
 Flash-Aware File System Block Allocation for Mobile Consumer Devices

Hyukjin Kwon*, Dongkun Shin**

*Sungkyunkwan University, Suwon, Korea, hjkwon0124@skku.edu

** Sungkyunkwan University, Suwon, Korea, dongkun@skku.edu

Abstract - The performance of recent mobile devices is highly related to storage and file system. However,

the current EXT4 file system is not optimized for NAND flash memory. In this paper, we propose a novel

flash-aware file system block allocation technique, which reserves several address regions for hot file. The

scheme significantly reduces the garbage collection overhead within the flash memory. In experiments with a

flash memory simulator, the proposed flash-aware block allocation improved I/O performance by up to 28%

for the storage access traces of Android applications.

Keywords: Flash memory, File system.

1 Introduction

 One important component of recent smart mobile

devices such as smartphones and tablets is NAND flash

memory storage. Storage and file system on mobile

devices affect the performance of mobile applications if

they manage a large number of user files. The user

interactivity on web browser application, which has been

generally considered to be determined by network

performance, is also affected by the storage performance,

since it accesses many data files such as cookies and

cached files [1].

 The storage I/O performance depends on the file

system as well as the storage technology. There is a

significant difference between the performances of

different file systems on a same storage media. Especially,

the file system performance on NAND flash memory is

determined whether it is designed considering the

characteristics of flash memory.

 NAND flash memory has different characteristics

from hard disk drives. It has no rotational delay and seek

time. A NAND flash memory chip is partitioned into

blocks, and each block is composed of pages. The basic

read/write operation unit is a page, while the basic erase

operation unit is a block. Once a page is written, the page

is no longer updatable before the resident block is erased.

Therefore, the out-of-place update scheme is usually

adopted to have the updated data written to some other

free pages. Therefore, an address mapping scheme is

required, which translates between the logical and physical

page numbers. If a page-level mapping is used, the

mapping table handling overhead may be significant since

the mapping table size could be large. Generally, recent

flash memory devices use a zone-based address mapping

scheme, where the overall address space is partitioned into

several regions and each region is managed by a separated

mapping table which can be loaded into the SRAM of

flash memory chip. Therefore, the number of map loading

overhead depends on the spatial locality of access pattern.

 When the system runs short of available free pages,

pages containing invalid data must be reclaimed by

garbage collection which selects a victim block and moves

all the valid pages of the block into other blocks with free

space. Since the garbage collection invokes a large

number of page copy operations, it is important to reduce

garbage collection overhead for high performance.

 Linux operating system uses EXT4 [2] as a standard

file system. EXT4 is a deeply optimized file system

targeting for hard disk drives. In order to reduce the

rotational delay and the seek time, EXT4 splits the whole

disk space into a number of block groups and tries to

locate the data blocks and metadata blocks of a file in the

same block group. However, the characteristics of flash

memory are not considered in the design of EXT4 file

system.

 In this paper, we propose the flash-aware file system

block allocation technique for EXT4 file system. The

technique reduces the garbage collection overhead and

mapping table handling overhead by allocating the blocks

of frequently-updated files within special regions called

hot-zones. The block allocation technique reduces the

number of valid pages in a victim flash memory block and

the number of map loadings by increasing the spatial

locality of hot file blocks.

2 Flash-Aware Block Allocation

 The role of file system block allocator is to assign

storage blocks for file data. When a write or read request

on a file is sent to the storage device, the request has the

logical address information of the target block. The

address mapping scheme in storage device determines the

physical page for the request. Therefore, the file system

block allocation affects the storage access pattern.

 The proposed flash-aware block allocation reserves

several address zones for hot files which are frequently

updated and thus generate many invalid pages. Therefore,

the invalid pages congregate in the flash memory blocks of

the reserved zones. In addition, since the lifetime of hot

file is short, it is highly probable that hot files share a

same block. Then, the garbage collection can find a low-

cost victim block in the reserved zone and thus the IO

performance is improved.

(a)

(b)

Figure 1. I/O characteristics of Android applications. (a) write

requests on different files. (b) average lifetimes of different files

 We first investigated the file access patterns of

several applications at an Android-based smartphone in

order to identify hot files. Figure 1(a) shows which files

are frequently updated during the execution of several

applications. Except the journal file of EXT4, which uses

separated blocks, database files and their metadata are

frequently written. Moreover, the lifetime of database file

is relatively short as shown in Figure 1(b). Therefore, we

determined the database files as hot files.

 The next step is to determine the size of a hot zone.

The optimal size depends on the internal structure of flash

memory chip. Since we cannot look into the flash memory

chip, we measured I/O performance while changing the

size of hot zone. Form the experiments, we found that 64

MB of size is best.

Metadata Hot-file

Hot-zone

…..
Flex

group 0

Metadata Hot-file

Hot-zone

Flex

group 1

….. Metadata

Flex

group N

Figure 2. Reserved space for hot-zones

 EXT4 file system partitions the whole storage space

into several flex groups. The front part of each flex group

is reserved for file system metadata such as bitmap table

and inode table. Since the metadata are also frequently

updated, we reserved 64 MB of hot zone at the front part

of each flex group, and allocated the blocks for hot files

just after the metadata blocks. Other cold file blocks are

allocated from remaining blocks.

 The number of hot zones should be determined

considering the total size of hot files, which actually

depends on user pattern. We examined ten number of

Android-based smartphones used for more than one year

so as to know the total size of hot files on average. We

found that most of database files are small-sized and their

lifetime is short. Therefore, the total sizes of database files

are smaller than 90MB on the examined smartphones, and

thus four hot zones are sufficient. Among the several hot

zones, data blocks and their metadata blocks should be

allocated in the same hot zone.

3 Performance Evaluation

 We evaluated the flash-aware block allocation with

our own flash memory simulator. It implements the page

mapping scheme.

(a)

(b)

Figure 3. Evaluation result.

 (a) I/O performance. (b) The number of garbage collections

 Figure 3(a) compares the I/O performances under

different block allocations. The flash-aware block

allocation improves I/O performance by 14~28%. This is

because the proposed scheme decreases the number of

garbage collections as shown in Figure 3(b).

4 Conclusion

 In this paper, we proposed the flash-aware block

allocation which reserves the address space for hot files.

In the experiments, we showed the significant performance

improvements by the novel block allocation scheme.

Acknowledgements

 This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education (2013R1A1A2A10013598).

References

[1] Hyojun Kim, Nitin Agrawal, Cristian Ungureanu,

“Revisiting storage for smartphones,” Proceedings of the

10th USENIX conference on File and Storage

Technologies, 2012.

[2] Avantika Mathur, et al. “The new EXT4 filesystem:

current status and future plans,” Proceedings of the Linux

Symposium. Vol. 2. 2007.

