
Semantic-Aware Hot Data Selection Policy for

Flash File System in Android-based Smartphones

Dongsoo Choi

Sungkyunkwan University

College of Information and Communication Engineering

Suwon, Republic of Korea

echosoul@skku.edu

Dongkun Shin

Sungkyunkwan University

College of Information and Communication Engineering

Suwon, Republic of Korea

dongkun@skku.edu

Abstract—Flash memory has different characteristics from

traditional hard disk drives. Therefore, the traditional file

systems such as EXT4 are not well-optimized for flash memory

storage. Recently, a flash memory-aware file system, called F2FS,

is announced, which is based on the log-structured file system

considering the poor random write performance of flash memory.

Although F2FS uses a heuristic for separating hot and cold data,

the heuristic is not aware of file type. In this paper, we observe

the lifetime of different types of files in Android platform and

propose a semantic-aware hot data selection policy for F2FS.

Experimental results show that the proposed technique reduces

the garbage collection cost by up to 31%.

Keywords—Flash Memory; Log-Structured File System; Hot-

Cold Data Separation; Garbage Collection; Android System;

Mobile Platform

I. INTRODUCTION

Flash memory has many advantages, such as non-volatility,
low power consumption, high mobility and high shock
resistance. For these reasons, flash memory has been widely
used by various mobile devices, such as MP3 player, PDA,
smartphone and digital camera. However, the flash memory
has a special feature called “erase-before-write” constraint. To
update the data of a flash memory page, the corresponding
block should be erased before. A flash memory block is
composed of several pages. Therefore, flash memory
generally uses an out-of-place write mechanism. A special
software, called FTL (flash translation layer), is embedded
within managed NAND flash devices such as SSD or eMMC,
and translates a logical address from host into a physical
address. By the address translation, FTL provides a standard
block interface. The traditional file systems such as EXT4,
which is designed for hard disk drives, can be used for the
managed NAND flash devices with the help of FTL.

However, the traditional file systems have no
consideration on the characteristics of flash memory. To solve
the problem, a new file system targeting for flash memory is
recently developed, called F2FS (flash-friendly file system)
[1]. Considering the poor random write performance of flash
memory, F2FS is designed as a log-structured file system like
LFS [2], which generates only sequential writes by copy-on-
write mechanism except for meta-data writes. A critical
performance bottleneck of log-structured file systems is the
garbage collection (GC), where all valid blocks in a victim
segment are copied into a free segment. Generally, GC

chooses the segment with the smallest valid blocks as a victim
segment to minimize the GC cost. To optimize the GC cost
further, F2FS writes the hot, warm, and cold data into
different segments. Since the data in hot segment may be
frequently updated, the corresponding block is invalidated
within a short period. Then, the hot segment has many invalid
blocks when it is selected as a victim for garbage collection.
The current hot/warm/cold separation policy of F2FS
determines the directory entry and the file meta-data as hot or
warm data. However, the policy has much room for further
improvement. In particular, it does not consider the hotness
and coldness of regular files. In this paper, we focus on the
hot/cold data separation technique for Android-based
smartphone. By observing the lifetime of different types of
files in Android platform, we design a more enhanced hot data
selection policy. With the new policy, we reduced the garbage
collection cost by 15% on average in a real Android
smartphone device.

II. BACKGROUND

F2FS divided the storage space into blocks. All blocks are
4K in size. Blocks are collected into segments. A segment is
512 blocks or 2MB in size. Segments are collected into
sections. F2FS has six sections for writing different sorts of
data being written to each one. File content (data) are
separated from file meta-data (nodes), and those are divided
into “hot”, “warm”, and “cold” according to types. For
example, directory entry is treated as hot and kept separated
from file data because they have different life expectancies.
Regular file data is expected to remain unchanged for quite a
long time, and thus they are treated as cold. The cold section is
hardly invalidated, and thus it is not likely to be selected as a
GC victim. Nodes are expected to be updated frequently, so a
section that was full of hot nodes will have very few blocks
that are still live and thus will be cheap to clean.

Although F2FS has a nice hot/cold separation heuristic
based on data type, it does not take into account the different
lifetime of different file types. F2FS regards all regular file
data as cold data and change them as warm data if the file is
updated. However, this simple heuristic is not aware of file
type. Since there is a correlation between the lifetime of a
regular file and its file type, we can predict the hotness or
coldness based on the file type. If we collect the hot files into
the hot section more aggressively, and thus prevent hot data
from sharing a segment with cold data, the garbage collection
cost can be further reduced.

0

50

100

150

200

250

300

350

400

Web Browser Google Maps Youtube Camera

N
u

m
b

e
r

o
f

C
o

p
ie

d
 B

lo
ck

s
p

e
r

G
C

F2FS

M-F2FS

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350N
u

m
b

e
r

o
f

V
a

li
d

 B
lo

ck
s

in
 V

ic
ti

m

Se
gm

e
n

ts
GC Occurrence

HOT

WARM

COLD

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

N
u

m
b

e
r

o
f

V
a

li
d

 B
lo

ck
s

in
 V

ic
ti

m

Se
gm

e
n

ts

GC Occurrence

HOT

WARM

COLD

(a)

(b)

III. SEMANTIC-AWARE HOT-COLD DATA SEPARATION

To identify the hot files and cold files in Android systems,
we analyzed the write pattern of all files in android-based
smartphone while executing several benchmark applications,
Web Browser, Google Maps, Youtube and Camera. We
measured the update rates of several android system files such
as cache files, SQLite DB files, SQLite DB journal files, and
XML files. The cache file is an image or media data that is
saved temporarily in /cache directory by application. DB
journal files are created temporarily for updating database.
There are two types of DB journal files, db-journal and db-wal.
The db-journal is used for rollback operation whereas the db-
wal file is used for write-ahead logging. XML files are used
for setting the environment data of applications.

The update rates of cache files in Web Browser, Google
Maps, Youtube, and Camera are 68.7%, 6.5%, 2.7%, and
100%, respectively. The update rates are quite different
depending on application. XML files also have different
update rates. Therefore, the cache files and XML file cannot
be determined as hot or cold. SQLite DB file are frequently
updated with the update rates of 83.2%, 59.7%, 93.2%, and
26.7%. However, only a small portion of DB file is updated.
Therefore, it is not good choice to write all the DB file data at
hot segment. The update data of DB file will be treated as
warm data by the default policy of F2FS. DB journal files are
frequently updated and most of journal data are updated. From
this observation, we determined the DB journal files as hot
data. When an application creates a DB journal file, the data
blocks are written at hot segment.

IV. EXPERIMENTS

We modified the hot data selection policy of F2FS to
evaluate the proposed policy. We compared the garbage
collection costs of the original F2FS and the modified F2FS
on an embedded board. F2FS version 1.0 and Android version
4.0.3 are used. The target storage device is Micro SD Card.

Fig. 1. The comparison on GC costs under different workloads.

We used four real workloads, Web Browser, Google Maps,
Youtube, and Camera. With the monkey runner tool, the same
input events are generated for the two F2FS implementations.
The GC victim selection policy is the Cost-Benefit algorithm.

Fig.1 shows the average number of block copies per GC
under different workloads. Compared to the original F2FS,
the modified F2FS has lower GC costs.

Fig. 2. The number of valid data blocks in victim segments. (a) Original
F2FS. (b) Modified F2FS.

Fig.2 shows the numbers of block copies for all GCs
during the Web Browser workload. The types of selected
victim segments are also shown in the graph. The modified
F2FS selects more hot segments as victim compared with the
original F2FS. From these results, we can know that the
semantic-aware hot data selection policy can significantly
reduce the garbage collection cost.

V. CONCLUSION

We investigated the update pattern of several Android
platform system files and proposed the semantic-aware
hot/cold selection policy for F2FS. The proposed technique
significantly reduced the garbage collection cost of F2FS. As a
future work, we plan to study the hotness of user files to add
more heuristics on F2FS.

ACKNOWLEDGEMENT

This work was supported by the IT R&D program of
MKE/KEIT. [KI0018-10041244, SmartTV 2.0 Software
Platform]

REFERENCES

[1] An f2fs teardown, http://lwn.net/Articles/518988

[2] Mendel Rosenblum and John K. Ousterhout, "The design and
implementation of a log-structured file system," ACM Transactions on
Computer Systems (TOCS), Volume 10, Issue 1, Feb. 1992

