of Sy. The VSEs generated by the QoS-driven In-
traDVS accumulate the saved cycles at the VSEs, and examine whether the
accumulated saved cycles is larger than (W — V). Voltage scalings are per-

formed only when the total saved cycles are larger than the value i.e., when

68

Crwrc(t) is smaller than aRWEC(t). This is to reflect the underestimated
worst-case execution cycles. If a job execution requires V' cycles, the job
completes exactly at its deadline when the voltage transition overhead is 0.

However, the jobs demanding more than V' will miss deadlines.

Figure 4.15 shows the changes of Cry rc by the original IntraDVS and
the QoS-driven IntraDVS of a task. The WCEC of the task is 200 x 10°
cycles. The CDF of the task’s cycle demands, f, satisfies a following equa-

tion:

f(150 x 10%) = P[X < 150 x 10°] = 0.95 (4.13)

In the QoS-driven IntraDVS, if the QoS requirement is 95%, the program
starts with the speed of 75 MHz because the virtual RWEC is 150 x 10°
cycles. At the time 0.37 sec in Figure 4.15(b), the clock speed sustains
75 MHz although the remaining worst-case execution cycles are reduced.
When the total saved cycles pass over 50 x 10° cycles at the time 0.4 sec,
the clock speed is adjusted to 50 MHz. The new speed is calculated using
the virtual RWEC as follows:

C t 80 x 10° cycl
75 MHz x 7ARWEC() _ 75 MHz % chc es
Crwrc(t) 120 x 108 cycles

After the first voltage transition, the speed update ratio is calculated by
the same algorithm of the original IntraDVS.

4.6.2 Experiments

We evaluated the energy performance of the QoS-driven IntraDVS using a
simulation. Figure 4.16(a) shows the energy consumptions under the QoS-

driven IntraDVS. The energy consumptions are normalized by the results

69

Crrrelt) Crwsclt)
(10%cycles) (10°cycles)
A 100 MHz A 75 MHz

200 200

75 Mkiz
150

100

100

50 50 [~

Figure 4.15: The changes of Crwgrc(t) over different speed scaling algo-
rithms: (a) Original IntraDVS and (b) QoS-driven IntraDVS.

of IntraDV'S under 100% QoS. Since the energy consumption is dependent
on the QoS constraint, we experimented varying the QoS constraint from
100~90%. We assume that the execution cycles of each instance of a pro-
gram is drawn from a random Gaussian distribution with mean, denoted by

m, and standard deviation, denoted by o, given by

BCEC +WCEC WCEC — BCEC
= 5 and o= 5 .

We varied the B/W ratio (=BCEC/WCEC) from 0.1 to 0.5.

m

When the QoS requirement is small and there is a big difference between
BCEC and WCEC, QoS-driven IntraDVS uses a small virtual RWEC thus
assigns a low start speed. So, the energy consumption is reduced signifi-
cantly when the application has a weak QoS constraint and a small B/W

ratio.

70

Figure 4.16(b) shows the deadline miss rate. We can know that if the QoS
requirement is p then the miss rate is always smaller than 1 — p. This result

shows the QoS-driven IntraDV'S satisfies the QoS constraints of applications.

71

BWrdio ——01-8-02 = 03-% 04-% 05|

1.00

0.95 %
o \

0.80

Normalized Energy

0.75

0.70
100 99 98 97 96 95 94 93 92 91 90

QoS (%)

(a)

B/Wratio [@0.1802003004M05

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Miss Rate

100 99 98 97 9% 9% 94 93 92 91 9D
QoS (%)

(b)
Figure 4.16: The experimental results: (a) Energy Consumption and (b)
Deadline Miss.

72

Chapter 5

Energy-Efficiency

Improvement Techniques for

IntraDVS

5.1 IntraDVS Using Profile Information

5.1.1 Motivation

Although the RWEP-based IntraDVS reduces the energy consumption sig-
nificantly while guaranteeing the deadline, this is a pessimistic approach
because it always predicts that the longest path will be executed. A more
optimistic approach is to use the average-case execution path (ACEP) as
a reference path. The ACEP is defined to be an execution path with the
largest possibility to be executed. The ACEP can be decided by observing

73

Figure 5.1: Example task graphs for RAEP-based IntraDVS.

the execution profile information.

It is easily understood that using ACEP instead of WCEP is more energy-
efficient. For a typical program, about 80 percent of the program execution
occurs in only 20 percent of its code, which is called the hot paths [42]. To
achieve high energy efficiency, an IntraDVS algorithm should be optimized
so that these hot paths are energy-efficient. If we use one of hot paths as
a reference path, the speed change graph for the hot paths will be a near
flat curve with little changes in the clock speed, which gives the best energy
efficiency under a given amount of work [43]. In this case, even other paths
(that are not the hot paths) become more energy-efficient because they can
start with a lower clock speed than when the WCEP is used as a reference

path.

For example, consider the task graph shown in Figure 5.1(a). Each edge
has a probability to be taken at run time. In the RWEP-based IntraDVS,
the execution path (bg, b;) is taken as a reference path. However, if we use
the RAEP-based IntraDVS, the reference path is (g, by) because it has a
higher probability. If we assume that the deadline of the task graph is 100

74

and the effective load capacitance C,ss is 1, the average energy consump-

tions under two scheduling schemes are as follows:

Erwrr = p1-(Crclbo) - S(bo)* + Cre(br) - S(b1)?)
+po - (CEC(bO) . S(b0)2 + CEc(bz) . S(b2)2)
= 0.2-(20-1.0* +80-1.0%) +0.8- (20 - 1.0> + 40 - 0.5%) = 44
3

Erapp = 0.2-(20- (g)2 +80 - (g)z) +0.8- (20 - (g)2 +40- (5)2) = 41.76

This example shows that it is more energy-efficient to use the ACEP as a

reference path.

However, consider the task graph shown in Figure 5.1(b). The average
energy consumptions of the task graph are as follows:

Epwgp = 0.2-(20-1.0°+80-1.0%) +0.8- (20 - 1.0* + 10 - 0.25%) = 36.125

3 12 3 3
Erapp = 0.2-(20- (E)2 + 80 - (3)2) +0.8-(20 - (E)Z +10- (E)Z) = 41.76

This example means that it is not always energy-efficient to use the ACEP
as a reference path. This is because we consider only the probability of
the execution path but the remaining execution cycles to determine the

reference path.

Therefore, we need to modify the definition of ACEP. On determining
a reference path, we have two choices in selecting one edge among two out
edges of a branch node. The case which generates a lower energy con-
sumption is optimal. For the task graphs in Figure 5.1, when we denote
Crc(by), Crpc(by) and Cpe(by) as ¢, ¢ and ¢y respectively, the average en-
ergy consumption, if the execution path (by,b;) is a reference path, is as

follows:

o+ 1 ca(co + 1)

2O e (HOT

D

)>+p2-(co- (

E, = pi-(co+c1)-(

75

But, the average energy consumption, when the execution path (bg, by) is a

reference path, is as follows:

Co + Co

Co + Co c1(co + ¢2))2
D

2
p) el oD

Ey = pi-(co-()?) + 2 (co+) - (

Since the condition for £ < Es is

Co

(

C
c + 1)2(2910? +pZCg + C()C%) < (C_O + 1)2(p10? + pQCg + C()C%), (51)
1 2

we can select the execution path (by, by) as a reference path if Equation (5.1)

is true.

For the L-type VSE, we should predict the number of loop iterations.
Consider the task graph in Figure 5.1(c), which has a loop with the maxi-
mum iteration number N,. If we insert a voltage scaling code at the edge
(by, by), the average energy consumption under the RWEP-based IntraDVS
scheme is as follows when we denote C'rc(by), Crc(b) and Cre(be) as ¢, ¢

and ¢y respectively:

Ny
Erwep = Zpi (G +1) o +i-er) - Sg+ o Si?z]
0

Nw'(00+01)+00+62
D

Sy =
Co
(Nw — 1) - (co +¢1) + 2

S1i = So-

)

where ¢ and p; are the number of loop iterations and the probability of the

r-number of loop iterations, respectively.

In the RAEP-based IntraDVS, we can use the average number of loop
iterations to calculate the remaining execution cycles. If the actual number
of loop iterations is larger than the average number of loop iterations, we

should increase the clock speed. If we adjust the clock speed at only the

76

exit point of the loop (bg,bs), the average energy consumption under the

RAEP-based IntraDVS scheme is as follows:

Ny
Epapp = > pi-[((i+1)-co+i-c1) S +ca 53] (5.2)
=0
S . Navg'(00+cl)+00+02
o D
S = 5 Maz (0,7 — Ngyg) - (co +¢1) + ¢

)

. Maz (0, Noyg — @) - (co + ¢1) + ¢

where N, means the average number of loop iterations.

To adjust the clock speed when the loop continues its execution even
though it has completed the average number of iterations, we should insert
the voltage scaling codes at both (bg, b;) and (bg, b2). At the VSE (by, b1),
if the actual iteration number is larger than the average number, the clock
speed is increased by the factor of (¢y + ¢; + ¢2) /¢y because we can know at
the edge that one loop iteration at least is required additionally. For this
technique, the average energy consumption is as follows:

Navg
Erapp = sz' (@ +1) o +i-e)- Syt ST
=0

Ny
+ Z pi'[((Navg+1)'CO+Navg'Cl)'Sg

i:Navg+1
1—Ngag
3 (o) St Sty] (53)
7j=1
S . Navg'(00+cl)+00+02
0 =
D
Co+C1+Co Co+cC1+ 0o
Sl,i - SO T Sj,i = j-14 "
Co Co

Therefore, we should use the value of N,,, which minimizes Equation

7

(5.2) or (5.3) (depending on the used technique). But, for a simple RAEP-
based IntraDVS model, we define the ACEP as follows:

S :if(E) then S;; else Ss.
ACEC(S) = ACEC(E) +
ACEC(S,) if ACEC(S)-prob(S;) > ACEC(S;) - prob(Ss)
ACEC(S) otherwise
S : while(E) S;.
ACEC(S) = (ACEC(E)+ ACEC(S1)) - Nawg + ACEC(E)

where prob(S;) and prob(Sy) are the execution probabilities of the state-

ments S; and S, respectively.

Figure 5.2 shows an RAEP-based CFG GEAEP with Crapce(b;) values
that represent the remaining average-case execution cycles (RAECs) among
all the paths that start from b;. The bold edges in GEAFY means that it

composes the average-case execution path between either branching edges.

In Figure 5.2, the initial reference path is (b1, beaur, bs, by, b11,bif, beaua,
bs, bg, b11, b7). With the reference path, Crapc(b;) is computed. For ex-
ample, Crapc(bif) = Crc(bif) + Crapc(beaua). At the RAEP-based In-
traDVS, there are Up-VSEs (marked by o in Figure 5.2) as well as Down-
VSEs (marked by e in Figure 5.2). For the Up-VSEs, we should be careful.
Though we can exclude a Down-VSE for voltage scaling points if the saved
cycles are small at the Down-VSE, no Up-VSE can be excluded. If we do
not increase the clock speed and supply voltage at an Up-VSE, there is a
deadline miss. Therefore, the voltage scaling codes should be inserted at
all Up-VSEs and there are voltage transition overheads at all Up-VSEs. To

prevent this problem, we should select the worst-case execution path as a

78

[2.4¥107]
bs
[1.15%107]
[8.5*109] x
.5* 109] [1.5* 0.

* 1 6
[4.5107] it
[1.0¢107]
[3.5+107] the average
number of loop
iterations =2
[1¥107] [9.5%108]
[6.5%109]

Figure 5.2: A RAEP-based CFG GRAEL,

speed
(voltage) deadline
64MHz (L6V) v

40MHz g
(10v) bearnt beatta bo bu b

’ by by biy bis

bg bs -
0 0.5 1.0 15 2.0 time

Figure 5.3: Speed and voltage changes by the RAEP-based IntraDVS.

reference path even though the execution path has a low probability if the
difference between RWEC and RAEC is small.

Figure 5.3 shows how the speed and voltage change in the RAEP-based
scheduling. The speed changed from 40 MHz to 64 MHz at the edge (bs, b1o)
because this is an Up-VSE with the SUR value of 1.6 (= ;lgi}gz). Compared

to the RWEP-based IntraDVS algorithm, the RAEP-based IntraDV'S algo-

rithm can achieve more energy reduction if the execution path follows the

reference path.

79

Crwpclt)
(105cycles)
A
100

0 >

L2

A

L time(sec)
execution time

Figure 5.4: The changes of Cragc(t) over RAEP-based IntraDVS.
5.1.2 Guaranteeing Safeness

Although the RAEP-based scheduling is more energy-effective than the
RWEP-based scheduling, the pure RAEP-based approach cannot meet the
timing requirements of hard real-time applications. This is because it does
not satisfy the timing constraints for all the execution paths if ACEP is
used as reference path. For example, consider the case when the WCEP
and ACEP take significantly different number of execution cycles. When
the execution takes the WCEP at the middle of program execution, it is
possible that the program fails to meet its deadline even if the processor
runs at its maximum speed during the remaining paths. Therefore, we need

a safe approach which can guarantee the timing constraint.

To overcome the deadline miss problem of the pure RAEP-based In-
traDVS algorithm, we use the remaining safe execution cycles (RSEC) as

well as the RAEC. When we determine the clock speed based on the RSEC,

80

the safeness is guaranteed. To know the RSEC of a basic block, we should

first calculate the lower bound of a basic block’s clock speed, Siz(b;).

Cre(bs)

Su(b) = G = o (o)

where d(b;) and o(b;) are the deadline and the start time of b; respectively.
The deadline of a basic block b;, d(b;), is defined as follows:

B CRWEC(bz) - CEC(bz)
fma:l:

where D is the deadline of the overall program and f,,,, is the maximum

clock speed. The deadline of b; is estimated assuming that all basic blocks

after the basic block b; are executed with the full speed f 4.

The clock speed of b;, S(b;), should be larger than S;p(b;). Then, the

remaining safe execution cycles can be represented as follows:

Crsic(b;) Cre(bs)
S =55y =5 = gy = o
Crsec(bi) > d(lzz%agbigi)c];c(bi) (5.4)

The right part of Equation (5.4) has the maximum value when o(b;) is the
largest value. The largest value of o(b;) is the latest start time of a basic

block b;, Ist(b;), which is defined as follows:

B CRAEC (bz)
Smaa:(bi)

where S;4.(b;) is the maximum clock speed which b; can have.

Consequently, the RSEC of b; is

D — lSt(bZ)

Crspc(bi) = m

Crc(bi) (5.5)

81

A basic block b; should have both Crapc(b;) and Crspc(b;). If Crspc(b;)
is larger than Crarc(b;), the clock speed should be determined based on
Crsec(b;). Consequently, the clock speed is adjusted as follows at an edge
(bi, b)):

Maz(Cragpc(by), Crsec(bj))
Max(Crapc(bi), Crsec(bi)) — Cro(b:)

S(bj) = S(bi)

Figure 5.5(a) shows a control flow graph with a deadline 50 and the re-
maining average-case execution cycles of basic blocks. The ACEP, (b1, b3, by),
is used as the reference path. The bold edges indicate the average-case ex-
ecution path. As we can see at Figure 5.5(c), the deadline miss can be oc-
curred. Figure 5.6(a) shows the remaining safe execution cycles (RSEC) as
well as the remaining average-case execution cycles (RAEC) of basic blocks.

For example, Crspc(bs) is 25.04(= 30—15I - 10) by Equation (5.5). A basic

block b; uses the maximum between Crspc(b;) and Crapc(b;). So, the re-
maining execution cycles of the basic block b3 is 25.04. At the edge (b1, b3),

the speed update ratio is 1.25 (= Cgrspc(b3)/(Crapc(b1) — Cre(by)) =

25.04
30710)'

Using this safe RAEP-based IntraDVS, we can get an energy efficient
speed schedule satisfying the deadline constraint. But, there is a more
energy-efficient speed schedule under the deadline constraint. Though the
speeds of basic blocks b; and b3 are different at Figures 5.6(b) and (c),
it is more energy-efficient to use the same speed for both b; and b3. In
other words, it is better for the basic blocks on a reference path to have
the same clock speed because there is a large probability to be taken the
path at run time. If the basic blocks b;,--- ,b; compose a reference path,

we estimated the deadline and the latest start time of the group of basic

82

deadline =50

(a) task graph

deadline miss
speed speed
A 1.0 \ A
0.6 0.6
50 fme 50 time
(b) speed change at (by, bs, bs) (c) speed change at (by, b3, bs)

Figure 5.5: Pure RAEP-based IntraDVS.

83

[Cracc: Creecl = [30, 29]
Ist(by) = 0
d(b,) = 20

r=05 r=125

[20, 25.04]
Ist(b,) = 16.7
d(b)) = 30

r=133

[10, 10]
Ist(b,) = 16.7
d(b,) =50

[10, 10]
Ist(b,) = 33.3
d(b,) = 50

[20, 20]
Ist(b,) = 33.3
d(b,) = 50

deadline=50

(a) task graph

Speed speed |

-

10
o6 — 1 0.6 —

50 fT' me

50 time

(b) speed change at (b1, bs, bs) (c) speed change at (by, b3, bs)

Figure 5.6: Safe RAEP-based IntraDVS.

84

blocks. The deadline and the latest start time of basic blocks b;,--- ,b;,
d(bi, -+ ,b;) and Ist(b;,- - ,b;), are same to d(b;) and lst(b;), respectively.
For example, in Figure 5.7(a), the basic block (by,b3) have the deadline
d(by,b3) = d(bs) = 30 and the latest start time [st(by,bs) = lst(b;) = 0.

Using these values, we estimate Crspc(b;), -+, Crspc(b;) as follows:

D—lst(bi, b)) e
nsseli) - | T Coclb) -+ Cacly) i k=
Crsec(by) — Cpc(by) otherwise.

where b, is the predecessor basic block of b,. As we can see at Figures 5.7(b)
and (c), the basic blocks b; and b; has a flat speed schedule, thus the
schedules consume less energy than the schedules in Figures 5.6(b) and (c).
Moreover, the task graph in Figure 5.7(a) has less voltage scaling edges than
the task graph in Figure 5.6(a). This technique is called the profile-aware
safe RAEP-based IntraDVS to separate from the original safe RAEP-based
IntraDVS. For a brevity, we use the terminology of the safe RAEP-based
IntraDVS to denote the profile-aware safe RAEP-based IntraDVS.

5.1.3 Comparisons of RWEP-based IntraDV'S and RAEP-
based IntraDVS algorithms

The RAEP-based IntraDVS outperforms the RWEP-based IntraDVS in en-
ergy efficiency because the scheduled speed does not fluctuate much. How-
ever, the RAEP-based IntraDVS algorithm needs the reference path mod-
ification to guarantee the timing constraint as shown in the previous sub-
section, which is very complicated and time-consuming. It also inevitably
needs the profiling information, while the RWEP-based IntraDVS only re-
quires the WCET analysis.

85

Sb,) = 0.66

[30, 33.3]

Ist(b,, by) =0
d(b,, b)) =30
[10, 10]
Ist(b,) = 16.7 [20, 23.3]

d(b,) =50
[20, 20]
Ist(b,) = 33.3 Ist(b) = 33.3
d(b,) d(b;) =50
deadline = 50
(a) task graph
speedy speed
0.68 | 0.68
50 time 50 time
(b) speed change at (b1, bs, bs) (c) speed change at (by, b3, bs)

Figure 5.7: Profile-aware Safe RAEP-based IntraDVS.

86

Another problem of the RAEP-based IntraDV'S is that the time slot be-
tween the release time and the deadline of a task should be determined
statically. This does not matter in the single task environments. However,
it is a serious problem in the multi-task environments, since the time slot
for a task is changed depending on the release time. Unfortunately, it pro-
hibits from processing reference path modification at compile time. One
solution for this problem is to prepare multiple configurations at each VSEs
for different values of task’s time slots. For example, we prepare the con-
figurations when the assigned time slots are 1, 2, and 3 times of WCET.
At run time, if the assigned time slots are 2.5 times of WCET, we use the

second configuration.

5.1.4 Experiments

To compare the power reduction performance of the RAEP-based IntraDV'S
algorithm with the RWEP-based IntraDVS algorithm, we have experimented
with an MPEG-4 video encoder. In the RAEP-based IntraDV'S, the proba-
bility of branch edges and the average number of loop iterations in a CFG
of the MPEG-4 video encoder are estimated using the profiled information.
A probability of 0.5 is assigned to the branch edges for which we cannot

collect the execution profiles with sample test bitstreams.

Figure 5.8(a) shows how the normalized starting speed changes over var-

deadline—WCET

ious slack factor values. The slack factor, defined by Joagp =, Tep-

resents the fraction of time that a processor becomes idle after WCET.
The execution times of safe ACEPs (by the procedure described in Section
5.1) for the MPEG-4 encoder is up to 35% smaller than the WCET. This

87

means that the processor can start initially 35% more slowly than the speed

required by the RWEP-based IntraDV'S algorithm.

Figure 5.8(b) compares the energy consumption of two IntraDV'S schedul-
ing algorithms, varying the slack factor. All the results were normalized over
the energy consumption of the original program running on a DVS-unaware
system. For the MPEG-4 encoder, the safe RAEP-based IntraDVS algo-
rithm reduces the energy consumption up to 34% over the RWEP-based
IntraDVS algorithm.

Note that there is a large gap between energy consumption of RWEP-
based and RAEP-based IntraDVS algorithms, even when the slack factor is
0 (i.e. deadline = WCET). This is because, although the starting speed is
set to the same speed as in the RWEP-based IntraDVS, there are many exe-
cution paths that still can take advantage of the RAEP-based speed settings.
That is, in order to meet the timing constraint, virtual blocks are added so
that the initial speed is set to the same speed as in the RWEP-based In-
traDVS algorithm. However, the (partial) paths following the virtual blocks
can take advantage of the RAEP-based speed settings. As the slack factor
increases, the energy consumption gap decreases because supply voltages
of both IntraDVS algorithms get lower. Since the energy consumption is
proportional to Vy4?, the lower voltage values result in a smaller difference

in the energy consumption.

We also experimented with artificial workloads which are drawn from a
random Gaussian distribution. Figure 5.9 shows the normalized energy con-
sumptions under the RWEP-based IntraDVS, the RAEP-based IntraDVS
and the optimal DVS. The energy gain of the RAEP-based IntraDVS over

88

1% T T T T
Safe RAEP-based ——
09 * RWEP-based - - +--
08 T .
g 07+ * .
2 o6 + e
é‘% 05+ + .
8 oar - 1
T o3 + s
S o2t + s
01 o i
0 | | | | | | | | |
0O ©01 02 03 04 05 06 07 08 09 10
Slack Factor
(a) Starting speed
0.3 T T T T T T T
Safe RAEP-based —+—
RWEP-based -- - -
025 [i
o
02 ‘ :

Normalized Energy Consumption

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Slack Factor

(b) Energy consumption
Figure 5.8: Normalized starting speed and energy consumption of the
RWEP-based IntraDVS and the RAEP-based IntraDVS versus the slack

factor.

89

I
N

=

o
3}

B RWEP
B RAEP
O] Optimal

o
o

Normalized Energy
I
N

o
N

o

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
B/W ratio

Figure 5.9: Experimental results of the RWEP-based IntraDVS, the RAEP-
based IntraDVS and the optimal DVS.

the RWEP-based IntraDVS increases as the B/W ratio (=BCET/WCET)
decreases. When the B/W ratio is 0.1, the RAEP-based IntraDVS reduces
the energy consumption by 21% over the RWEP-based IntraDVS.

5.2 IntraDVS Using Data Flow Analysis

5.2.1 Motivation

The original IntraDVS techniques select the voltage scaling points (VSPs)
using the control flow information (i.e., branch and loop) of a target pro-
gram. For example, in Figure 5.10(a), the IntraDVS algorithm inserts the
voltage scaling code, change_f V' (), at the line 19. At the line 19, we can
know that the remaining worst-case execution cycles are reduced because

the function func8 is not executed. However, we can decide the direction

90

1: v=funcl(); L v=funcl();

2: if (v>0){ 25 If(v>9){ _

3: w = func2(); 3: W= f.unc2(),

4: X=3, g: ; ~ 3:’%‘

5 y=-3 ' 6: z = func3();

6: z = func3(); 7 if (z>0) {

£ it (z>0) { 8: x = func4();

8 x = funcA(); 9 if (W>0 && !(x+y>0))

o } 10: change f_V();
10: else{ 11: }
11 y = funch(); 12: else{
12: func6(); 13: y = funcb();
13: } 14: if (W>0&& !(x+y>0))
14: func7(); 153 . change f_V();
15 if (w>0) { 1?; funcé();
16 It (x+y>0) 18: 1}:unc7()'
E o funcs(); 19: if (w>0) {

- = 20: if (x+y > 0)
19: change f V(); 21 funcs():
20: funco(); 22: funco();
21 } 23: }
22:} 24:}
(a) Original IntraDV'S (b) Look-ahead IntraDVS

Figure 5.10: An example program for look-ahead IntraDVS.

of the branch at the line 16 earlier because the values of x and y are not
changed after the line 8 or the line 11. Figure 5.10(b) shows the modified
program which adjusts the clock speed and the supply voltage at the line
10 or the line 15. The program in Figure 5.10(b) consumes less energy than
the one in Figure 5.10(a) because the functions funcé and func7 is executed

with a lower speed if w > 0 and z + y < 0.

This example shows that we can improve the energy performance of In-

traDVS further if we can move voltage scaling points to the earlier instruc-

91

tions. To change the voltage scaling points, we should identify the data
dependency using a data flow analysis technique. The data flow analysis
provides the information about how a program manipulates its data [44].
Using data flow analysis, we can decide program locations where each vari-
able is defined and used. We call the proposed IntraDV'S technique based on
data flow information as the look-ahead IntraDVS (LalntraDVS) tech-

nique.

5.2.2 Single-Step Look-ahead IntraDV'S

For LalntraDVS, we need several post-processing steps after the voltage
scaling points are selected by the original IntraDVS algorithm. To explain

the post-processing steps, we define following terms and notations.

Definition 1 An instruction I is called o definition d, of a variable z if

the instruction I assigns, or may assign, o value to .

Definition 2 Given a program location t, a definition d, of a variable z is
called o data predecessor P! of the variable = at t if there exists a path
from d, to t such that the value of © is not changed along the path. A data
predecessor set P(t, x) of the variable = at t is a set of all data predecessors

of the variable = at t.

Definition 3 Given a program location t and a variable z, a program loca-
tion p is called a look-ahead point L., of the variable z at t if the following

two conditions are satisfied:

92

e There exists one or more paths from p to t but there is no path from

p to t such that the value of = is changed along the path.

e There is no other program location p! between P and p, which satisfies

the first condition.

A look-ahead point set (t, z) is a set of all look-ahead points of the variable

z at t.

Definition 4 Given a voltage scaling point s, a variable v is a condition
variable of s if the value of the variable v determines whether s is executed

or not at run time.

Definition 5 Given a voltage scaling point s and the set of condition vari-
ables V(s) = {v1,- -+ ,u,} of s, a look-ahead point p € L(s, vy)U- - -UL(s, vy)
is a look-ahead voltage scaling point (LaVSP) of s if there is no other
look-ahead point pr € L(s,vy) U ---UL(s,v,) along the path from p to s.
The set of all look-ahead voltage scaling points is denoted by LaV SP(s).

Given an original voltage scaling point s, we first identify the branch
condition C'(s) which is the necessary condition for s to be executed at run
time. Second, using the variables in the expression of C'(s), we compose a set
of condition variables V'(s). Third, the data predecessor set P(s, v;) and the
look-ahead point set L(s, v;) are identified for each variable v; in V (s) using
a data flow analysis technique. Fourth, we identify the look-ahead voltage
scaling points LaV/ SP(s). Lastly, we insert the voltage scaling codes at the

look-ahead voltage scaling points.

93

For example, in Figure 5.10(a), the branch condition for the voltage
scaling point at line 19 is C(s) = (v > 0) A (w > 0) A =(z +y > 0).
The variables in C(s) are v,w,x, and y (i.e., V(s) = {v,w,z,y}). If we
represent a program point with its line number, P(s,v) = {1}, L(s, v) = {2},
P(s,w) = {3}, L(s,w) = {4}, P(s,z) = {4,8}, L(s,z) = {9,11}, P(s,y) =
{5,11}, and L(s,y) = {8,12}. From this information, we can know that
LaVSP(s) = {9,12}. Figure 5.10(b) shows the modified program with
LaVSPs. At the lines 9 and 14, control expressions are inserted to reflect
the condition C'(s) = (v > 0) A (w > 0) A =(z 4y > 0). Since the condition
(v > 0) is always true at the lines 9 and 14, it is unnecessary to insert a

control expression for the condition.

With the LaVSPs, the next step is to determine the speed update ratio.
For example, if a original VSP (b;,b;) has the LaVSP p, the speed update

ratio at p is

r(p) = Crwec(p) — (Crwec(bi) — Crc(bi) — CrwEc(b;)))
P Crwrc(p)

because the reduced cycles at the VSP (b;,0;) is Crwec(bi) — Cre(b;) —
CrwEec(b)).

In Figure 5.10(a), if the clock speed is fi5 at the line 15, the clock speed at

3 3 C unc 3
the line 19, fi9, will be fi9 = f15 X m (when we consider only the
execution cycles for functions), where C'types and Clypeo are the worst-case
execution cycles for the functions func8 and func9 respectively. However, in

Figure 5.10(b), the clock speed at the line 10 and the line 15 are

Cfunc? + Cfuan
Cfunc? + CfuncS + Cfuan

J1i0 = fo X

94

and
CfuncG + Cfunc? + Cfuan

J15 = f1a ¥
Cfuncﬁ + Cfunc? + CfuncS + Cfuan

respectively.

5.2.3 Multi-Step Look-ahead IntraDVS

Although the look-ahead approach in LalntraDVS can improve the energy
performance of the IntraDVS technique, there are many cases where the
cycle distance between the original VSP and the newly identified LaVSP is
relatively short, achieving a small energy gain only'. This is the limitation of
the single-step LalntraDVS approach, where an look-ahead point is directly
used as a voltage scaling point. To solve this problem, we propose the
multi-step look-ahead IntraDVS technique, where the look-ahead point is

recursively processed to find earlier scaling points.

Figure 5.11 shows an example of the multi-step look-ahead IntraDVS$S
algorithm. For the program generated by the original IntraDVS algorithm
(shown in Figure 5.11(a)), the single-step LalntraDVS algorithm moves the
scaling location to the line 6 as shown in Figure 5.11(b). Since the variable
z is defined at the line 4, LalntraDVS inserted the voltage scaling code
at the lines 5 and 6. However, the variable z is the sum of and y, and
the values of both x and y are known before the function func3. If the
number of execution cycles for func3 is large and the addition operation
requires small execution cycles, it is better to insert the addition code and

the voltage scaling code just after the line 2. Figure 5.11(c) shows the

ISince a variable is generally defined just before the variable is used, the look-ahead IntraDVS

approach would show little enhancement in the energy performance.

95

1: x = funcl(); 1: x=funcl(); ;Z X;:ﬂ:i;g

2: y =func2(); 2y =func2(); 3 yz =X+ ’

3: func3(); 3: func3(); 4: E('(_Z>0),)

4 z=x+y, 4 z=X+Y; 5. change f_V();
5: func4(); 5 if ((z0) 6: func3(); -
6: if (z>0) 6: change f V(); 7. 7 =x +1y'

7: funcs(); 7: func4(); 8. funca(): ’

8 else 8: if (z>0) 9 if (z>0)

o: change f V(); o: funcs(); 10'. funcs();

10: funce(); 10: funch(); 11 funce(): ’

(a) Original IntraDVS (b) Single-Step LalntraDVS (c) Multi-Step LalntraDVS

Figure 5.11: An example program for multi-step look-ahead IntraDVS.

program modified using this idea. Since the variable z could be used before
the definition point at the line 7, we use the variable _z at the lines 3 and
4. (If the variable z is not used before the line 7, we do not need to use the
variable z.) If x +y < 0, the function func3 is executed with a lower speed

in Figure 5.11(c) compared with in Figure 5.11(b).

Figure 5.12 summarizes the detailed steps of the multi-step LalntraDVS
algorithm. The algorithm has two functions. The function MS_LaVSP Search
does the same operations with the single-step LalntraDV'S algorithm except
that it calls Find_MDP. The function Find_MDP finds the multi-step data
predecessors. It first finds the predecessor set, P, for an input variable.
Each predecessor p in P is examined whether there is an energy gain when
the cycle distance between s and p is Distance(p, s) and the overhead value
iS Covernead- This is to consider the overhead instructions required for the

multi-step LaVSP technique such as the line 3 in Figure 5.11(c).

96

If there is an energy gain in spite of the overhead cycles Coyerhead, We
further examine the data predecessor p. In this case, we call p as the
intermediate data predecessor. Then, the variables in the data predecessor
p are identified. For the data predecessor at the line 4 in Figure 5.11(a),
it has the variables = and y. We call the function Find_MDP with the
variables recursively. The function also has the number of overhead cycles
for the intermediate data predecessor p, Overhead(p), as an input. If there
is no energy gain due to a large Coyyernead, the recursive function call is
terminated. With this algorithm, we can find LaVSPs which can reduce

the energy consumption despite of overhead instructions.

In transforming a program, the intermediate data predecessors are used
as well as the conditions of the original voltage scaling point. For the
variable which is defined in the intermediate data predecessors, we should
use a copy of the variable (e.g., -z in Figure 5.11(c)) to preserve the program

behavior.

Figure 5.13 shows how to estimate whether there is an energy gain when
a LaVSP is used. In Figure 5.13(a), the clock speed is changed from S;
to Sy =57 - g—i at the original voltage scaling point because the remaining
workload is changed from C5 to Cy. In this case, the energy consumption
can be computed by E,,, = C1 57 + C»53 assuming that supply voltage is

proportional to clock speed.

In Figure 5.13(b), LalntraDVS found the look-ahead VSP which is ex-
ecuted C; cycles earlier than the original VSP. Assuming that we need C
overhead cycles to adjust the clock speed at the LaVSP, the energy con-

sumption is given by Er, = C;S? + (Cy + C4)S? where Sy is 51%.

97

1: MS_LaVSP _Search(s) {

N N N N = e e e e e e s e
SR S val S < TR S - AN - -~ R S o x4

24: }

C(s) := Find_Conditions(s);
V(s) := 0
for ¢; € C(s)
V(s) := V(s) U Find_Variables(c;);
for v; € V(s) {
P(s,v;) := Find MDP(s,v;,0);
L(s,v;) := Look-ahead(P(s,v;));
}
LaV SP(s) :== Merge(LL(s,v1), -+ ,L(s,vp));
Transform(LaV SP(s),C(s));

: Find MDP(s, v}, Coerhead) 1

P := Find Data_Predecessor(s, v;);
forp € P{
if (EnergyGain(Distance(p, s), Coperhead)) return {s};
V'(p) := Find_Variables(p);
Pi=P — {pk
for v, € V'(p)
P : = P U Find MDP(p, v, Overhead(p));
}

return P;

Figure 5.12: Multi-step LaVSP search algorithm.

98

speed origina VSP

S1
r'd y
S
C, p 2
C1
CZ
time >
(a) Original IntraDV$S
speed LavsP
Y
]\ /Ss
Co C,+C,
- time ™

overhead code

(b) LalntraDV$S

Figure 5.13: Overhead in LalntraDVS.

The condition for LalntraDVS to be more energy-efficient than the original
IntraDVS technique is E,,q > Ep,.

Eorg —F, = Cle + 02522 — C()Slz — (01 + CQ)S?? >0

C() < O+ 02(52/51)2 — (01 + 02)(53/51)2
C3 (Cy + Cy)?

Cy < Ci+—= — 5.6
0 TG 1 GG (5.6)

The function EnergyGain in Figure 5.12 checks this condition to decide

whether there is an energy gain.

For L-type VSPs, it is not trivial to make the condition for the VSPs. In
Figure 5.14(a), the while loop executes [(N — i)/k] times. In the original
IntraDVS technique, the variable LoopIter Num is used to know the number
of loop iteration. The voltage scaling code at the line 12 reduces the clock

speed if [(N —1)/k] is smaller than the maximum number of loop iterations,

99

M. Therefore, the condition for voltage scaling is C'(s) = [(N —i)/k] < M.
If we know the values of 7, k, and N in advance, we can reduce the clock
speed before the while loop. However, it is not trivial to derive the number of
loop iterations [(N —i)/k] from a program. Using a parametric worst-case
execution time analysis technique such as [45], we can know the number of
loop iterations. But, we can use a simpler technique. For the L-type VSP,
the loop termination condition and the multi-step LalntraDVS technique

are used.

For example, in Figure 5.14(a), the loop termination condition is C'(s) =
—(i < N). (Note that the expression does not have the variable k.) By
analyzing data predecessors for the variables in C(s), we can get P(s,i) =
{3,9} and P(s, N) = {1}. If we handle the data predecessor at the line 9 as
an intermediate data predecessor, P(s, 7) is changed into {2, 3}. Using P(s, 1)
and P(s, N), we can get the look-ahead voltage scaling point LaV SP(s) =
{3}. Therefore, we can insert the voltage scaling codes after the line 3.
Figure 5.14(b) shows the modified program by the multi-step LalntraDVS.
To reflect the condition C'(s) = =(i < N), the while statement is inserted at
the line 6. An assignment statement is also inserted at the line 8 because

the statement is related to an intermediate data predecessor.

5.2.4 Further Enhancements

The look-ahead IntraDVS is to move voltage scaling points to the LaVSPs
where we can predict the direction of a control flow. The energy reduction by
LalntraDVS is significant when the distance between the original VSP and
the LaVSP. Therefore, it is better to schedule the look-ahead voltage scaling

100

1: N = funcl();

2: k=func2();

3: i =func3();

4: func4();

5: LooplterNum=0;
6: while (i <N){

7 Looplter Num++;
8: funcb();
o i=i+k;

10: }

11: if (LooplterNum < M)
12: change f V();
13: func6();

1: N = funcl();

2: k=func2();
3: 1 =func3();
4 i=i;

5: LooplterNum = 0;
6: while(_i <N) {

7 Looplter Num++;
8: = i+Kk
9:}

10: if (LooplterNum < M)
11 change f V();
12: func4();

13: while (i <N) {

14: funch();

15: i=i+k;

16:}

17: func6();

(a) Original IntraDV'S

(b) Look-ahead IntraDVS

Figure 5.14: An example program for L-type VSP.

101

points as early as possible at the compiler level. We call this instruction

scheduling as an LalntraDVS-aware instruction scheduling.

In the algorithm level, the loop splitting technique can be useful for Laln-
traDVS. When a loop body has both the original VSP and the corresponding
LaVSP, we split the loop into two separated loops which have the VSP and
the LaVSP respectively. By the loop splitting, we can change the distance
between the original VSP and the LaVSP.

Figure 5.15 shows the code transformation by loop splitting. In Figure
5.15(a), we assume that the execution cycles of functions funcA, funcB and
funcC are 10, 10 and 20, respectively. When N is 10, the worst-case execu-
tion cycles of this loop is 300 (when we consider only the execution cycles
for functions). Whenever the function funcA returns 1, the voltage scaling
point at the line 6 reduces the clock speed. The clock speed f5 at the line

5 is changed to
L 10430 (9—14)
f1=5 50730 (9 0)
at the line 7 (assuming the voltage transition overhead is 0). Since the look-

ahead voltage scaling point (line 5) is same to the original voltage scaling

point, we cannot use the LalntraDVS technique.

However, if we transform the program using loop splitting as shown in
Figure 5.15(b), we can take full advantage of LalntraDVS. While the original
VSP is located in the second loop, the LaVSP is in the the first loop.
Whenever the value of each ali] is determined at the first loop, we can
reduce the clock speed at the LaVSP at the line 6. If the clock speed at the
line 4 is f4, the clock speed is changed to

10+ (i4+1)+20-(9—4)

fa 103420 (10 —)

102

by the LaVSP. Figure 5.15(c) shows the speed change graphs of two pro-
grams. The clock speed of the program transformed by the loop splitting
is reduced more quickly and doe not change during the execution of the
second loop. If we assume that the energy consumption is proportional to
the square of the clock speed, the LalntraDVS technique with loop splitting

reduces the energy consumption by 15% in this example.

Another enhancement technique for LalntraDVS is the function inlining.
For the program in Figure 5.16(a), a voltage scaling point is the line 12
because the function funcC is not executed when 7 > 0. The data predecessor
of the variable 7 is the line 2 of the function funcA. But, the line 2 is not
a look-ahead point of ¢ because the function funcA is called at the line 8
with the input variable j. Therefore, we cannot move the voltage scaling
point to the line 3. If we inline the function funcA to the line 6 as shown
in Figure 5.16(b), the line 6 becomes the look-ahead point of the variable i.
LalntraDVS inserted the voltage scaling point to the line 7-8.

5.2.5 Experiments

In order to evaluate the energy efficiency of LalntraDVS techniques, we have
experimented with an MPEG-4 video encoder and an MPEG-4 decoder.
We first made a framework for LalntraDVS as shown in Figure 5.17. We
used the same automatic voltage scaler (AVS) introduced at the previous
chapter. AVS takes a target program as an input and generates the VSP
information using the original IntraDVS algorithm. The Look-ahead VSP
Analyzer generates the look-ahead points for each VSP using the algorithm
in Figure 5.12. The Data Flow Analyzer finds the data predecessors for

103

1:int a[N];

2.

3: for (i=0; i<N; i++) {
4. a[i] =funcA();

50 if(afi]) {

6: change f V();
7 funcB();

8 }

9 dse
10: funcC();
11:}

1:int a[N];
2:
3: for (i=0; i<N; i++) {
4: a[i] = funcA();

5. if(a[i])

6: change f V();
7.}

8: for (i=0; i<N; i++) {
9: if (afi]) funcB();

10: dse funcC();
11:}

(a) Original Program

(b) Transformed Program

= origina

— |oop split

1.0

08

speed
o
o))

04 |

02

0.0

0 50 100

150 200 250
time

(c) Speed change graph

Figure 5.15: Code transformation: loop splitting.

104

300

1: void funcA(int * a) { 1: void funcA(int * a) {
2: *a = funck(); 2: *a = funck();
3} 3}
4: 4:
5: void main() { 5: void main() {
6: funcA(&i); 6 i = funcF();
7: funcB(); 7. if (1(i >0))
8. funcA(&)); 8: change f V();
9 if(i>0) 9: funcB();
10: funcC(); 10: funcA(&));
11: dse 11: if (i>0)
12: change f V(); 12: funcC();
13: funcD(); 13: funcD();
14:} 14:}
(a) Original program (b) Transformed program

Figure 5.16: Code transformation: function inlining.

each VSP using the data flow analysis technique. The Data Flow Analyzer
corresponds to the function Find_Data_Predecessor in Figure 5.12. Using the

look-ahead VSP information, AVS generates the DVS-aware program.

Figure 5.18 shows the energy consumption of three kinds of MPEG-
4 encoder programs, which employ the original IntraDVS, the single-step
LalntraDVS and the multi-step LalntraDVS, respectively. The figure also
compares the results for the RWEP-based techniques and the RAEP-based
techniques. The energy consumption is normalized by the result of the
RWEP-based IntraDVS technique. As shown in Figure 5.18, the single-
step LalntraDVS reduced the energy consumption only by 4~6%. This is
because most of look-ahead points are located closely to the original VSPs.

However, the multi-step LalntraDVS shows significant energy reductions of

105

Target . DVS-aware
Automatic Voltage Scaler

VSP LavsP
information Information
L ook-ahead
V'SP Analyzer

:

Data Flow
Analyzer

Figure 5.17: The framework for look-ahead IntraDVS.

40~45%.

The energy performance of LalntraDVS is dependent on the application
characteristic. For an MPEG-4 decoder program, even the multi-step Laln-
traDVS shows little energy reductions. Generally, the applications, which
consist of several steps and the execution cycles of the i step is dependent
on the result of the (i — 1) step, is not improved by the LalntraDVS. But,
the LalntraDVS can enhance the energy performances of the applications
whose execution cycles are determined by input variables. For example,
GUI applications can predict the execution time when the menu selection

event occurs.

Another issue for the application characteristic is its slice size. Weisr [46]
introduced the concept of program slice, which allows the user to focus on
the portion of the program responsible for a particular phenomenon. There

are two kinds of slices, i.e., backward slice and forward slice. While a

106

@ Original IntraDVS @ Single-Step LalntraDVS [Multiple-Step LalntraDV'S

0.8

0.6

0.4

0.2

Normalized Energy Consumption

RWEP-based RAEP-based

Figure 5.18: Experimental results of look-ahead IntraDVS.

backward slice consists of all program points that affect a given point in
a program, a forward slice consists of all program points that are affected
by a given point in a program. When we use the multi-step LalntraDVS
technique, a portion of the backward slice of a VSP should be cloned before
the LaVSP point. Therefore, if the size of backward slice is large, Cypernead
becomes large. We can say that the size of backward slice limits the energy

performance of LalntraDVS.

The slice size is dependent on the target program point. However, average
slice size is considerably smaller than the original code [46, 47]. The multi-
step LalntraDVS applied to MPEG-4 encoder program inserted only four

C-statements.

107

Chapter 6

Cooperative IntraDVS under
OS-Level Voltage Scheduler

6.1 Motivation

We have compared the energy efficiency of the InterDVS algorithms and
the IntraDVS algorithm in Chapter 4. However, there are cases where pure
IntraDVS or pure InterDVS dose not work well. Figure 6.1 illustrates such

cases.

In Figure 6.1(a), when an InterDVS algorithm is used, the slack time
generated by the task 7, cannot be used by the task 7, because the release
time of the task 75 is same to the deadline of the task 7;. This slack time
could be used if the task 7, were scheduled using an IntraDVS algorithm.
On the other hand, in Figure 6.1(b), when an IntraDVS algorithm is used,

all the slack times generated by the task 7, are used by the task 7;. However,

108

interva
task Tq (== >

speed dack
T task T2

/ “time

deadline(ty) = release(Ty)

(a) The case where InterDVS can not utilize the

slack time.

task T1 |— task L

A = time
release(t2) deadline(ty)

(b) The case where the slack distribution is not

"

balanced due to IntraDVS.
Figure 6.1: Cases where pure InterDVS or pure IntraDVS performs poor.

this slack distribution is unbalanced. If we used InterDVS, we could get a

more efficient schedule by distributing the slack time of 7, for the task 7.

From this example, we can know that the cooperation between IntraDVS
and InterDVS is necessary for energy efficient systems. As shown in Fig-
ure 6.1(b), when the speed of an IntraDVS-enabled task is too low but there
are released other tasks, it is better to stop voltage scaling in the task and
transfer slack times to the released tasks. However, if there is no released

task, the IntraDVS-enabled task should continue to adjust the clock speed.

It is impossible to find the optimal solution for the slack distribution
because we have no knowledge of the future workload. Therefore, some

heuristics are required, which can balance the slack time usage.

109

6.2 Hybrid DVS algorithms

In this section, we investigate whether hybrid DVS algorithms (HybridDVS
algorithms) with both IntraDVS and InterDVS features perform better than
pure IntraDV'S algorithms or pure InterDVS algorithms.

HybridDVS algorithms select either the intra mode or the inter mode
when slack times are available during the execution of the current task. At
the inter mode, the slack time is used not for the current task but for the
following tasks. Therefore, the speed of the current task is not changed by
the slack time produced by the current task. At the intra mode, all the

slack time is used for the current task, reducing its own execution speed.

Table 6.1 summarizes six heuristics for HybridDVS algorithms we con-
sider in this section. The heuristics are different in that how close they are
to the pure IntraDVS approach or pure InterDVS approach. HO is identical
to the pure InterDVS approach. H1 and H2 are closer to the pure InterDVS
approach while H4 and H5 are closer to the pure IntraDVS approach.

The heuristic H1 is motivated to solve the case shown in Figure 6.1(a).
H1 uses the intra mode only when there is no following task which can utilize
the slack time from the current task. When the current task 7 meets a VSE
(b;,b;) at the time ¢, H1 compares the expected completion time ect(r) of
7 and the next task arrival time NT'A. When the remaining worst-case
execution cycles and the clock speed of 7 are Crypc(t) and S(t) at the
time ¢ respectively, the ect(r) is t + Crwrc(t)/S(t). If ect(r) > NTA,
the HybridDVS H1 does nothing at the VSE. However, H1 scales down the
clock speed when ect(7) < NTA. The speed change algorithm is same to

110

Table 6.1: Heuristics for HybridDVS algorithms.

Heuristic Description
HO always uses the inter mode (i.e., the pure InterDVS approach).
H1 uses the inter mode as a default but uses the intra mode

if no activated task exists.

H2 uses the inter mode at first, but changes into the intra mode

when the unused slack time is more than a predefined amount of slack time.

H3 alternates the intra mode and the inter mode

keeping the balance of slack consumption in each mode.

H4 uses the intra mode at first, but changes into the inter mode

when the current task has used a predefined amount of slack time.

H5 always uses the intra mode.

the IntraDVS’s algorithm. The current speed S(t) is changed to

Crwrc(bi) — Cpe(b;)
Crwrc(b)) '

Under this algorithm, there is no task which completes before the next task

S(t) x

arrival time (when we assume that there is no overhead time on voltage

scaling) thus the system has no idle time.

The heuristic H4 is devised to solve the case shown in Figure 6.1(b). H4
uses the intra mode temporarily for the current task. So, it scales down the
clock speed at VSEs. However, when the current task has used too much
slack times thus the clock speed is too low, it changes the operating mode
to the inter mode. We added the idea of the heuristic H1 to this heuristic
H4. Even though the operating mode is transferred to the inter mode, it
changes into the intra mode if the expected completion time is earlier than
the next task arrival time. The issue of H4 is to determine when we change

the operating mode.

111

H4 assigns the maximum slack time (MST) to each task before the task’s
execution. To balance the total slack time among tasks, the MST should be
assigned so that the task, whose average execution cycles are large, has a
large MST. Generally the execution cycles of a task has a temporal locality.
so, we use the information about past task executions. The MST can be
estimated as follows:

1
Utot

MST(7) = e(r)(— — 1) (6.1)

¢(7) is the average execution cycles based on the past executions of 7. This is
updated at every completion of the task instance. Uy, is the total processor

utilization until the current time.

During the task execution, H4 manages the total used slack time (UST).
The UST is initially the slack time which is transferred from the previously
executed tasks. When the task execution meets a VSE at the intra mode,
H4 adds the saved cycles at the VSE to UST. If UST is smaller than MST,
it sustains the intra mode. But, when UST becomes to be larger than MST,

it changes into the inter mode.

The heuristic H2 is exactly the opposite of H4. H2 also assigns the
maximum slack time to each task. Each task starts from the inter mode.
At each VSE, it does not scale down the clock speed but adds the saved
cycles at the VSE to the transferred slack time (TST). When the TST is
larger than (w(7) — ¢(7)—MST), the task enters into the intra mode, where
w(7) is the worst-case execution cycles. The value of w(7) — ¢(7) means the

expected slack time from the task 7.

While the heuristics H2 and H4 manage the absolute value of slack con-

sumption, the heuristic H3 keeps the balance of slack consumption. It al-

112

ternates the intra mode and the inter mode keeping the ratio between UST

and TST at the value of MST/(w(r) — ¢(r) — MST).

6.3 Experiments

We have evaluated six heuristics in Table 6.1 with four InterDVS algorithms.
Figure 6.2 shows the energy efficiency comparison results of the HybridDV'S
algorithms over the power-down method varying WCPUs. In the power-
down method, active tasks execute with the full speed. When there is no
active task, the system enters into the power-down mode. The HybridDVS
algorithms, H1, H2, H3 and H4, generally reduce the energy consumption
by 5~27% over that of the pure DVS algorithms, HO and H5.

Figure 6.2 shows that the energy efficiencies of HybridDVS algorithms
are strongly affected by the efficiency of the on-line slack estimation method
used by each InterDVS algorithm. In 1aEDF [11], DRA [10] and AGR [10] where
slack times are aggressively identified, it is a good idea that some (or all) of
slack time produced by the current task is passed to the following tasks (as
in Figure 6.1(b)). Especially, 1aEDF and AGR identify the slack time for a
task assuming all following tasks will be executed with the full speed. With
the slack estimation method, the high-priority or early-released tasks has
a long slack time. In this scheme, both HybridDVS and IntraDVS shows

poor energy performance.

However, in 1ppsEDF/RM [8] and ccEDF/RM [11] where slack times are less
aggressively identified, there are many cases where the current slacks are

wasted unless used by the current task (as in Figure 6.1(a)). In this case,

113

Normalized Energy
Normalized Energy

0.7 0.8

0.7
0.6

0.6
0.5

0.5
0.4 B

0.4
0.3

0.3
0.2 0.2
0.1 0.1

0 0
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
WCPU WCPU

0.6 0.7

0.5 0.6
> >
o o

g g 0.5
g
5 0.4 §

b T 0.
g g
A 0.3 Bl
a o

g go.3
o 5
Z 0.2 z

0.2

0.1 0.1

0]

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
WCPU WCPU

(c) 1aEDF (d) AGR
Figure 6.2: Energy efficiency comparison results of the HybridDVS algo-

rithms.

114

it is better for the current task to utilize most of the slack time generated.
Therefore, if a HybridDVS algorithm is based on 1aEDF, DRA or AGR, H1 and
H2 are better choices. On the other hand, for 1ppsEDF/RM and ccEDF/RM,
H4 and H5 are better choices.

Figure 6.3 shows the spectrum of HybridDVS heuristics, and summarizes
well-matching hybrid heuristics for each InterDVS algorithm. For example,
if 1aEDF is extended to a HybridDVS algorithm, H1 is a good candidate for
a matching hybrid heuristic. However, if 1ppsRM is modified for a hybrid
DVS algorithm, H4 is a better hybrid heuristic.

?ﬂ' ??
@ é@g Q@

Figure 6.3: Spectrum of HybridDVS heuristics.

115

Chapter 7

Conclusions

7.1 Summary and Contributions

Embedded and ubiquitous computing are emerging rapidly as exciting new
paradigms to provide computing and communication services all the time,
everywhere. This emergence is a natural outcome of research and techno-
logical advances in embedded systems, pervasive computing and commu-
nications, wireless networks and mobile computing, etc. In these systems,
energy efficient system design is a critical issue considering the limited bat-

tery capacity.

Most of these embedded systems are time critical real-time systems. Al-
though classic real-time design techniques address the scheduling problem
for the various system resources such as CPU cycle and I/O bandwidth, they
do not take into account the energy efficiency. However, with the advent

of the variable-voltage processors, we are facing the scheduling problem to

116

select the right speeds for each task.

The current dissertation presented several intra-task clock and voltage
scheduling algorithms for systems containing variable-voltage processors.
They make energy-efficient real-time systems, satisfying the hard real-time
constraints. The dissertation started with a presentation of the relevant

background, followed by a review of related research.

Next, we have proposed an intra-task voltage scheduling framework for
low-energy hard real-time applications. By statically analyzing the timing
behavior of a DVS-unaware real-time program, the proposed technique au-
tomates two time-consuming and complicated steps of applying intra-task
voltage scheduling to DVS-unaware programs. First, the proposed tech-
nique automatically selects appropriate program locations where the supply
voltage can be changed to minimize the energy consumption satisfying the
timing constraint. Second, the proposed technique inserts to the selected
program locations voltage scaling code in a completely transparent fashion

to programiners.

By automating these two steps, the proposed algorithm makes it possi-
ble for programmers without any knowledge on DVS to develop DVS-aware
programs on a variable-voltage processor. The converted program by the
proposed scheduling algorithm has a unique characteristic that it always
completes its execution near the deadline, thus resulting in no slack time.
By lowering the execution speed and corresponding voltage to the maxi-
mum allowable extent, the proposed algorithm achieves a significant energy

reduction ratio.

Based on the proposed intra-task voltage scaling framework, we have

117

built an automatic voltage scaling tool, AVS. It automatically transforms a
DVS-unaware program to a DVS-aware low-energy program with the same

functional behavior and timing requirement.

Next, we have described two kinds of improvement techniques for the
IntraDVS algorithm, i.e. using profile information and using data flow
analysis. While the worst-case timing information is used in the basic In-
traDVS (RWEP-based IntraDVS), the average-case timing information is
used for a better energy performance in the IntraDVS using profile infor-
mation (RAEP-based IntraDVS). The IntraDVS using data flow analysis
finds the voltage scaling points based on the data flow information as well

as control flow information (Look-ahead IntraDVS).

Next, we have proposed hybrid voltage scheduling algorithms to cooper-
ate with OS-level InterDV'S algorithms. Though IntraDV'S exploits all slack
times within a task boundary, there are cases where it is better to transfer
slack times to following tasks. The hybrid DVS algorithms determines the

slack distribution observing the current system status.

The experimental results using simulations with an MPEG-4 video en-
coder and decoder showed that AVS using RWEP-based IntraDVS improves
the energy efficiency of the programs by a factor of 2.6~3.4 over the pro-
grams running on a non-DVS system with a power-down mode. The RAEP-
based IntraDV'S improved the energy efficiency up to 34% over the RWEP-
based IntraDVS. The look-ahead IntraDV'S reduced the energy consumption
by 40 ~ 45%.

In the experiment using a real DVS-enabled system providing a finite

number of clock/voltage levels, the low-energy version of an MPEG-4 en-

118

coder/decoder consumed only 35~51% of the energy consumption from
the original program running on a fixed-voltage system with a power-down
mode. We also compared the energy efficiencies of the IntraDVS algorithm
and InterDVS algorithms. Although the IntraDVS algorithm generally out-
performed the InterDVS algorithms, the relative energy efficiency was de-

pendent on the task set characteristics.

7.2 Future Works

7.2.1 IntraDVS Using Frequency-Aware

Timing Analysis

In this dissertation, we assumed that reducing a processor’s clock frequency
still results in the same number of execution cycles for a task. However,
this simplistic view generally does not hold for any realistic architectures.
Consider the impact of memory references. Any instruction or data refer-
ence that is resolved through a main memory access operates at external bus
frequency. But bus frequencies generally diverge from internal processor fre-
quencies, and they do not scale at the same rate as DVS scaling does. E.g.,
the first generation Compaq IPAQ has a StrongArm microprocessor (SA-
1110) that scales at 8 frequencies but only supports two different external
bus frequencies. By assuming that the WCEC remains constant, one ignores
the fact that the WCEC reduces with frequency, which results in WCET
overestimations. Therefore, an exact WCEC model should be frequency-
aware. For example, Seth et al. [48] proposed the frequency-aware WCEC

model assuming a constant access latency for memory references regard-

119

less of changing processor frequencies. They represented the WCEC of a

program as follows:
WCEC =i+m-L-f (7.1)

where 7 is the total number of cycles used for non-memory operations and
m is the total number of memory references respectively. L is the latency

of the memory and f is the frequency of the processor.

There are some obstacles to use the frequency-aware WCEC model in
our IntraDVS techniques. First, RWEPs can be changed depending on the
frequency. For example, in Equation (7.1), assume that L is 5 and the pairs
of (i,m) of two remaining paths p; and py are (50,10) and (30,16) respec-
tively. If f = 1, WCEC(p,) is longer than WCEC(p,) (WCEC(p,) =
50+10-5-1 =100 and WCEC(p;) = 30+ 16-5-1 = 110). But, if f = 0.5,
WCEC (py) is longer than WCEC (py) (WCEC(p1) =50+10-5-0.5 =75
and WCEC (p2) =30+ 16-5-0.5 = 70). This phenomenon prohibits from
selecting voltage scaling edges statically. In addition, we cannot select VSEs
from VSE candidates statically because the saved cycles at VSE candidates
are different depending on clock frequency. (Csgreq = 10 at f = 1 and
Csavea = 5 at f = 0.5) Therefore, we should insert voltage scaling edges all
possible points. At run time, it is should be checked whether the point is a

VSE or not.

Second problem occurs when the memory has a complex model for access
time. For example, Intel’s PXA250 provides different memory bus frequency
depending on the CPU clock frequency. In this case, we cannot use a
simple formula such as Equation (7.1) as the WCEC model. Then, DVS

algorithm should provide all solutions for all configurations and use one of

120

them at run time. This increases the overhead time and code size for voltage
scaling. We are to investigate the efficient implementation techniques such

that IntraDV'S can use the frequency-aware timing analysis.

7.2.2 IntraDVS Using Run-Time Monitoring

The execution time of an application depends on the run-time hardware
events (e.g., cache miss and TLB miss) as well as the control flow. We
plan to integrate such run-time information into the proposed IntraDVS
framework so that the energy efficiency could be further improved. To use
the hardware events, the hardware monitor is required. Fortunately, recent
processors provide hardware event counters. For example, for Intel’s XScale
processor, we can know the number of pipeline stalls, cache misses, TLB
misses, and branch mispredictions using the performance monitor count

register [4].

Recently, choi et al. [49] proposed a dynamic voltage scaling technique
for MPEG decoding which using the performance-monitoring unit in XS-
cale processor. They partitioned the computational workload in decoding a
frame as on-chip and off-chip workload by using a dynamic event from the
performance-monitoring unit. The on-chip workload for an incoming frame
is predicted using a frame-based history so that the processor voltage and
frequency can be scaled to provide the exact amount of computing power

needed to decode the frame.

In using the hardware events for IntraDVS, unlike the technique based on
control flow, we cannot adjust the clock/voltage at every hardware events.

It is better to piggyback the saved cycles by hardware events on VSEs. At

121

each VSE, the voltage scaling code should check the saved cycles from both

the control flow and the hardware events.

7.2.3 IntraDVS Considering Static Power

Although we have focused on the dynamic power consumption assuming the
static part can be ignored, the static power will become a significant portion
of the total power. [50] reported that the leakage power currently accounts
for about 15 ~ 20% of the total power for high speed processors. Recently,
several techniques have been proposed, which minimize the leakage power.
For example, drowsy cache [50] reduces the leakage power by lowering the
supply voltage to the least upper bound that preserves state (drowsy state).
Drowsy cache periodically clear all active lines to the drowsy state. Word
lines in the drowsy state return to the active state when accessed. There
are overhead time to awake from the drowsy state. With the drowsy cache,
it is advantageous to have long idle times. This means that we may increase
the leakage energy consumption using DVS techniques because idle times
are reduced by stretching the execution times of tasks by DVS techniques.
Therefore, we should consider the leakage power as well as the dynamic

power at future systems.

For example, assume a task has an execution cycle C' and a deadline D.
If the task consumes the dynamic energy E at the maximum clock speed
fm, we can reduce the energy consumption to E - (f/f,)? by reducing the
clock speed to f < f,,. When we use a drowsy cache, which consumes the
leakage power L if a task is activated but consumes no leakage power if the

system is idle, the leakage energy at the clock frequency fis C'- L/ f. Then,

122

total energy consumption is £ - (f/f)?> + C - L/f. The clock frequency f,
which minimizes the energy consumption, is ¢ % We should use this

clock speed to minimize the total energy consumption.

We will further research into the IntraDVS scheduling considering the

leakage energy. A more detail model for leakage energy is required.

7.2.4 Inter-Task DVS Using Intra-Task Slack Detec-

tion

Though we used the slack information detected within a task for IntraDV'S,
the information can also be useful for the InterDVS. When a task is resumed
after preemption, general inter-task scheduling algorithms determine the
clock speed based on the RWEC of the task. For example, assume that
there is a preempted task, which has a WCEC W and already executed C
cycles. InterDVS algorithms determine the clock speed of the task based
on the RWEC W — C. Namely, the RWEC is estimated by subtracting
the consumed cycles from the WCEC. This is not an exact value because
the RWEC is changed by the slack time within the task. If the inter-task
voltage scheduler can know the exact RWEC, it can further reduce the clock
speed with the information. Furthermore, the inter-task voltage scheduler
can utilize both the current task’s RWEC information and the global slack

information to make a better decision about the clock speed.

At each VSE; if a task only informs the change of RWEC to the operating
system instead of voltage scaling, the operating system records the RWEC

to the data structure for the task and can use when the task is resumed after

123

preemption. The preliminary result using the IppsEDF algorithm suggests
that the energy can be reduced by about 5%. We have a plan to devise

detail algorithms for various InterDVS algorithms.

124

Bibliography

1]

T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A Dynamic Volt-
age Scaled Microprocessor System. In Proc. of IEEE International
Solid-State Circuits Conference, pages 294-295, 2000.

M. Fleischmann. Crusoe Power Management: Reducing the Operating

Power with LongRun. In Proc. of HotChips 12 Symposium, 2000.
AMD, Inc. AMD PowerNow Technology, 2000.

Intel, Inc. The Intel(R) XScale(TM) Microarchitecture Technical Sum-
mary, 2000.

F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced
CPU Energy. In Proc. of the 36th Annual Symposium on Foundations
of Computer Science, pages 374-382, 1995.

I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis Tech-
niques for Low-Power Hard Real-Time Systems on Variable Voltage
Processor. In Proc. of the 19th IEEE Real-Time Systems Symposium,
pages 178187, 1998.

125

7]

[10]

[11]

[12]

[13]

T. Okuma, T. Ishihara, and H. Yasuura. Real-Time Task Scheduling
for a Variable Voltage Processor. In Proc. of International Symposium

On System Synthesis, pages 24-29, 1999.

Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems. In Proc. of Design Automation Conference,

pages 134-139, 1999.

Y. Lee and C. M. Krishna. Voltage-Clock Scaling for Low Energy
Consumption in Real-Time Embedded Systems. In Proc. of the 16th

International Conference on Real-Time Computing Systems and Ap-

plications, pages 272-279, 1999.

H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and Ag-
gressive Scheduling Techniques for Power-Aware Real-Time Systems.

In Proc. of IEEE Real-Time Systems Symposium, 2001.

P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems. In Proc. of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP’01), 2001.

W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm
for Dynamic-Priority Hard Real-Time Systems Using Slack Time Anal-
ysis. In Proc. of Design Automation and Test in Furope, pages 788794,
2002.

S. Lee and T. Sakurai. Run-Time Voltage Hopping for Low-Power
Real-Time Systems. In Proc. of Design Automation Conference, pages

806-809, 2000.

126

[14]

[15]

[16]

[17]

D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for Low-
Energy Hard Real-Time Applications. IEEE Design and Test of Com-
puters, 18(2):20-30, 2001.

D. Shin and J. Kim. A Profile-Based Energy-Efficient Intra-Task Volt-
age Scheduling Algorithm for Hard Real-Time Applications. In Proc. of
International Symposium on Low Power Electronics and Design, pages

271-274, 2001.

D. Shin, W. Kim, J. Jeon, and J. Kim. SimDVS: An Integrated Sim-
ulation Environment for Performance Evaluation of Dynamic Voltage
Scaling Algorithms. Lecture Notes in Computer Science, 2325:141-156,
2003.

C. Y. Park and A. C. Shaw. Experiments with A Program Timing Tool
Based on Source-Level Timing Schema. In Proc. of the 11th Real-Time
Systems Symposium, pages 72—-81, 1990.

N. Zhang, A. Burns, and M. Nicholson. Pipelined Processors and
Worst-Case Execution Times. Real-Time Systems, 5(4):319-343, 1993.

Y. S. Li, S. Malik, and A. Wolfe. Cache Modeling for Real-Time Soft-
ware: Beyond Direct Mapped Instruction Caches. In Proc. of the 17th
IEEE Real-Time Systems Symposium, pages 254-263, 1996.

R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon. Timing
Analysis for Data Caches and Set-Associative Caches. In Proc. of the
3rd IEEE Real-Time Technology and Applications Symposium, pages
192-202, 1997.

127

[21]

[22]

23]

28]

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park,
H. Shin, K. Park, and C. S. Kim. An Accurate Worst Case Timing
Analysis for RISC Processors. IFEFE Transactions on Software Engi-
neering, 21(7):593-604, 1995.

J. M. Rabaey and M. Pedram. Low Power Design Methodologies.
Kluwer Academic Publishers, 1996.

S. Borkar. Design Challenges of Technology Scaling. IEEE Micro,
19(4):23-29, 1999.

T. Sakurai and A. Newton. Alpha-Power Law MOSFET Model and
Its Application to CMOS Inverter Delay and Other Formulas. IEEFE
Journal of Solid State Circuits, 25(2):584-594, 1990.

Texas Instruments, Inc. Using the Power Scaling Library on the

TMS320C5510, 2002.

M. Fleischmann. LongRun Power Management - Dynamic Power Man-
agement for Crusoe Processors. Technical report, Transmeta Corpora-

tion, 2001.

K. J. Nowka, Gary D. Carpenter, Eric W. MacDonald, Hung C. Ngo,
Bishop C. Brock, Koji L. Ishii, Tuyet Y. Nguyen, and Jeffrey L. Burns.
A 32-bit PowerPC System-on-a-Chip With Support for Dynamic Volt-
age Scaling and Dynamic Frequency Scaling. IEEE Journal of Solid-
State Circuits, 37(11):1441-1447, 2002.

R. Hamburgen, D. Wallach, M. Viredaz, L.. Brakmo, C. Waldspurger,
J. Bartlett, T. Mann, and K. Farkas. Itsy: Stretching the Bounds of
Mobile Computing. IEEE Computer, 34(4):28-36, 2001.

128

[29]

[31]

32]

J. Pouwelse, K. Langendoen, and H. Sips. Dynamic Voltage Scaling on
a Low-Power Microprocessor. In Proc. of Mobile Computing Confer-

ence(MOBICOM), pages 251-259, 2001.

F. Gruian. Hard Real-Time Scheduling Using Stochastic Data and
DVS Processors. In Proc. of International Symposium on Low Power

Electronics and Design, pages 46-51, 2001.

Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time
Embedded Systems on Variable Speed Processors. In Proc. of Interna-

tional Conference on Computer-Aided Design, pages 365-368, 2000.

G. Quan and Xiaobo Sharon Hu. Energy Efficient Fixed-Priority
Scheduling for Real-Time Systems on Variable Voltage Processors. In

Proc. of Design Automation Conference, pages 828-833, 2001.

W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance
Comparison of Dynamic Voltage Scaling Algorithms for Hard Real-
Time Systems. In Proc. of IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 219-228, 2002.

C. Im, H. Kim, and S. Ha. Dynamic Voltage Scheduling Technique
for Low-Power Multimedia Applications Using Buffers. In Proc. of
International Symposium On Low Power Electronics and Design, pages

34-39, 2001.

[. Hong, M. Potkonjak, and M. B. Srivastava. On-Line Scheduling
of Hard Real-Time Tasks on Variable Voltage Processor. In Proc. of

International Conference on Computer Aided Design, pages 653—656,
1998.

129

[36]

[39]

[40]

[41]

D. Shin and J. Kim. Dynamic Voltage Scaling of Periodic and Aperiodic
Tasks in Priority-Driven Systems. In Proc. of Asia South Pacific Design
Automation Conference, pages 653-658, 2004.

J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

J. R. Lorch and A. J. Smith. Improving Dynamic Voltage Scaling
Algorithms with PACE. In Proc. of ACM SIGMETRICS Conference,
pages 50-61, 2001.

C-H. Hsu and U. Kremer. The Design, Implementation, and Evalua-
tion of a Compiler Algorithm for CPU Energy Reduction. In Proc. of
ACM SIGPLAN Conference on Programming Languages, Design, and
Implementation, pages 3848, 2003.

C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating the Timing
Analysis of Pipelining and Instruction Caching. In Proc. of the 16th
IEEE Real-Time Systems Symposium, pages 288-297, 1995.

F. Gruian. On Energy Reduction in Hard Real-Time Systems Contain-
ing Tasks with Stochastic Execution Times. In Proc. of IEEE Work-
shop on Power Management for Real-Time and Embedded Systems,
pages 11-16, 2001.

T. Ball and J. R. Larus. Using Paths to Measure, Explain, and Enhance
Program Behavior. IEEE Computer, 33(7):57-65, 2000.

T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynami-
cally Variable Voltage Processors. In Proc. of International Symposium

On Low Power FElectronics and Design, pages 197-202, 1998.

130

[44]

[48]

[49]

[50]

S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

Bjorn. Fully Automatic, Parametric Worst-Case Execution Time Anal-
ysis. In Proc. of International Workshop on Worst-Case Ezecution

Time Analysis, pages 85-88, 2003.

M. Weiser. Program Slicing. [EEE Transactions on Software Engi-
neering, 10(4):352-357, 1984.

L. Bent, D. C. Atkinson, and W. G. Griswold. A Comparative Study
of Two Whole Program Slicers for C. Technical Report CS2001-0668,
Dept. of Computer Science and Engineering, University of California

at San Diego, 2001.

K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST:
Frequency-Aware Static Timing Analysis. In Proc. of the 2/th IEEE
International Real-Time Systems Symposium, pages 40-51, 2003.

K. Choi, R. Soma, and M. Pedram. Off-chip Latency-Driven Dynamic
Voltage and Frequency Scaling for an MPEG Decoding. In Proc. of
Design Automation Conference, 2004.

K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy
Caches: Simple Techniques for Reducing Leakage Power. In Proc. of
the 29th Internal Symposium on Computer Architecture, 2001.

131

Appendix

A. DVS Hardware Platforms

Nowadays, it is easy to get a DVS platform. Here we briefly describe eight
solutions, implemented by various embedded processors. The first two solu-
tions are the result of academic research projects at UC Berkeley and Delft
University respectively. The rest are industry developments by Transmeta,

AMD, Intel, IBM, Texas Instruments and Compaq.

UC Berkeley’s IpARM The IpARM processor, developed at UC Berke-
ley, is a low power, ARM core based architecture, capable of run-time volt-
age and clock frequency changes. The prototype described in [1] (0.6 tech-
nology) is, reportedly, able to run at clock frequencies in the 5-80 MHz
range, with 5 MHz increments. The supply voltage is adjustable in the
1.2-3.8 V range. It includes an ARMS core running at a clock frequency
produced by an on-chip voltage-controlled oscillator (VCO). On IpARM, a
speed switch from 5MHz@1.2V to SOMHz@3.8V takes a 70 ps. Due to the
particular design of the IpARM, the processor can continue executing in-

structions while switching speeds. Although the transition between speeds

132

is not instantaneous, the property that the processor can continue operat-
ing while switching, makes the actual latency much smaller than the speed

switch.

TU Delft’s LART The LART is built by Delft University using Intel
SA-1100 StrongARM processor. It can operate at clock speeds ranging
from 59 to 221 MHz. The supply voltage is adjustable in the range of 0.8 V
(at 59 MHz) to 1.5 V (at 221 MHz). They extended the Linux kernel with
a module that changes the clock frequency and core voltage. The kernel
module can be accessed from user-space by writing the desired frequency
in the ‘/proc/scale’ pseudo file; the kernel uses a lookup table to select
the minimum core voltage at which the processor still functions for the
selected frequency. The speed switch from 59 MHz to 221 MHz takes 140
us. The voltage transition times are different depending on the directions.
The voltage increase is rapidly handled (40 us), but the decrease takes a
long time (5.5 ms). This is caused by the high capacitance of the regulator

and the low power deman of the processor at 59 MHz.

Transmeta’s Crusoe with LongRun Crusoe is a Transmeta proces-
sor family (TM5x00), with a VLIW core and x86 Code Morphing software
that provides x86-compatibility. Besides four power management states,
the processor supports run-time voltage and clock frequency hopping. Fre-
quency can change in steps of 33 MHz and the supply voltage in steps of
25mV, within the hardware’s operating range. The number of available
speeds depends on the model. The TM5600 model for example, operates
in normal mode between 300-667 MHz and 1.2-1.6V [26], meaning eleven

133

different speed settings. The corresponding power consumption varies be-
tween 1.5W and 5.5W. The speed is decided using feedback from the Code
Morphing algorithm, which reports the utilization. The LongRun manager
employs this feedback to compute and control the optimal clock speed and
voltage. Note that this is a fine grain control, transparent to the program-
mer. The algorithms we present in this dissertation require direct control
over the processor speed, and would substitute or augment LongRun. Nev-
ertheless, the Crusoe architecture is a successful example of a variable speed
processor, widely used in low power systems. A comparison with a conven-
tional mobile x86 processor using Intel SpeedStep, running a software DVD
player, reported in [26], shows that TM5600 consumes almost three times
less power than the mobile x86 (6W for TM5600 vs. 17W for the mobile
x86).

AMD’s K6 with PowerNow! AMD’s PowerNow! technology controls
the level of processor performance automatically, dynamically adjusting the
operating frequency and voltage many times per second, according to the
task at hand. Their embedded processors from the AMD-K6-2E+ and
AMD-K6-ITIE+ families are all implementing PowerNow!. According to [3],
AMD PowerNow! is able to support 32 different core voltage settings rang-
ing from 0.925 V to 2.00 V with voltage steps of 25 mV or 50 mV. Clock
frequency can change in steps of 33 MHz or 50 MHz, from an absolute low
of 133 MHz or 200 MHz, respectively. The voltage and frequency changes
are controlled through a special block, the Enhanced Power Management
(EPM) block. At a speed change, an EPM timer ensures stable voltage
and PLL frequency, operation which can take at most 200 us. During this

134

time, instruction processing stops. A comparison with a Pentium III 600+
using Intel SpeedStep shows that the AMD’s processor with PowerNow!
consumes around 50% less power than the Pentium with SpeedStep (3W
for AMD-K6-2E+ vs. 7TW for Pentium III 600+).

Intel’s XScale Intel has recently come out with XScale, an ARM core
based architecture that supports on-the-fly clock frequency and supply volt-
age changes [4]. The frequency can be changed directly, by writing values
in a register, while the voltage has to be provided from and controlled via
an off-chip source. The XScale core specification allows 16 different clock
settings, and four different power modes (one ACTIVE and three other).
The actual meaning of these settings are dependent on the Application Spe-
cific Standard Product (ASSP). For instance, the 80200 processor supports
clock frequencies up to 733 MHz, adjustable in steps of 33-66 MHz. The
core voltage can vary between 0.95 V and 1.55 V. Switching between speeds
takes around 30 ps. The PXA250 Processor provides 20 different clock
and voltage settings (from 100MHz/0.85V to 400MHz/1.3V). Each setting
specifies the clock frequencies of bus and memory. Voltage transition time

is around 500 us.

IBM’s PowerPC 405LP The 405LP provides the clock and voltage
ranging from 152MHz@1.0V to 380MHz@1.8V. The 405LP implements many
features to improve power efficiency when the SoC is active. Under soft-
ware control, both the voltage and the frequency of the processor can be
modified, thereby allowing the performance demands of the application to

be met while minimizing the dynamic power consumption. Unused storage

135

and functions are not clocked, eliminating unnecessary energy consump-
tion. In addition, the 405LP implements standby power reduction features
to ensure that power is not wasted when the SoC is inactive. This proces-
sor, under software control, can enter both a low-leakage sleep state and
a state-preserving deep-sleep state to minimize standby power consump-
tion. By applying these techniques, the active performance of the 405LP
is not sacrificed, while standby power can be reduced as low as 54 pW. It
can provide the performance of 500 million instructions per second (MIPS)
while running at 380 MHz on a 1.8-volt power supply and consuming half
a watt, but the power drops to just over 50 mW when the clock frequency
is dropped to 150 MHz and the voltage to 1 volt, while still providing the
performance of over 200 MIPS [27].

TI’'s TMS320C5510 DSK The TMS320C5510 DSP Starter Kit (DSK)
is a low-cost development platform designed to speed the development
of power-efficient applications based on TT’'s TMS320C55x DSP genera-
tion. The kit provides new performance-enhancing features such as power
management tools. They allow developers to evaluate system power and
examine the frequency-voltage scaling feature for future revisions of the
TMS320C5510 DSPs. Designers can use the Power Analyzer and Power
Scaling Library to confidently tune their systems to maximize efficient power

consumption in applications.

The Power Scaling Library (PSL) [25] is a software library that allows
embedded systems programmers to manage both frequency and voltage scal-
ing through an easy to use API. The PSL provides hardware abstraction,
portability, and a standard API that can be used among different T1I devices.

136

Included in the API are routines that initiate scaling operations, and various
query routines that provide information on current settings and available
frequency/voltage settings. Frequency changes are initiated directly by the
user. Voltage changes are performed indirectly by the PSL when a frequency
change occurs. Specifically, the PSL will automatically scale the voltage to
the minimum level required by a frequency. Since voltage changes are only
initiated indirectly, the PSL can ensure a legal frequency/voltage setting at

all times.

The PSL provides the following functionality:

e Scaling operation to scale frequency and voltage.
e Query operations that return current frequency and voltage settings.

e Query operations that return available frequencies settings and the

required voltage settings for those frequencies.

e Query operation that returns the latencies associated with a scaling

operation.

e Callbacks to user code before and after scaling operations. These call-
backs will enable users to perform any necessary peripheral modifica-
tions that may be required as a result of the upcoming/just completed

scaling operation.

The Figure 8.1 shows the power savings that were obtained when scaling
only the frequency, and the power savings that were obtained when scaling
both the frequency and the voltage. In this example, the power savings

achieved by lowering the frequency from 200 MHz to 72 MHz was 62 percent.

137

Additional savings were realized when the voltage was also lowered from 1.6

V to 1.1 V. In this case, the overall power savings were 77 percent.

o PSL Time PSL Time
§ A ~ 20 usec ~ 340 usec

200MHz @ f—/ﬂ_
250 mw |16V} :

200 mwW \
:\:
5 \

~— DA

150 mw
72MHz @ 1.6V : I ,
100 mwW
LN TMHz@ 11V s
50 mw oy e
L T Voltage Lo
s Regulator : : >
: ' Transitioning : : Time
.<—>:S,< >ie >ie »>
User Code | User Code PSL User Code

Figure 8.1: Dynamic voltage and frequency scaling traces.

The graph also shows the execution flow of a scaling operation and the
amount of time spent in the PSL. In the case where both the frequency and
voltage are scaled, the user code calls into the PSL to lower the frequency
from 200 MHz to 72 MHz. The PSL lowers the frequency to 72 MHz
and automatically lowers the voltage to 1.1 V, which is the lowest voltage
required for 72 MHz. We can see that the PSL waits for the new frequency
to be reached, but not the voltage. The time spent in the PSL in this case
was ~20 ps, which is the amount of time it takes the PLL to lock to the
new frequency. Looking at the second call to the PSL, the user code calls
into the PSL to scale the frequency from 72 MHz to 200 MHz. First, the
PSL will automatically increase the voltage to 1.6 V, and then increases
the frequency to 200 MHz. The PSL does not return until both the voltage

and frequency have been increased. In this case, the PSL must wait for

138

the voltage increase to complete because it must be increased before the
frequency is increased. The time spent in the PSL was ~340 pus (~300 for
the voltage increase, and ~40 for the PLL to lock to the new frequency).

Compaq’s Itsy Pocket Computer The Itsy pocket computer is a re-
search platform developed at Compaq’s Western Research Laboratory. Its
aim is to enable hardware and software research in pocket computing, in-
cluding low-power hardware, power management, operating systems, wire-
less networking, user interfaces, and applications. The platform is equipped
with a StrongARM SA-1100 processor as a main processor. The SA-1100
processor uses the phase-locked loop (PLL), allowing to change the CPU
core frequency to one of 11 levels between 59.0 MHz and 226.4 MHz. Fur-
thermore, Itsy version 2.6 has a programmable core voltage regulator; sup-
ply voltage can scale to one of 30 levels between 1.0 V and 2.0 V. To change
the clock and voltage level, there is a overhead time during change. The
overhead time is different depending on the current and target value of clock
level, and is 189 us at maximum. Itsy runs the Linux operating system (ver.
2.0.30) with a kernel support for dynamic voltage scaling. Applications can
access the DVS function by the ioctl system call to the ‘/dev/clkspeed’

device file.

B. Automatic Voltage Scaler

Fig. 8.2 shows the overall structure of Automatic Voltage Scaler (AVS).
It imports a high-level language program (such as source codes) and its

timing requirements (such as a deadline), and converts them into DVS-

139

aware program. The converted program satisfies the same functional and
temporal requirements of P, but it consumes much less energy than P. The
AVS consists of four main modules, i.e. Compiler, Timing Analyzer, VSE

Selector, and Code Transformer.

The Compiler surveys the input program structure and generates the
inputs for the timing analyzer, i.e., syntax tree, call graph and assembly

code.

The Timing Analyzer analyzes the timing behavior of the program, es-
timates the predicted remaining execution cycles of all the basic blocks in
the input program, and transfers the results to the VSE selector. It is re-
sponsible for estimating Criwpc(b;)’s or Crapc(b;)’s of all the basic blocks
in an input program. In order to estimate Cry rc(b;) or Crapc(b;) of a
given basic block b;, AVS uses a modified version of a timing tool developed
by Lim et al. [21]. Lim et al.’s original timing tool estimates the WCET
of a whole program traversing the program’s syntax tree. Since AVS needs
the RWEC from each basic block, we have modified the original timing tool

accordingly to our purpose.

The VSE Selector is responsible for determining the locations of VSEs.
For this work, it requires the processor’s scaling information, i.e., voltage
scaling overhead. The VSE selector modifies the syntax tree by inserting
VSEs. Since the timing behavior of a target program can be changed by the
inserted VSEs, the VSE selector transfers the information about VSEs to
the timing analyzer. The timing analyzer reexamines the timing behavior
and the informs the result to the VSE selector. This loop iterates until there

is no change on the selected VSEs. This process is described in Figure 4.5.

140

If we use the look-ahead IntraDVS, the selected VSEs are post-processed
by the Look-ahead VSE Analyzer. The look-ahead VSE analyzer uses the
data dependency graph generated by compiler.

The Code Transformer generates a converted program with the infor-
mations about the selected voltage scaling locations and its speed update
ratios. More detailed codes for VSE are described at Chapter 3. The in-
terfaces between modules are defined to easily substitute each module with

another one implemented by other algorithm.

AVS
C Program > Compiler
v Y Y
Syntax Tree Call Graph Assembly Code
User-provided Y Dependency
Informations / Graph
—»@Anal yzer A
Profile
Informations A
Predicted Workload
Information
\
Archltec.ture =(V/SE Selector
Informations
VSE L ook-ahead
Informations V SE Analyzer
Transformed |
A bly Code [Code Transformer

Figure 8.2: Automatic Voltage Scaler.

141

