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Abstract—Flash memory has been widely used as an important 
storage device for consumer electronics. For the flash memory-
based storage systems, FTL (Flash Translation Layer) is essential 
to handle the mapping between a logical page address and a 
physical page address. Especially, log buffer-based FTLs provide 
good performances with small-sized mapping information. In 
designing the log buffer-based FTL, one important factor is to 
determine the mapping architecture between data block and log 
block, called associativity. While previous works use static 
associativities fixed at the design time, we propose a new log 
block mapping scheme which adjusts the associativity 
considering the irregularity of I/O workload. Our proposed 
scheme improves the I/O performance by 5~15% compared to 
the static scheme by adjusting the associativity based on the run-
time workload. 

Keywords- flash memory; flash translation layer; log buffer; 
hybrid mapping; embedded storage 

I.  INTRODUCTION 
NAND flash memory has become the most important 

storage media in the mobile embedded systems such as MP3 
players, digital cameras and mobile phones due to its low 
power consumption, non-volatility, reliability, and physical 
shock resistance [1]. Recently, as the cost of NAND flash 
memory has been decreased and the capacity of it has been 
increased, NAND flash-based SSD (Solid-State Disk) is about 
to be used in laptop computers and enterprise server systems 
where energy efficiency is important. 

Unlike a traditional hard disk, NAND flash memory does 
not support “overwrite” operation because of its “erase-before-
write” characteristic. When the data at a certain page should 
be modified, we cannot overwrite the page. Instead, the new 
data must be written to another free page and the old data must 
be invalidated. 

This feature of NAND flash memory requires two storage 
management schemes: address mapping and garbage 
collection. The address mapping scheme is to map a logical 
address from the file system to a physical address of the flash 
memory by maintaining the address mapping table. The 
garbage collection scheme makes it possible to reclaim the 
invalidated pages by erasing the corresponding block after 
copying valid pages in the block to a free block. To support 
these two management schemes, a software layer called an 
FTL (Flash Translation Layer) is used between the file system 
and the flash memory [2].  

In general, FTL schemes can be classified into three 
schemes according to the method of address mapping: block-
level mapping, page-level mapping, and hybrid mapping. In 
block-level mapping [3], a logical block is mapped to a 
physical block in flash memory. A page is written by in-place, 

which means it is placed at the same offset in both the logical 
block and the physical block. Although the block-level 
mapping requires a small-sized mapping table, it invokes a 
large amount of block copy overhead even though only a 
small portion of a block is changed since it should move all 
non-updated pages into new free block to maintain the block-
level mapping.  

In page-level mapping [4], a logical page is mapped to any 
physical page thus it can be written by out-of-place. So, it 
invokes no overhead when a page is updated thus provides a 
high performance. But, it requires a huge memory space for 
page-level mapping information.  

In order to overcome such problems of page-level mapping 
and block-level mapping, hybrid mapping that uses both page-
level mapping and block-level mapping was proposed. Hybrid 
mapping assigns a small portion of flash memory blocks for 
log buffer. So, it is called a log buffer-based FTL. The log 
buffer is temporal storage spaces to be used for overwrite 
operation. A log block in the log buffer can be used for one or 
several data blocks. So, data block and log block are associated 
with each other. The associativity of a log block means the 
number of associated data blocks of the log block. If there is an 
update request on the data which is already written at the data 
block, the new data is written at the associated log block and 
the old data in the data block is invalidated. Normal data blocks 
are managed by block-level mapping but the log blocks in log 
buffer are handled by page-level mapping. Thus, hybrid 
mapping requires a small-sized mapping table and invokes 
little block copy overhead. 

When there is no free space in the log buffer, FTL has to 
make new free space by merging a log block with its 
associated data blocks. This process is referred to log block 
merge and has following sequences. First, it selects a victim 
log block to be merged and copies all valid pages in either the 
victim log block or its associated data blocks into reserved 
free blocks. Then, it modifies the logical block mapping 
information by replacing the associated data blocks with the 
allocated free blocks. Finally, the victim log block and its 
associated data blocks are erased and become free blocks. 
Since the log block merge operation requires a large number 
of page copies and block erases, it is important to reduce the 
number of merge operations to achieve a good performance in 
FTL. 

There are three types of merge operation: switch merge, 
partial merge, and full merge [5]. Switch merge can be 
performed only when all pages in the victim log block are 
written by in-place scheme. Its merge cost is cheap because it 
just requires one erase operation without any page copy 
operation. Partial merge is similar to switch merge, but it 
requires additional page copy operations. It is also performed 



when pages in the victim log block are written by in-place 
scheme, but there are free pages in the victim log block. On 
the other hand, full merge is performed when pages in the 
victim log block are written by out-of-place scheme. The full 
merge cost is expensive since all the valid pages in the victim 
log block and its associated data blocks should be moved. The 
full merge cost of a log block L is calculated as follows:  

 
erasecopy CLACLAN ⋅++⋅⋅ )1)(()(     (1) 

where N, A(L), Ccopy, and Cerase represent the number of 
physical pages in a flash block, the associativity of the log 
block L, the cost of one page copy, and the cost of one block 
erase, respectively. In hybrid mapping, therefore, not only 
reducing the number of log block merge operations but also 
executing switch merge or partial merge rather than expensive 
full merge improve the performance. 

The number of log block merges and the average cost of 
log block merge depend on the associativity of log block. 
Therefore, it is important to find the optimal associativity in 
order to reduce the log block merge overhead. Although 
several association schemes are recently proposed, they use 
static schemes which select fixed associativities at the design 
time not considering the run-time workload change. In this 
paper, we propose an adaptive scheme, called A-SAST, which 
adjusts the associativity between data blocks and log blocks 
depending on the run-time workload to optimize the log block 
merge cost. Experimental results show that our scheme 
increases the performance by 5~15% over the previous 
scheme which uses the static best associativity selected by 
considering the target workload pattern at the design time. 

The organization of the remainder of this paper is as 
follows: The next section reviews related works. Section 3 
provides detailed descriptions of proposed A-SAST scheme. 
Then, performance evaluation results of A-SAST are presented 
in Section 4. Finally, Section 5 concludes with a summary of 
this paper. 

 

II. RELATED WORKS 
There are several kinds of log buffer-based FTL schemes, 

which can be classified into BAST [5], FAST [6], KAST [7], 
and SAST [8, 9] depending on the association mechanism. 

In BAST (Block-Associative Sector Translation) scheme, a 
log block is used for only one data block at a time as shown in 
Fig. 1(a). We assume that one block consist of four pages. If 
there is a write request for the block which is not associated 
with any allocated log block and there is no free log block, one 
of allocated log blocks should be merged to make space for a 
new log block. Therefore, there are frequent log block merges 
especially when the write pattern is random. Moreover, a log 
block is merged with its low utilization. This is called a log 
block thrashing problem.  

To solve the log block thrashing problem, FAST (Fully-
Associative Sector Translation) scheme was proposed, where 
a log block can have the updated pages of any data block as 
shown in Fig. 1(b). Therefore, even when the write pattern is 
random, there is no frequent log block merges and the log 
block utilization is high. However, FAST scheme requires a 

large overhead per one log block merge since it can be 
associated with many data blocks.  

To mitigate disadvantages of both BAST and FAST, 
KAST (K-Associative Sector Translation) and SAST (Set-
Associative Sector Translation) schemes were suggested. 
KAST is similar to FAST but the maximum associativity of 
log block can be configured to any value at design time. Thus 
KAST can limit the maximum merge cost to the predefined 
value.  
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Fig. 1. Hybrid mapping schemes 

 

SAST is a compromise between BAST and FAST. The 
SAST scheme groups N number of sequential data blocks into 
a data block group (DBG). One DBG can be associated with 
only one log block group (LBG) that has K number of log 
blocks at maximum. So, N+K number of physical blocks can 
be allocated for N number of logical blocks, thus SAST is 
referred to N:N+K mapping. If both N and K are 1, the SAST 
scheme is same to the BAST scheme. We can make another 



extreme case of SAST by grouping all data blocks into one 
group and it is equal to FAST. A log block of an LBG can 
have the updated pages of any data block of the associated 
DBG. 

Fig. 1(c) illustrates the SAST scheme that uses 4:4+2 
mapping. One data block group consists of four sequential data 
blocks and one log block group consists of two log blocks. In 
Fig. 1(c), LBG0 and LBG1 are associated with DBG0 and DBG1, 
respectively. For example, the physical blocks with PBN 
(physical block number) 100, 101, 102, and 103 are allocated 
as data blocks for DBG0, and the physical blocks with PBN 
301 and 302 compose LBG0 which is associated with DBG0. 
When the pages with the logical page number (LPN) 2, 3, 4, 5, 
6, and 7 are updated, they are written at the log blocks in LBG0 
and the old pages in DBG0 are invalidated. 

When there is no free log block to be used for a DBG, the 
least recently used (LRU) log block group is selected for a 
victim to be merged. Generally, since the LRU log block has 
many invalid pages and there is little possibility to be updated, 
it is profitable to select the LRU log block in order to reduce 
the log block merge cost. For that purpose, the SAST scheme 
maintains the log block group LRU table. 

In SAST, the values of N and K have a significant influence 
on the FTL performance and the optimal values for N and K 
depend on the I/O request pattern. We can find the optimal 
values by exhaustive simulation for target I/O workloads or 
workload analysis technique proposed in SAST [8]. To find the 
proper value for N, the workload analysis technique examines 
the request density of a logical block, which is the ratio of the 
number of requests accessed in the logical block to the total 
number of requests. If the request density is high, it means 
there is a high spatial locality for the logical block. So, a large 
value should be used for N. The proper value for K is 
determined by measuring the temporal locality. If there are 
many updates, SAST uses a large value for K. 

However, the optimal values of N and K are changed during 
the run time and they are different depending on the logical 
address since the I/O pattern is varied according to the 
execution time and the logical address. But, the values of N and 
K are equally applied throughout all the address space and the 
values are fixed during the execution time in the SAST scheme. 
Moreover, it is difficult to know the run-time workload for 
analysis at design time. Therefore, it is necessary to develop an 
adaptive scheme which can change the sizes of DBG and LBG 
depending on the run-time I/O workload. 

 

III. ADAPTIVE SAST SCHEME 
We propose an adaptive SAST (A-SAST) scheme which 

can solve the problems of SAST scheme. We have made three 
kinds of improvements on SAST as follows:  

 First, the selection policy for victim log block is 
improved. 

 Second, we make it possible to adjust the size of each 
DBG to the optimal value according to I/O pattern by 
merging two DBGs into one DBG or splitting one 
DBG into two DBGs at run time. 

 Third, we eliminate the constraint for the maximum 
number of log blocks in LBG, i.e., the value of K. So, 
an LBG can have any number of log blocks (K=∞) 
though the total number of log blocks is fixed. 

A. Victim Log Block Selection 
In the original SAST scheme, the LRU table is maintained 

at the log block group level. So, the accuracy is low because a 
write request for a log block changes the LRU levels of all the 
log blocks in the corresponding LBG. 

  For instance, in Fig. 1, when write requests for several 
logical pages occur as the order of (32, 36, 40, 44, 2, 3, 4, 5, 6, 
7, 20, 21, 33, 37, 41, 45), the log block at PBN 300 is the 
oldest one. However, the log block at PBN 301 is selected as a 
victim log block by the group-level LRU policy.  

A-SAST uses the block-level LRU policy. In addition, it 
considers the merge cost as well as the LRU level when 
selecting a victim log block. Fig. 2 shows an example of the 
block-level LRU table of A-SAST. The victim log block is 
selected within the victim log block region which includes M 
number of little-recently-used log blocks. Among the log 
blocks in the victim region, the log block with the lowest 
merge cost is selected as a victim log block. The merge cost 
can be estimated using Equation (1). 

 
Fig. 2. LRU table in A-SAST scheme. 

In Fig. 2, the PBN 300 is the LRU log block, but PBN 302 
is selected as a victim log block because it has the lowest 
merge cost among log blocks in the victim log block region. 
Because A(L) of PBN 300 is 4, we should copy 16 pages and 
erase 5 blocks to merge the log block. On the other hand, A(L) 
of PBN 302 is 1. Even though a log block at the outside of 
victim region has a lower merge cost than all the log blocks in 
the victim region, it is better to select one within the victim 
region to reduce the merge cost. This is because the pages in a 
log block which is recently used have the high possibility to be 
invalidated by the future write requests. Since a log block in 
the victim window that has the highest associativity may not 
be selected permanently due to its high merge cost, A-SAST 
selects the log block if it has remained in the victim region too 
long time. Using such policy, we can consider both the log 
block LRU level and the merge cost. 

In A-SAST, an LBG can have any number of log blocks as 
long as the total number of log blocks is smaller than the total 
allowed log buffer size. So, we do not need to find the proper 
value of K. Instead, the block-level LRU policy for log buffer 
automatically controls the proper number of log blocks. That is, 
if a DBG needs a large number of log blocks due to its high 
temporal locality, the victim selection policy takes a log block 
from the DBG with a low temporal locality and gives the log 
block to the DBG with a high temporal locality. 

B. The effect of Data Block Group Size 
The optimal size of a DBG is related to the log block 

utilization and the log block merge cost. Generally, as we 
increase the size of data block group, the log block utilization 
increases because several data blocks can share a log block. 
But, the log block merge cost also increases because the 
associativity of a log block increases. Therefore, if an LBG 
has a low utilization, which means that the associated DBG 



cannot utilize log blocks effectively, it is better to use a larger 
value for the size of corresponding DBG since it has a low 
request density. If an LBG has too high associativity, which 
increases the average merge cost, a smaller value is proper to 
the size of corresponding DBG since it has a random request 
pattern. 

C. Data Block Group Reorganization 
A-SAST adjusts the size of each DBG to adapt the I/O 

pattern of the corresponding address range and the I/O pattern 
change at run time. The adjustment is performed by merging 
or splitting data groups. 

For example, in Fig. 1, LBG0 and LBG1 consume small 
numbers of pages thus have low utilizations. This is because 
there were little updates for DBG0 and DBG1. In this case, if 
we create a new larger data block group by merging DBG0 and 
DBG1 and assign one log block group to the merged DBG, the 
log block utilization will increase. On the other hand, the 
LBG2 has a high utilization but the merge cost for each log 
block is high because each log block is associated with several 
data blocks. This means that the write pattern for DBG2 is 
quite random. If we split DBG2 into two small data groups, the 
merge cost for each log block can be reduced. 

Fig. 3 shows how A-SAST changes the block groups by 
merging and splitting for the example in Fig. 1. By merging 
DBG0 and DBG1, a new DBG which consists of 8 data blocks 
is created and it requires only two log blocks. As a result, it 
increases the log block utilization and saves one log block. 
Merging data block groups is performed when the following 
conditions are satisfied for two consecutive DBGs, DBGi and 
DBGj.  
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where φ(g), Pused, and Ptotal are the associated log block group 
of data block group g, the number of used pages and the 
number of allocated pages for DBG or LBG, respectively. The 
first condition checks the utilizations of two LBGs and the 
second condition checks the associativities of all log blocks in 
the LBGs. The second condition prevents DBGs from being 
merged when they have random write request patterns. 

The group merge condition is examined for the DBG whose 
one of associated log blocks is selected as a victim log block. 
By merging data block groups which have small number of 
updates and sequential write patterns, we can use the log blocks 
more efficiently. 

In Fig. 3, DBG2 is split into two data block groups. If write 
requests for each page occur as the order of (32, 36, 40, 44, 33, 
37, 41, 45), the merge cost of each log block is reduced by 
half. Like this, when the log block association is high due to 
many random updates for a certain group, the performance 
will be enhanced by splitting the DBG. The condition for 
DBG splitting is as follows:  

 
A(L)  >  γ 

where γ is the split threshold and L is the lastly written log 
block of the log block group. We check the condition when we 
should allocate a new log block for the DBG.  

The optimal values of α, β, and γ depend on the workload 
pattern. We provide the experiment results to explore the 
optimal values in Section IV. 

 

 
Fig. 3. Adjusted groups in A-SAST. 

 

IV. EXPERIMENTS 
Our proposed schemes are evaluated using simulation. 

Three I/O workloads are used: PCtrace, Iozone-4, and Iozone-
80. PCtrace workload is collected in the Windows system by 
executing the applications such as the word processor, moving 
picture, web browsing, games, and so on. Iozone-4 and Iozone-
80 are collected using Iozone benchmark program [10]. While 
Iozone-4 generates 1~4 KB write requests thus has a random 
I/O pattern, Iozone-80 generates 2~80 KB write requests thus 
has both random and sequential I/O requests. We assume that 
each block of NAND flash memory is composed of 64 pages 
and the page size is 2 KB. The number of total log blocks is 
256. The timing parameters for NAND flash operations are 
based on [11]. 

We first observed the irregular behavior of log block 
merges under the original SAST scheme. Fig. 4 shows the total 
number of log block merges for each data block group under 
the SAST scheme. From the results, we can know that the 
number of log block merges significantly different depending 
on the address space. Therefore, we can know that the proper 
values for the group size are different depending on the address 
space. 

We then compared the performance improvement of A-
SAST over SAST. Fig. 5 shows the total flash I/O execution 
times under the original SAST (SAST), SAST with block-
level LRU victim selection policy (SAST-V), SAST with 
group merge/split technique without block-level LRU victim 
selection policy (SAST-G), and our proposed A-SAST (A-
SAST).  SAST-V and SAST-G are experimented to examine 
the effects of two proposed techniques independently. The X-
axis shows the initial value of data block group size N. The 
size of log block group K is set to N/2 at the SAST scheme. 
While SAST uses the value for all data block groups and does 
not change it during the run time, A-SAST adapts the value 
depending on the characteristic of I/O workload. 

Under SAST, the performance changes significantly 
depending on the value of N. In addition, the optimal values 
for N are different depending on benchmarks. While the 
optimal value is 8 for PCtrace, it is 16 for Iozone benchmarks.  



 
 

Fig. 4. Log block merge counts of logical block group in SAST. (N=4, K=2) 
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One important observation is that the performance of A-
SAST has no significant change depending on the value of N. 
This is because A-SAST changes the data block group size to 
the optimal value even though the initial value is far from the 
optimal data block group size. Even though we use the static 
optimal value for N in SAST, A-SAST shows better 
performances. A-SAST efficiently improves the performances 
by 5%, 8%, and 15% compared to SAST under the best values 
of N for PCtrace, Iozone-4, and Iozone-80, respectively. 

A-SAST shows significant improvements for the workloads 
which have both sequential and random requests (Iozone-80) 
rather than the random workloads (PCtrace and Iozone-4). 
This is because A-SAST can handle effectively the irregularity 
and the dynamic change of workload. 

SAST-G improves the performance significantly especially 
when the initial value of N is too small or too large. The effect 
of SAST-V is significant even when the initial value of N is 
same to the static optimal value. If we use a small value for N, 
the group-level LRU and block-level LRU have similar 
behaviors since the log group size is small. Therefore, SAST-
V and SAST show similar performances when the group size 

is small. Since the block-level LRU technique finds a better 
victim DBG for group merge and split, it elevates the 
performance of group size adjustments. 

Fig. 6 shows the numbers of log block merges (bar graph) 
and the average merge costs (line graph) under SAST and A-
SAST. When the initial value of N is small, SAST has a low 
merge cost due to its low log block utilization but generates a 
large number of log block merges. However, A-SAST reduces 
the number of log block merge count because the log block 
utilization is elevated by data block group merge operation. 
When the initial value of N is large, SAST has a high merge 
cost due to high log block associativity. A-SAST reduces the 
average log block merge cost by performing data group split. 

Fig. 7 shows the change of data block group size 
distribution at run time under the A-SAST scheme. We 
observed for Iozone-4 by using two different initial values of 
N. When the initial value of N is 4, the number of data block 
groups with N larger than 4 increases due to many data block 
group merges. By contrast, when the value is 64, the number 
of data block groups with N smaller than 64 increases due to 
many data block group splits. Therefore, two experiments that 



use different initial values for N show similar group size 
distributions finally. Therefore, we can say that A-SAST can 
find the optimal group sizes irrespective of the initial value of 
N. A-SAST maintains diverse group sizes at a time suitable to 
each address space. In addition, the group size distributions 
are changed dynamically at run time. A-SAST repeats the 
group merge and split as the workload pattern varies. This 
means that A-SAST can adapt the workload change 
effectively. 

Finally, we examined the effects of parameters related to 
group merge/split conditions. The proper values for α, β and γ 
are observed to be similar at different benchmarks. Fig. 8(a) 
shows the performance of the PCtrace with varying the values 
of β and γ. The value of α is fixed to 0.4. The possible ranges 
of β and γ are 0~64 since it is compared to the associativity of 
log block. As we use a smaller value for β and a larger value 
for γ, the group merge hardly occurs thus there will be many 
small data groups. We can get the best performances when  β 
is 4~16 and γ is 4~8. Fig. 8(b) shows the effect of parameter α 
when β and γ is 4 and 8, respectively. The best performance is 
when α is 0.2~0.4.  

 
V. CONCLUSION 

In this paper, we proposed a novel FTL scheme to 
proficiently deal with irregular I/O patterns in NAND flash 
memory. While the previous FTL schemes do not consider the 
variations of I/O workload depending on the execution time 
and the address space thus use the fixed log block 
associativities determined at the design time, the proposed A-
SAST scheme finds the optimal value for the associativity of 
each address space and adjusts dynamically it during the run 
time. As a result, we can reduce the log block merge overhead 
of FTL significantly. 

 

 
Fig. 7. The changes of group sizes. 
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Fig. 8. The effect of parameters. 
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