
Power-Aware Scheduling of Conditional Task Graphs in
Real-Time Multiprocessor Systems∗

Dongkun Shin
School of Computer Science and Engineering

Seoul National University

sdk@davinci.snu.ac.kr

Jihong Kim
School of Computer Science and Engineering

Seoul National University

jihong@davinci.snu.ac.kr

ABSTRACT
We propose a novel power-aware task scheduling algorithm for
DVS-enabled real-time multiprocessor systems. Unlike the exist-
ing algorithms, the proposed DVS algorithm can handle conditional
task graphs (CTGs) which model more complex precedence con-
straints. We first propose a condition-unaware task scheduling al-
gorithm integrating the task ordering algorithm for CTGs and the
task stretching algorithm for unconditional task graphs. We then
describe a condition-aware task scheduling algorithm which as-
signs to each task the start time and the clock speed, taking account
of the condition matching and task execution profiles. Experimen-
tal results show that the proposed condition-aware task scheduling
algorithm can reduce the energy consumption by 50% on average
over the non-DVS task scheduling algorithm.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and Ap
-plication-Based Systems—Real-time and embedded systems

General Terms
Design, Algorithms

Keywords
dynamic voltage scaling, conditional task graph, real-time systems,
multiprocessor

1. INTRODUCTION
Energy consumption is a primary issue in designing battery op-

erated systems. One of the most effective design techniques for
low-power systems is dynamic voltage scaling (DVS), which ad-
justs processor’s supply voltage and clock frequency according to
the required performance. Many DVS algorithms have been pro-
posed for uniprocessor-based real-time systems. For example, [4]
evaluates the energy efficiency of state-of-the-art DVS algorithms
for uniprocessor systems.

In this paper, we focus on DVS-enabled multiprocessor-based
real-time systems where processing elements (PEs) can be a combi-
nation of general-purpose microprocessors, DSPs, FPGAs or ASICs.
∗This work was supported by grant No. R01-2001-00360 from the Korea
Science & Engineering Foundation. The ICT at Seoul National University
provides research facilities for this study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03,August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

The general design flow for such multiprocessor systems is shown
in Figure 1(a). Given a task graph with the design constraints (e.g.,
execution time and power consumption), we first assign each task
to an appropriate PE (i.e., task assignment). Then, each task is
scheduled for its execution within a PE (i.e., task scheduling). For
DVS-enabled PEs, the task scheduling step should determine the
execution speed (i.e., the voltage level) as well as the execution
schedule. In this paper, we separate the task scheduling step into
two sub-steps, task ordering and task stretching. The task ordering
step decides the execution order of each task while the task stretch-
ing step determines the execution speed of each task1.

Recently, several research groups had investigated the task stretch-
ing problem for DVS-enabled multiprocessor-based real-time sys-
tems [5, 6, 9]. For example, Luo et al. [5] proposed a heuristic
algorithm for task stretching based on the critical path analysis.
Schmitz et al. [6] presented an algorithm considering power varia-
tions of processing elements. Zhang et al. [9] formulated the task
stretching problem as an Integer Linear Programming (ILP) prob-
lem, which can be solved by a fully polynomial time approximation
scheme. While these proposed algorithms work well for many ap-
plications, they all assume that input task graphs are unconditional.

In this paper, we propose a task scheduling algorithm for con-
ditional task graphs (CTGs) in DVS-enabledmultiprocessor-based
real-time systems2. A CTG G can model the conditional execution
relationship between tasks based on whether a specific condition is
satisfied or not. Figure 1(b) summarizes the current state-of-the-art
for task scheduling in DVS-enabled multiprocessor systems. As
shown in the figure, no existing work supports both task order-
ing and task stretching for CTGs in DVS-enabled multiprocessor
systems. For non-DVSmultiprocessor systems, however, the same
problem had been previously investigated by Eles et al.[2] and Xie
et al. [8].

We propose two task scheduling algorithms. The first one, called
the condition-unaware algorithm, is largely based on the existing
task ordering algorithm for conditional task graphs and task stretch-
ing algorithm for unconditional task graphs. Since the condition-
unaware algorithm cannot fully take advantages of conditional ex-
ecutions in CTGs as well as their execution profiles, we propose
an improved version of the condition-unaware algorithm. (We call
this algorithm condition-aware.) Experimental results show that
the proposed condition-aware task scheduling algorithm can reduce
the energy consumption by 50% on average over the non-DVS task
scheduling. Furthermore, the experiments show that the condition-
aware algorithm reduces the energy consumption by 20% on aver-
age over the condition-unaware algorithm.

The rest of this paper is organized as follows. In Section 2, we
describe the conditional task graph model in detail. The condition-
unaware task scheduling algorithm for CTGs is presented in Sec-
tion 3 while the condition-aware task scheduling algorithm for CTGs
is described in Section 4. We present experimental results in Sec-

1In the rest of the paper, we use the term task schedulingto include both task ordering
and task stretching.
2The problem of task assignment is not discussed in this paper; we assume that tasks
were already assigned to PEs. Obviously, different task assignments will change the
efficiency of task scheduling. However, we leave an integrated approach to a future
research topic because of its increased complexity.

Task Graph

Task Ordering (TO)

Task Stretching (TS)

Task Assignment

Task and Voltage

Schedule

Task Scheduling

Many

None

Task Scheduling

Unconditinal
Task Graph

Conditional
Task Graph

Task Scheduling

Task Assignment Task Assignment

(b) Existing algorithms(a) Design flow

Task Schedule
Task and Voltage

Schedule

TO:

TS:

TO:

TS:

Eles et al. [2] and
Xie et al. [8]

Luo et al. [5],
Schmitz et al. [6] and

Zhang et al. [9]

Figure 1: System synthesis for DVS-enabled multiprocessor
real-time systems.

tion 5. Section 6 concludes with a summary and directions for fu-
ture works.

2. CONDITIONAL TASK GRAPH MODEL
We represent a periodic real-time application by a conditional

task graph (CTG) G =< V, E >, which is a directed acyclic graph,
where V is a set of tasks, E is a set of conditional directed edges
between tasks. In a CTG, each directed edge e= (τi ,τ j) represents
that the task τi must complete its execution before the task τ j can
start its execution. Figure 2(a) shows an example CTG G along
with its task mapping table. The task mapping table represents the
result of the task assignment algorithm. Each entry of the mapping
table includes the worst case execution time (WCET) and deadline
of the corresponding task as well.

A conditional edge e = (τi ,τ j) ∈ E is associated with a condi-
tion c and its activation probability Prob(c). c and Prob(c) have
the following meaning: τi satisfies the condition c with the proba-
bility of Prob(c). Activation probabilities for conditional edges can
be obtained, for example, by profiling task executions. We denote
the associated condition of an edge e as C(e). In the given CTG
representation, (unconditional) simple edges are the special case of
conditional edges with their conditions and activation probabilities
set by true and 1, respectively.

The head node of a conditional edge (which is not a simple edge)
is called a branching node. A branching node satisfies only one
condition out of several conditions associated with corresponding
conditional edges. For example, in Figure 2(a), the task τ2 is a
branching node with three conditional edges. If the condition c1 is
true, τ3 is executed after τ2 is completed. The probability that c1
becomes true is given by 0.8. Depending on the condition satisfied,
the overall task execution is different. Figures 2(b)-(d) illustrate
the corresponding subgraphs of G when the conditions c1, c2 and
c3 are satisfied, respectively.

Unlike the CTGs used in [2, 8], our CTG model is modified to
represent more general control flows. The modified CTG model
does not require control flows from a branching node to be merged
at a single join node. For example, τ4 does not join at the same node
τ7 where τ3 and τ5 join. Our CTGs also allow that a node can have
multiple branching nodes as predecessor nodes. For nodes with
multiple predecessor nodes, we define and-nodes and or-nodes. An
and-node is activated when all its predecessor nodes are completed
and the conditions of the corresponding edges are satisfied. On the
other hand, an or-node is activated when one or more predecessors
are completed and the conditions of the corresponding edges are
satisfied. The edges to an and-node are tied with a round arch in a
CTG as shown in Figure 2.

We denote by Xτ i the necessary condition for τi to be activated
in a CTG. (We call Xτ i the guard of the task τi [2].) If a task τi
has a set of predecessor nodes Pred(τi) = {τk|(τk,τi)∈ E}, Xτ i can
be expressed by

�
τk∈Pred(τ i)(Xτk ∧C(τk,τi)) if τi is an and-node,

and by
�

τk∈Pred(τ i)(Xτk ∧C(τk,τi)) if τi is an or-node. We assume
Xτ i = 1 if τi is a starting node (where 1 is a constant ‘true’ function).

We also denote by Ψτ i the condition for τi to be executed at run

time. In order to represent the execution precedence conditions
modeled by edges, we define a boolean variable Dτ i for each τi :
Dτ i becomes true when the execution of τi has completed. Using
this notation, in Figure 2(a), Ψτ3 can be expressed by (Dτ1 ∧Dτ2)∧
(true∨c1).

(a) Example conditional task graph G

Task

PE0
PE1
PE0
PE0
PE1
PE2
PE1
PE0

PE

5
5

10
15
25
15
10
20

WCET

-
-
-

70
90
-
-

120

Deadline

Condition

0.8
0.1
0.1

Probability

and-node or-node

c1

c1

c2

c2

c3

c3

τ0
τ0τ0τ0

τ0

τ1 τ1τ1τ1

τ1

τ2 τ2τ2τ2

τ2

τ3 τ3τ3τ3

τ3

τ4 τ4

τ4

τ5 τ5

τ5

τ6
τ6

τ6

τ7

τ7τ7τ7

τ7

(b) gc1 (c) gc2
(d) gc3

Figure 2: Conditional task graph (CTG).

3. CONDITION-UNAWARE TASK
SCHEDULING FOR CTGS

3.1 Condition-Unaware Task Scheduling Al-
gorithm

We first propose a simple task scheduling algorithm for CTGs,
essentially integrating the task ordering algorithm by Xie et al. [8]
for conditional task graphs and the task stretching algorithm by
Zhang et al. [9] for unconditional task graphs. We call this al-
gorithm condition-unawareto emphasize that condition-dependent
executions are not fully exploited in the algorithm.

To schedule each task of a given CTG, we first determine the
execution order of the tasks which were allocated on the same PE
using a task ordering algorithm. We use the task ordering algorithm
by Xie et al. [8] for conditional task graphs, which considers the
mutual exclusion relation. In ordering tasks on the same PE, τi and
τ j can share the same time slot if Xτ i ∧Xτ j = 0 where 0 is a constant
‘false’ function3. For example, Figure 3(a) shows the task schedule
for the conditional task graph G of Figure 2(a). We assume that
tasks are not preemptive. τ4 and τ6 can overlap their execution
schedules because they are mutually exclusive, i.e., Xτ4 ∧Xτ6 = 0.

With the task schedule generated by the task ordering algorithm,
we should determine the clock speed and the start time of each
task by stretching the execution interval of the task. When the task
stretching algorithm extends the execution interval of each task, it
should satisfy the precedence constraints among tasks, because the
execution interval of a task τi cannot be stretched beyond the start
time of the task which has a precedence dependency with τi . The
task schedule from Xie et al.’s algorithm, however, does not pro-
vide enough information on the task precedence constraints of the
original CTG; it is not possible to extract the complete precedence
dependencies from the start times of tasks only.

In order for Xie et al.’s algorithm to be used for task stretching,
we added an extra step to Xie et al.’s algorithm. The extra step
makes a scheduled task graph GS=< V, E∪EPR > which is a task
graph modified from the original task graph G =< V, E >. The
edge (τi ,τ j)∈EPR, called as a precedence relation (PR) edge, indi-
cates the precedence relation between τi and τ j which are allocated
on the same PE. For example, Figure 3(b) shows the scheduled task
graph GS. Since the tasks τ1, τ4 and τ6 are assigned on PE1 and
τ1 is scheduled before τ4 and τ6, the PR edges (τ1,τ4) and (τ1,τ6)
(represented by dashed lines) are added. Since the tasks τ4 and τ6
are mutually exclusive (i.e., there is no precedence dependency),
there is no PR edge between them. Formally, the PR edge (τi ,τ j)
is inserted when the following conditions are satisfied; (1) τi and
τ j are allocated on the same PE (PE(τi) = PE(τ j)), (2) τi and τ j
are not mutually exclusive, (3) τi should be executed before τ j , (4)
there is no task τk which should be executed between τi and τ j , and
3Two tasks τ i and τ j on the same PE are said to be mutually exclusive if Xτi ∧Xτ j = 0.
Otherwise, we call τ i and τ j non-exclusive tasks.

(5) there is no edge (τi ,τ j) in the original task graph G. (Conditions
(4) and (5) remove redundant PR edges.)

With the task schedule generated from the modified task order-
ing algorithm, we can use the task stretching algorithm proposed
for unconditional task graphs. Figure 3(c) shows the task schedule
generated from the task stretching algorithm by Zhang et al. [9].
The relative execution speed of each task is specified over the cor-
responding task box. The schedule shown in Figure 3(c) consumes
only 22% of the energy consumed by the task schedule in Fig-
ure 3(a).

0 20 40 60

PE2

PE0

PE1

time

speed

10 30 50

0 20 40 60 80 100 120

PE2

PE0

PE1

time

speed

0.42

0.375

0.25

0.5

0.5 0.5 0.5

0.5

10 30 50 70 90 110

PE0 PE1 PE2

τ0

τ0

τ0 τ1

τ1

τ1

τ2

τ2

τ2

τ3

τ3

τ3

τ4

τ4

τ4
τ5

τ5

τ5 τ6

τ6

τ6

τ7

τ7

τ7

dl(τ3)

dl(τ4)

dl(τ7)

(b) Scheduled task graph GS(a) Task schedule by Xie et al. [8]

(c) DVS schedule S

Figure 3: Condition-unaware task scheduling of an example
conditional task graph.

The task ordering algorithm by Xie et al., which is based on the
priority-based list scheduling, determines the start time σ(τi) of a
task τi as the minimum value satisfying the following conditions;
(1) σ(τi)≥ est(τi) (where est(τi) is the earliest start time of τi) and
(2) there is no other task τ j such that PE(τi) = PE(τ j), Xτ i ∧Xτ j �= 0
and δ(τ j) > σ(τi) (where δ(τ j) is the end time of τ j). For example,
consider the tasks τ1, τ2, τ3, τ4 and τi (on the same PE) shown in
Figure 4, where only τ2 and τ3 are mutually exclusive with τi . The
original task ordering algorithm by Xie et al. determines σ(τi) as
t6. However, since τi will not be executed when either τ2 or τ3 is
executed (and vice versa), τi can be scheduled earlier than t6. We
modified the original task ordering algorithm so that it finds the
earliest time interval [tα , tβ] for a task τi satisfying the following
conditions; (1) tα ≥ est(τi), (2) the WCET of τ i is smaller than
tβ − tα , and (3) there is no non-exclusive task τ j whose execution
interval is overlapping with the interval [tα , tβ] (i.e., tα < δ(τ j) or
σ(τ j) < tβ). The modified task ordering algorithm selects [t2, t5] as
the time interval for τi .

τ1 τ2 τ3 τ4

τi

ts1 ts2 ts3 ts4 ts5 ts6

t1 t2 t3 t4 t5 t6

[s time = t2,e time = t5] [t6,∞]est(τi)

Figure 4: Task ordering for CTG.

Figure 5 summarizes the condition-unaware task scheduling al-
gorithm. The function Condition Unaware Task Scheduling calls
the function Find AvailableTime to compute the start time σ(τi) of
a task τi which has the highest priority from the current ready list R.
In this paper, we define the task priority as the task mobility which
is computed as the difference between the latest start time and the
earliest start time of a task4.

To find the time slot [s time, e time] for τ i , the function Find Available
Time examines time intervals on PE(τi) starting from est(τi). s time
4The proposed algorithms can work with other definitions of priority functions as
well. That is, the correctness of the algorithms is orthogonal to the definition of a
priority function.

and e time are updated whenever each interval is examined. Ini-
tially, both are set to est(τi). When a slack interval is met, it
changes e timeby the end time of the slack interval to include the
slack interval into the time slot [s time, e time]. If the search step
meets an interval tsex = [tk, tk+1] which is assigned to a mutually
exclusive task τ j , it changes e timeby tk+1 to include the interval
tsex into the time slot. However, when the search step encounters
an interval tsẽx = [tk, tk+1] assigned to a non-exclusive task τ j , it
checks whether the task τi can be assigned to the current time slot
[s time, e time]. If the current time slot [s time, e time] is too short
for τi , it updates s timeand e timeby tk+1 to examine the follow-
ing interval. Otherwise, the function Find AvailableTime returns
s time.

For example, in Figure 4, the function Find AvailableTime ex-
amines the time intervals from ts1 to ts6. When the search step
meets the interval ts1, both s time and e time are changed to t2
from t1. When the slack interval ts2 is met, e timeis changed to t3.
Examining the intervals ts3 and ts4, e time is changed to t4 and t5,
respectively. When the interval ts5 is met, the function stops and
returns t2 as the start time of τi .

In the function Find AvailableTime, the maximal clock frequency
fmax and the WCET Nc(τi) of the task τi are used in computing the
execution interval of τi . The function Mutex(τi ,τ j) is used to check
whether τi and τ j are mutually exclusive.

To generate PR edges satisfying five conditions mentioned ear-
lier, the function Find AvailableTime computes PredPR(τi) and
SuccPR(τi) after the available time slot for τi is found (lines 11-
26). PredPR(τi) is the set of tasks which should precede τi (i.e.,
PredPR(τi) = {τ j | (τ j ,τi) ∈ EPR}) while SuccPR(τi) is the set of
tasks which should follow τi (i.e., SuccPR = {τ j |(τi ,τ j) ∈ EPR}).
For example, in Figure 4, since the task τi should be executed af-
ter the task τ1 and before τ4, the function Find Available Time sets
PredPR(τi) and SuccPR(τi) to {τ1} and {τ4}, respectively. This
means that the task τi can be scheduled between the end time of
τ1 and the start time of τ4. There is no need for τi to consider the
schedule of τ2 and τ3 because they are mutually exclusive with τi .
Using PredPR(τi) and SuccPR(τi), the function Condition Unaware
Task Scheduling modifies the original task graph into the sched-
uled task graph (lines 12-13).

With the scheduled task graph GS, we stretch tasks’ time slots
adjusting the voltage and clock speed. Zhang et al.[9] provides the
formulation of task stretching problem. The task stretching prob-
lem is a constrained minimization problem which has an objective
function and constraints. The objective function is the energy con-
sumption while the constraints are the tasks’ precedence dependen-
cies and deadlines. The dependencies can be extracted from edges
in the scheduled task graph GS. We can formally define the task
stretching problem as follows:

Task Stretching Problem

Given GS =< V,E∪EPR >,Eτi (f (τi)),Nc(τi) and dl(τi),

find σ(τi) and f (τi) for each task τi such that

∑
τi∈V

Eτi (f (τi)) is minimized

subject to ∀e= (τi ,τ j) ∈ E∪EPR, σ(τi)+
Nc(τi)
f (τi)

≤ σ(τ j) and

∀τi ∈V with its deadline dl(τi),σ(τi)+
Nc(τi)
f (τi)

≤ dl(τi).

where f (τi), Nc(τi) and dl(τi) represent the clock frequency, the
WCET and the deadline of the task τi , respectively.

The energy function Eτ i (f (τi)), which represents the energy con-
sumption during the execution of a task τi in the clock speed of
f (τi), is given as follows:

Eτi (f (τi)) = CL(τi) ·Nc(τi) ·S(f (τi))2 (1)

where CL(τi) denotes the average load capacitance of the digital cir-
cuit in PE(τ i). The function S(f (τi)) indicates the supply voltage

Condition Unaware Task Scheduling(CTG G)
1: for each task, calculate the priority of the task;
2: R = R0; /∗ R is the ready list and R0 is the set of start nodes ∗/
3: while (R �= /0) {
4: select the task τi with the highest priority in R;
5: σ(τi) = Find AvailableTime(τi); /∗ σ(τi) is the start time of τi ∗/
6: δ(τi) = σ(τi) + Nc(τi)/ fmax; /∗ δ(τi) is the end time of τi ∗/
7: R = R − {τi};
8: Dτi = true;
9: for each task τ j , if (Ψτ j == true) R= R∪{τ j};

10: }
11: E = /0;
12: for each task τi ,

E = E∪{(τ i ,τ j)|τ j ∈ SuccPR(τi)}∪{(τ j ,τi)|τ j ∈ PredPR(τi)};
13: GS = G∪ E;
14: Task Stretching(GS);

Find AvailableTime(τi)

1: s time = e time = est(τi); /∗ est(τi) is the earliest start time of τi ∗/
2: interval = Nc(τi)/ fmax;
3: for each task τ j scheduled in [s time,∞] of PE(τi) {

/∗ with the increasing order for σ(τj) ∗/
4: if (Mutex(τi ,τ j)==False) {
5: e time = σ(τ j);
6: if (e time-s time > interval) break;
7: else s time = e time = δ(τ j);
8: }
9: else e time = δ(τ j);

10: }
11: for each task τ j scheduled in [0,s time] of PE(τi)
12: if (Mutex(τi ,τ j)==False)
13: if (there is no τk ∈SuccPR(τ j) scheduled in [0,s time] and

Mutex(τi ,τk)==False)
14: if (there is no edge (τi ,τ j) in G)
15: {insert τ j to PredPR(τi); insert τi to SuccPR(τ j); }
16: for each task τ j scheduled in [e time,∞] of PE(τi)
17: if (Mutex(τi ,τ j)==False)
18: if (there is no τk ∈PredPR(τ j) scheduled in [e time,∞] and

Mutex(τi ,τk)==False)
19: if (there is no edge (τ j ,τi) in G)
20: {insert τ j to SuccPR(τi); insert τi to PredPR(τ j); }
21: for each task τ j ∈ PredPR(τi),
22: for each task τk ∈ SuccPR(τ j),
23: if (τk ∈ SuccPR(τi)) remove τk from SuccPR(τ j);
24: for each task τ j ∈ SuccPR(τi),
25: for each task τk ∈ PredPR(τ j),
26: if (τk ∈ PredPR(τi)) remove τk from PredPR(τ j);
27: return s time;

Figure 5: Condition-unaware task scheduling algorithm for
CTGs.

Vdd(τi) of PE(τ i) when the clock frequency is f (τi). This Non-
Linear Program (NLP) formulation can be solved by a numerical
technique such as the generalized reduced gradient method [3].

3.2 Problems of Condition-Unaware Approach
Although the condition-unaware task scheduling algorithm re-

duces the energy consumption over the non-DVS scheduling algo-
rithm, it cannot effectively exploit the dynamic behavior of a CTG
execution, limiting the energy efficiency level achieved. Consider
the task schedule Sshown in Figure 3(c) again. If the actual execu-
tion follows the subgraph gc3 shown in Figure 2(d), the task sched-
ule S is very effective. However, if the actual execution follows
gc1 instead, S is less efficient. In the subgraph gc1, since the tasks
τ4, τ5 and τ6 are not executed, it is advantageous to start τ7 ear-
lier with a lower clock speed. However, in the condition-unaware
algorithm, we cannot adapt the execution speeds depending on the
conditions satisfied; The static task scheduling algorithm assigns a
fixed start time and a fixed clock speed to each task. If we can as-
sign different start times and clock speeds to each task depending
on the conditions satisfied and select one of them at run time, more
energy-efficient task schedules can be computed.

Another problem with the condition-unaware algorithm is that it
cannot take advantages of the execution profiles of the given CTG

when they are available. Though the task stretching minimizes the
sum of energy values of all tasks, not all tasks in a CTG are exe-
cuted with the same frequency during run time. For a typical pro-
gram, about 80 percent of the program’s execution occurs in only
20 percent of its code (which is called the hot paths). For a task
scheduling algorithm to be energy-efficient, it should be energy-
efficient when the hot paths are executed. If we assign more weight
to the energy consumption of hot paths for task scheduling, the task
schedule for the hot paths will be more energy-efficient. Therefore,
when execution profiles are available, a DVS algorithm should take
them into account.

Figure 6 illustrates the importance of the profile information for
higher energy efficiency. For the CTG GP in Figure 6(a), three
task schedules are shown in Figure 6(b)-(d). GP shows the WCET
of each task in the corresponding node. For the conditions c1
and c2, Prob(c1) is larger than Prob(c2). If we assume the edges
(τ0,τ1) and (τ0,τ2) are unconditional edges, the task schedule in
Figure 6(b) is computed using the task stretching algorithm. How-
ever, if we assume the edges (τ0,τ1) and (τ0,τ2) are conditional
edges having the same probability, the task schedule in Figure 6(c)
is obtained. This task schedule is generated by multiplying the
probability of the execution of each task to the energy function
Eτ i (f (τi)) in the task stretching problem. Though the clock speeds
of τ1 and τ2 are higher than the clock speeds in Figure 6(b), the
clock speeds of τ0 and τ3 are decreased. Since the task τ1 is exe-
cuted over τ2 in most of cases, the energy consumption of the task
schedule in Figure 6(c), which has a flatter schedule for τ0, τ1 and
τ3, is smaller than that of Figure 6(b).

Unlike Figures 6(b) and 6(c), if we use the available profile in-
formation of Prob(c1) = 0.8 and Prob(c2) = 0.2, a more energy-
efficient task schedule can be computed as shown in Figure 6(d).
Since the Prob(c2) is small, the influence of τ2 is reduced and the
time slots for the task τ0 and τ3 are increased. The task schedule
in Figure 6(d) spends 12% and 4% less energy over that of Fig-
ures 6(b) and 6(c), respectively. (We call the task scheduling algo-
rithm which utilizes the profile information in the task stretching as
profile-awarealgorithm.)

20

5 20

20

(0.5) (0.5)(0.5)

time

speed

(0.466) (0.466)(0.584)

time

speed

(0.434) (0.434)
(0.72)

time

speed

Energy=11.06

Energy=10.15

Energy=9.73

(0.125)

(0.146)

(0.18)

c1 c2

τ0

τ0

τ0
τ0

τ1

τ1

τ1

τ1

τ2

τ2

τ2

τ2

τ3

τ3

τ3

τ3

(b) Task Schedule when Prob(c1) = Prob(c2) = 1.0

(c) Task Schedule when Prob(c1) = Prob(c2) = 0.5

(d) Task Schedule when Prob(c1) = 0.8 and Prob(c2) = 0.2

Prob(c1) = 0.8
Prob(c2) = 0.2

(a) Conditional task graph GP

Figure 6: Profile-aware task schedule.

4. CONDITION-AWARE TASK
SCHEDULING FOR CTGS

4.1 Task Ordering Improvement
As discussed in Section 3.2, since the execution behavior of a

CTG is different depending on the satisfied conditions, it is ad-
vantageous to have different start times and clock speeds for each
task under all possible conditions using the schedule table tech-
nique proposed in [2]. Though the original schedule table deter-
mines only the start times of tasks, we extend it to have the clock
speeds as well. Figure 7 shows an example of the schedule ta-
ble. In the table, each row contains pairs of the start times and the
clock speeds of the corresponding task under the different condi-
tions. Each column in the table represents a condition expression.
When the condition of an edge is satisfied during run time, the in-
formation is transferred to the run-time task scheduler. The task

scheduler searches the schedule table with the condition satisfied
and determines the start times and clock speeds of tasks. For exam-
ple, in Figure 7, the task τ7 starts at the time of 68.6 with the clock
speed of 0.39 when the branching node satisfies the condition c1
or c2 while it starts at the time of 80 with the clock speed of 0.5
when the condition c3 is true. The tasks τ0, τ1, and τ2 have one
start time and one clock speed in the column true, respectively, be-
cause they are the tasks executed initially. The tasks τ4, τ5, and τ6
also have only one start time and one clock speed because they are
activated by a single condition, respectively. As we can see from
the task schedule table, the schedule for a task depends on the con-
dition satisfied by the branching node. We call this task scheduling
technique as condition-awaretask scheduling.

task
condition

10

10

0

0.25

0.5

0.5

30

68.6

0.39

0.39

30

30

68.6

0.39

0.42

0.39

30

30

60

80

0.38

0.5

0.5

0.5

true c1 c2 c3

τ0

τ1

τ2

τ3

τ4

τ5

τ6

τ7

Figure 7: An example task schedule table.

For the condition-aware task scheduling, the task schedule ta-
ble should be constructed. In particular, the appropriate columns
should be decided for each task. To explain how to determine the
appropriate columns for a task, we define a mintermof the condi-
tional task graph G with branching nodes τ1, · · · ,τn as an expres-
sion

�n
1 ci where ci ∈ Γ(τi). Γ(τi) for a branching node τi is the set

of conditions which can be satisfied by τi (i.e., {C(e)|e= (τ i ,τ j) ∈
G}). If a conditional task graph has branching nodes τ1, · · · ,τn,
there are ∏n

1 |Γ(τi)| number of minterms. A minterm of G repre-
sents one possible condition combination of G. By representing Xτ i
as the disjunction of minterms, we can enumerate all possible cases
for τi to be executed. For example, in Figure 8(a), the task graph
G has branching nodes τ1, τ2 and τ3, where Γ(τ1) = {c3,c10},
Γ(τ2) = {c6,c7}, and Γ(τ3) = {c4,c5}. G has eight minterms and
Xτ5 can be represented as (c3∧c5∧c6)∨ (c3∧c5∧c7). This means
there are two cases, when (c3∧c5∧c6) = trueand when (c3∧c5∧
c7) = true, for the task τ5 to be executed. For each case, we can
make a column in the task schedule table and assign a different
clock speed and start time for τ5.

However, some conditions in a minterm cannot be determined
before the start time of tasks. For example, if τ2 is executed after τ5,
we cannot determine which value to use for τ5 between the value
in the column headed by (c3 ∧c5 ∧c6) and the value in the column
headed by (c3 ∧c5 ∧c7) because we cannot know which condition
is satisfied between c6 and c7 at the start time of τ5. Therefore,
we should represent each Xτ i only with the conditions which are
determined before the execution of the task τi . Such conditions are
the elements of Γ(τk) where τk is a branching node executed before
τi . We can decide that a branching node τk is executed before τi if
there is a path from τk to τi in G. We denote the set of such branch-
ing nodes as Bτ i . We define the available mintermof the task τi as
an expression

�n
1 ck where ck ∈ Γ(τk) and τk ∈ Bτ i . By presenting

Xτ i as the disjunction of available minterms of τi , it is possible to
enumerate all the cases before τi is executed. As we change the
conditional task graph G by inserting PR edges at the task order-
ing step, the number of branching nodes in Bτ i increases because
the inserted edges can make a path between a new branching node
and τi . For example, in the scheduled task graph GS in Figure 8(b),
which has PR edges (τ1,τ2) and (τ8,τ6), Bτ9 = {τ1,τ2,τ3} though
Bτ9 = {τ2} in G.

Figure 9 describes the condition-aware task scheduling algorithm
Condition Aware Task Scheduling. The function Condition Aware
Task Scheduling selects the task τi which has the highest prior-

ity in the ready list R and transforms Xτ i as the form of
�

Mτ i
j ,

where Mτ i
j is an available minterm of τi . For each Mτ i

j , it adds a
new task τi, j to G, where τi, j indicates the task τi executed when
Mτ i

j is true. In addition, the corresponding edges are inserted to G.

PE0

PE1

c3

c4 c5

c6 c7

c10

τ0

τ1

τ2
τ3

τ4 τ5
τ6 τ7

τ8
τ9

τ10

(a) Conditional
task graph G

c3

c4 c5

c6 c7

τ0

c10

τ1

τ2
τ3

τ4 τ5
τ6 τ7

τ8
τ9

τ10

(b) Scheduled task
graph GS

Figure 8: An example conditional task graph.

The corresponding edges can be generated by copying the edges in
E={(τp,τi)|(τp,τi)∈Gand Mτ i

j ⇒Xτp∧C(τp,τi)}∪{(τi ,τs)|(τi,τs)
∈ G}, where (τp,τi) is an in-edge activated when Mτ i

j is true and

(τi ,τs) is an out-edge of τi . Depending on Mτ i
j , the function Find

AvailableTime returns different start times for τi, j . After each σ(τi, j)
is determined, τi is removed from G and the PR edges are inserted
to G.

With the modified task graph Gafter all tasks are scheduled, each
Mτ i

j , should be re-examined because Bτ i can be changed due to the

inserted PR edges. If there is a task τi, j in G, where Mτ i
j is not an

available minterm of τi in G, we transform it into the disjunction of
available minterms. If there is no such task, we terminate the task
ordering step and move to the task stretching step. For example,
in Figure 8, though Xτ7 can be represented as an available minterm
c7 in G, it should be represented as (c3 ∧c7)∨ (c10 ∧c7) after each
task is scheduled at the first iteration of the loop (from line 4 to line
21) in the function Condition Aware Task Scheduling.
Condition Aware Task Scheduling(CTG G)
1: for each task, calculate the priority of the task;
2: for each task, transform Xτi to

�
Mτi

j ; /∗ Mτi
j is an available minterm of

τi ∗/
3: R = R0; /∗ R is the ready list and R0 is the set of start nodes ∗/
4: do {
5: stop = true;
6: while (R �= /0) {
7: select the task τi with the highest priority in R;
8: for each Mτi

j ,
9: { G = G∪ {τi, j};

10: σ(τi, j) = Find AvailableTime(τi, j);
11: δ(τi, j) = σ(τi, j)+Nc(τi)/ fmax;}
12: G = G−{τi};
13: G = G∪{(τi ,τ j)|τ j ∈ SuccPR(τi)}∪{(τ j ,τi)|τ j ∈ PredPR(τi)};
14: R = R−{τi};
15: Dτi = true;
16: for each task τ j , if (Ψτ j == true) R= R∪{τ j};
17: }
18: for each task τi, j ∈ G,
19: if (Mτi

j can be transformed to
�

Mk in G)
20: {insert all τi, j into R; stop = false;}
21: } while (!stop)
22: GS = G;
23: Task Stretching(GS);

Figure 9: Condition-aware task scheduling algorithm for
CTGs.

4.2 Task Stretching Improvement
To use the profile information of a CTG, we modified the objec-

tive function of the task stretching problem discussed in Section 3
as follows using the probability Prob(τi,k) of the execution of the
task τi,k:

∑
τi,k∈V

Eτi,k(f (τi,k)) ·Prob(τi,k).

Prob(τi,k) can be computed by ∏n
j=1 Prob(cj) when Mτ i

k =
�n

j=1 cj .
(This problem also can be solved using numerical techniques men-
tioned in Section 3.1.)

Figure 10 shows the task schedule of the conditional task graph
in Figure 2(a) after the task stretching. When the condition c2 or
c3 is true, we can reduce the energy consumption by executing τ3,1
and τ7,1, or τ3,2 and τ7,2, instead of τ3,3 and τ7,3. Since Prob(c1) is
larger than Prob(c2) and Prob(c3), the task schedule is optimized
for the subgraphs gc1 rather than gc2 and gc3 in Figures 2(b)-(d).
τ0, τ1, τ2, τ7,1 and τ7,2 are assigned lower clock speeds while τ3,
τ4, τ5, τ6 and τ7,3 are assigned higher clock speeds compared with
the schedule in Figure 3(c).

PE2

PE0

PE1

time

speed

0.450.21

0.53

0.43 0.43

0.53

0 20 40 60 80 10010 30 50 70 90 110 120

0.43

0.43
0.4

0.4

0.43 0.53τ0

τ1

τ2

τ3,1
τ3,2
τ3,3

τ4

τ5

τ6

τ7,1
τ7,2

τ7,3

dl(τ3)

dl(τ4)

dl(τ7)

Figure 10: Condition-aware task schedule.

From the task schedule, we can see that it is not necessary to
handle τ3,1 and τ3,2 (or τ7,1 and τ7,2) separately because they have
the same start time and the same clock speed. Since they have
same precedence dependencies (i.e., both τ3,1 and τ3,2 have two
edges from τ1 and τ2, and both τ7,1 and τ7,2 have an edge from
τ3,1 and τ3,2 in the scheduled task graph GS), the same start time
and the same clock speed are assigned to them. So, we can merge
these tasks in GS before the task stretching step because they would
generate the same constraint for the task stretching problem.

5. EXPERIMENTS
We experimented the proposed task scheduling algorithms with a

number of random conditional task graphs. We modified TGFF [1]
to generate conditional task graphs. Using the modified TGFF pro-
gram, we generated twelve CTGs, ctg1∼ ctg12. Each CTG is
different in the number of nodes, the number of edges, the number
of allocated PEs, and the number of branching nodes. The second
column of Table 1 summarizes the characteristics of the 12 CTGs
used for the experiments. For the task assignment step, we used
the GA-based task assignment algorithm [7] to assign each task in
a CTG to a PE.

We estimated the effectiveness of the condition-unaware task
scheduling algorithm and the condition-aware task scheduling al-
gorithm. For the condition-aware task scheduling algorithm, we
experimented two versions, one without the profile information and
the other with the profile information. Table 1 shows the experi-
mental results for twelve CTGs. The third, fourth and fifth columns
show the normalized energy consumption by task schedules gener-
ated from three task scheduling algorithms, the condition-unaware
algorithm (denoted by CU), the condition-aware algorithm without
the profile information (denoted by CAno pro f ile) and the condition-
aware algorithm with the profile information (denoted by CApro f ile).
As a reference case, we used the energy consumption by task sched-
ules generated from the task scheduling algorithm by Xie et al. [8]
(such as Figure 3(a)), in which all tasks are executed at the full
speed.

The condition-unaware algorithm reduced the energy consump-
tion by 30% on average while the condition-aware algorithm with-
out the profile information reduced the energy consumption by 45%
on average. With the profile information, the condition-aware algo-
rithm further reduced the energy consumption by 50% on average.

Table 1 also shows that the energy efficiency of the condition-
aware algorithms varies significantly depending on the character-
istic of a CTG. For example, the energy consumption in ctg5 is
reduced by 73%. On the other hand, the energy consumption in
ctg6 is reduced only by 32%. This large variation mainly depends

CTG a/b/c/d∗ task scheduling algorithms
CU CAno pro f ile CApro f ile

ctg1 8/9/3/1 0.26 0.24 0.24
ctg2 26/43/2/4 0.64 0.46 0.44
ctg3 40/77/4/5 0.73 0.63 0.50
ctg4 40/77/3/5 0.86 0.62 0.47
ctg5 20/27/2/5 0.70 0.46 0.27
ctg6 16/21/2/5 0.80 0.72 0.68
ctg7 30/29/2/5 0.69 0.66 0.61
ctg8 40/63/3/5 0.59 0.39 0.34
ctg9 14/19/2/4 0.74 0.65 0.65

ctg10 19/25/2/5 0.62 0.51 0.49
ctg11 70/99/4/5 0.90 0.63 0.61
ctg12 49/92/3/4 0.87 0.66 0.66

average 0.70 0.55 0.50
* a= # of nodes, b= # of edges, c= # of PEs, and d= # of branches.

Table 1: Normalized energy consumption under three task
scheduling algorithms.

on the location of branching nodes in CTGs. When the branching
nodes are located near to the start node, the condition-aware task
scheduling can generate a more energy-efficient schedule. Since
the branching nodes are executed earlier, there are more opportuni-
ties for saving the energy consumption. The ctg5 graph is such a
case.

6. CONCLUSIONS
We have presented the power-aware task scheduling techniques,

which schedule the clock speeds and start times of tasks in the con-
ditional task graph, for the DVS-enabled real-time multiprocessor
systems. We first proposed the condition-unaware task schedul-
ing by integrating the task ordering algorithm for conditional task
graphs and the task stretching algorithm for unconditional task graphs.
We also proposed the condition-aware task scheduling algorithm
and the profile-aware task scheduling algorithm by considering the
run-time behaviors and the profile information of conditional task
graphs. Experimental results showed that the proposed technique
can reduce the energy consumption by 50% on average.

The proposed algorithms can be further improved in several as-
pects. In this work, we assumed that the task assignment was given
as a fixed input. However, for a higher energy efficiency, it will be
necessary to investigate the task scheduling algorithm integrated
with the task assignment algorithm. Furthermore, for a complete
treatment of voltage scheduling in multiprocessor systems, we plan
to develop on-line slack estimation and distribution techniques ef-
fective in DVS-enabled multiprocessor real-time systems.

7. REFERENCES
[1] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task graphs for free. In

Proc. of Workshop Hardware/Software Codesign, pp. 97–101, 1998.
[2] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of

conditional process graphs for the synthesis of embedded systems. In
Proc. of Design Automation, and Test in Europe, pp. 23–26, 1998.

[3] G. A. Gabriele and K. M. Ragsdell. The generalized gradient method:
a reliable tool for optimal design. ASME Journal of Engineering and
Industry, Series B, Vol. 99, No. 2, pp. 394, 1977.

[4] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance
comparison of dynamic voltage scaling algorithms for hard real-time
systems. In Proc. of IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 219–228, 2002.

[5] J. Luo and N. K. Jha. Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems.
In Proc. of Int. Conf. on VLSI Design, pp. 719–726, 2002.

[6] M. T. Schmitz and B. M. Al-Hashimi. Considering power variations
of DVS processing elements for energy minimisation in distributed
systems. In Proc. of Int. Symp. on System Synthesis, pp. 250–255,
2001.

[7] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Energy-efficient
mapping and scheduling for DVS enabled distributed embedded
systems. In Proc. of Design Automation, and Test in Europe, pp.
514–521, 2002.

[8] Y. Xie and W. Wolf. Allocation and scheduling of conditional task
graph in hardware/software co-synthesis. In Proc. of Design,
Automation, and Test in Europe, pp. 620–625, 2001.

[9] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage
selection for energy minimization. In Proc. of Design Automation
Conference, pp. 183–188, 2002.

