
Adaptive Log Block Mapping Scheme for Log
Buffer-based FTL (Flash Translation Layer)

Duckhoi Koo and Dongkun Shin
Sungkyunkwan University, Korea

Abstract—Flash memory has been widely used as an important
storage device for consumer electronics. For the flash memory-
based storage systems, FTL (Flash Translation Layer) is essential
to handle the mapping between a logical page address and a
physical page address. Especially, log buffer-based FTLs provide
good performances with small-sized mapping information. In
designing the log buffer-based FTL, one important factor is to
determine the mapping architecture between data block and log
block, called associativity. While previous works use static
associativities fixed at the design time, we propose a new log
block mapping scheme which adjusts the associativity
considering the irregularity of I/O workload. Our proposed
scheme improves the I/O performance by 5~15% compared to
the static scheme by adjusting the associativity based on the run-
time workload.

Keywords- flash memory; flash translation layer; log buffer;
hybrid mapping; embedded storage

I. INTRODUCTION
NAND flash memory has become the most important

storage media in the mobile embedded systems such as MP3
players, digital cameras and mobile phones due to its low
power consumption, non-volatility, reliability, and physical
shock resistance [1]. Recently, as the cost of NAND flash
memory has been decreased and the capacity of it has been
increased, NAND flash-based SSD (Solid-State Disk) is about
to be used in laptop computers and enterprise server systems
where energy efficiency is important.

Unlike a traditional hard disk, NAND flash memory does
not support “overwrite” operation because of its “erase-before-
write” characteristic. When the data at a certain page should
be modified, we cannot overwrite the page. Instead, the new
data must be written to another free page and the old data must
be invalidated.

This feature of NAND flash memory requires two storage
management schemes: address mapping and garbage
collection. The address mapping scheme is to map a logical
address from the file system to a physical address of the flash
memory by maintaining the address mapping table. The
garbage collection scheme makes it possible to reclaim the
invalidated pages by erasing the corresponding block after
copying valid pages in the block to a free block. To support
these two management schemes, a software layer called an
FTL (Flash Translation Layer) is used between the file system
and the flash memory [2].

In general, FTL schemes can be classified into three
schemes according to the method of address mapping: block-
level mapping, page-level mapping, and hybrid mapping. In
block-level mapping [3], a logical block is mapped to a
physical block in flash memory. A page is written by in-place,

which means it is placed at the same offset in both the logical
block and the physical block. Although the block-level
mapping requires a small-sized mapping table, it invokes a
large amount of block copy overhead even though only a
small portion of a block is changed since it should move all
non-updated pages into new free block to maintain the block-
level mapping.

In page-level mapping [4], a logical page is mapped to any
physical page thus it can be written by out-of-place. So, it
invokes no overhead when a page is updated thus provides a
high performance. But, it requires a huge memory space for
page-level mapping information.

In order to overcome such problems of page-level mapping
and block-level mapping, hybrid mapping that uses both page-
level mapping and block-level mapping was proposed. Hybrid
mapping assigns a small portion of flash memory blocks for
log buffer. So, it is called a log buffer-based FTL. The log
buffer is temporal storage spaces to be used for overwrite
operation. A log block in the log buffer can be used for one or
several data blocks. So, data block and log block are associated
with each other. The associativity of a log block means the
number of associated data blocks of the log block. If there is an
update request on the data which is already written at the data
block, the new data is written at the associated log block and
the old data in the data block is invalidated. Normal data blocks
are managed by block-level mapping but the log blocks in log
buffer are handled by page-level mapping. Thus, hybrid
mapping requires a small-sized mapping table and invokes
little block copy overhead.

When there is no free space in the log buffer, FTL has to
make new free space by merging a log block with its
associated data blocks. This process is referred to log block
merge and has following sequences. First, it selects a victim
log block to be merged and copies all valid pages in either the
victim log block or its associated data blocks into reserved
free blocks. Then, it modifies the logical block mapping
information by replacing the associated data blocks with the
allocated free blocks. Finally, the victim log block and its
associated data blocks are erased and become free blocks.
Since the log block merge operation requires a large number
of page copies and block erases, it is important to reduce the
number of merge operations to achieve a good performance in
FTL.

There are three types of merge operation: switch merge,
partial merge, and full merge [5]. Switch merge can be
performed only when all pages in the victim log block are
written by in-place scheme. Its merge cost is cheap because it
just requires one erase operation without any page copy
operation. Partial merge is similar to switch merge, but it
requires additional page copy operations. It is also performed

when pages in the victim log block are written by in-place
scheme, but there are free pages in the victim log block. On
the other hand, full merge is performed when pages in the
victim log block are written by out-of-place scheme. The full
merge cost is expensive since all the valid pages in the victim
log block and its associated data blocks should be moved. The
full merge cost of a log block L is calculated as follows:

erasecopy CLACLAN ⋅++⋅⋅)1)(()((1)

where N, A(L), Ccopy, and Cerase represent the number of
physical pages in a flash block, the associativity of the log
block L, the cost of one page copy, and the cost of one block
erase, respectively. In hybrid mapping, therefore, not only
reducing the number of log block merge operations but also
executing switch merge or partial merge rather than expensive
full merge improve the performance.

The number of log block merges and the average cost of
log block merge depend on the associativity of log block.
Therefore, it is important to find the optimal associativity in
order to reduce the log block merge overhead. Although
several association schemes are recently proposed, they use
static schemes which select fixed associativities at the design
time not considering the run-time workload change. In this
paper, we propose an adaptive scheme, called A-SAST, which
adjusts the associativity between data blocks and log blocks
depending on the run-time workload to optimize the log block
merge cost. Experimental results show that our scheme
increases the performance by 5~15% over the previous
scheme which uses the static best associativity selected by
considering the target workload pattern at the design time.

The organization of the remainder of this paper is as
follows: The next section reviews related works. Section 3
provides detailed descriptions of proposed A-SAST scheme.
Then, performance evaluation results of A-SAST are presented
in Section 4. Finally, Section 5 concludes with a summary of
this paper.

II. RELATED WORKS
There are several kinds of log buffer-based FTL schemes,

which can be classified into BAST [5], FAST [6], KAST [7],
and SAST [8, 9] depending on the association mechanism.

In BAST (Block-Associative Sector Translation) scheme, a
log block is used for only one data block at a time as shown in
Fig. 1(a). We assume that one block consist of four pages. If
there is a write request for the block which is not associated
with any allocated log block and there is no free log block, one
of allocated log blocks should be merged to make space for a
new log block. Therefore, there are frequent log block merges
especially when the write pattern is random. Moreover, a log
block is merged with its low utilization. This is called a log
block thrashing problem.

To solve the log block thrashing problem, FAST (Fully-
Associative Sector Translation) scheme was proposed, where
a log block can have the updated pages of any data block as
shown in Fig. 1(b). Therefore, even when the write pattern is
random, there is no frequent log block merges and the log
block utilization is high. However, FAST scheme requires a

large overhead per one log block merge since it can be
associated with many data blocks.

To mitigate disadvantages of both BAST and FAST,
KAST (K-Associative Sector Translation) and SAST (Set-
Associative Sector Translation) schemes were suggested.
KAST is similar to FAST but the maximum associativity of
log block can be configured to any value at design time. Thus
KAST can limit the maximum merge cost to the predefined
value.

2
3
4
5

301

PBN DBG0

6
7

32
36
40
44

33
37
41
45

302

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

DBG1

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

100 101 102 103 104 105 106 107

DBG2

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

108 109 110 111

20
21

303 300 304

LBG0 LBG1 LBG2

PBN

0 1 2 ...

Log Block Group LRU Table

LRU MRU

LBGN

invalid
page

2
3

4
5

304

PBN

6
7

32 36 40 44
33 37 41 45

305

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

100 101 102 103 104 105 106 107

Data Blocks

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

108 109 110 111

20
21

306 300 301

Log Blocks

PBN

invalid
page

302 303

PBN

32 2 6 33
36 3 7 37

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

100 101 102 103 104 105 106 107

Data Blocks

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

108 109 110 111

300 301

Log Blocks

PBN

invalid
page

40
44

4
5

20
21

41
45

302 303

(a) BAST scheme

(b) FAST scheme

(c) SAST scheme (N=4, K=2)

LPN

LPN

LPN

Fig. 1. Hybrid mapping schemes

SAST is a compromise between BAST and FAST. The
SAST scheme groups N number of sequential data blocks into
a data block group (DBG). One DBG can be associated with
only one log block group (LBG) that has K number of log
blocks at maximum. So, N+K number of physical blocks can
be allocated for N number of logical blocks, thus SAST is
referred to N:N+K mapping. If both N and K are 1, the SAST
scheme is same to the BAST scheme. We can make another

extreme case of SAST by grouping all data blocks into one
group and it is equal to FAST. A log block of an LBG can
have the updated pages of any data block of the associated
DBG.

Fig. 1(c) illustrates the SAST scheme that uses 4:4+2
mapping. One data block group consists of four sequential data
blocks and one log block group consists of two log blocks. In
Fig. 1(c), LBG0 and LBG1 are associated with DBG0 and DBG1,
respectively. For example, the physical blocks with PBN
(physical block number) 100, 101, 102, and 103 are allocated
as data blocks for DBG0, and the physical blocks with PBN
301 and 302 compose LBG0 which is associated with DBG0.
When the pages with the logical page number (LPN) 2, 3, 4, 5,
6, and 7 are updated, they are written at the log blocks in LBG0
and the old pages in DBG0 are invalidated.

When there is no free log block to be used for a DBG, the
least recently used (LRU) log block group is selected for a
victim to be merged. Generally, since the LRU log block has
many invalid pages and there is little possibility to be updated,
it is profitable to select the LRU log block in order to reduce
the log block merge cost. For that purpose, the SAST scheme
maintains the log block group LRU table.

In SAST, the values of N and K have a significant influence
on the FTL performance and the optimal values for N and K
depend on the I/O request pattern. We can find the optimal
values by exhaustive simulation for target I/O workloads or
workload analysis technique proposed in SAST [8]. To find the
proper value for N, the workload analysis technique examines
the request density of a logical block, which is the ratio of the
number of requests accessed in the logical block to the total
number of requests. If the request density is high, it means
there is a high spatial locality for the logical block. So, a large
value should be used for N. The proper value for K is
determined by measuring the temporal locality. If there are
many updates, SAST uses a large value for K.

However, the optimal values of N and K are changed during
the run time and they are different depending on the logical
address since the I/O pattern is varied according to the
execution time and the logical address. But, the values of N and
K are equally applied throughout all the address space and the
values are fixed during the execution time in the SAST scheme.
Moreover, it is difficult to know the run-time workload for
analysis at design time. Therefore, it is necessary to develop an
adaptive scheme which can change the sizes of DBG and LBG
depending on the run-time I/O workload.

III. ADAPTIVE SAST SCHEME
We propose an adaptive SAST (A-SAST) scheme which

can solve the problems of SAST scheme. We have made three
kinds of improvements on SAST as follows:

 First, the selection policy for victim log block is
improved.

 Second, we make it possible to adjust the size of each
DBG to the optimal value according to I/O pattern by
merging two DBGs into one DBG or splitting one
DBG into two DBGs at run time.

 Third, we eliminate the constraint for the maximum
number of log blocks in LBG, i.e., the value of K. So,
an LBG can have any number of log blocks (K=∞)
though the total number of log blocks is fixed.

A. Victim Log Block Selection
In the original SAST scheme, the LRU table is maintained

at the log block group level. So, the accuracy is low because a
write request for a log block changes the LRU levels of all the
log blocks in the corresponding LBG.

 For instance, in Fig. 1, when write requests for several
logical pages occur as the order of (32, 36, 40, 44, 2, 3, 4, 5, 6,
7, 20, 21, 33, 37, 41, 45), the log block at PBN 300 is the
oldest one. However, the log block at PBN 301 is selected as a
victim log block by the group-level LRU policy.

A-SAST uses the block-level LRU policy. In addition, it
considers the merge cost as well as the LRU level when
selecting a victim log block. Fig. 2 shows an example of the
block-level LRU table of A-SAST. The victim log block is
selected within the victim log block region which includes M
number of little-recently-used log blocks. Among the log
blocks in the victim region, the log block with the lowest
merge cost is selected as a victim log block. The merge cost
can be estimated using Equation (1).

Fig. 2. LRU table in A-SAST scheme.

In Fig. 2, the PBN 300 is the LRU log block, but PBN 302
is selected as a victim log block because it has the lowest
merge cost among log blocks in the victim log block region.
Because A(L) of PBN 300 is 4, we should copy 16 pages and
erase 5 blocks to merge the log block. On the other hand, A(L)
of PBN 302 is 1. Even though a log block at the outside of
victim region has a lower merge cost than all the log blocks in
the victim region, it is better to select one within the victim
region to reduce the merge cost. This is because the pages in a
log block which is recently used have the high possibility to be
invalidated by the future write requests. Since a log block in
the victim window that has the highest associativity may not
be selected permanently due to its high merge cost, A-SAST
selects the log block if it has remained in the victim region too
long time. Using such policy, we can consider both the log
block LRU level and the merge cost.

In A-SAST, an LBG can have any number of log blocks as
long as the total number of log blocks is smaller than the total
allowed log buffer size. So, we do not need to find the proper
value of K. Instead, the block-level LRU policy for log buffer
automatically controls the proper number of log blocks. That is,
if a DBG needs a large number of log blocks due to its high
temporal locality, the victim selection policy takes a log block
from the DBG with a low temporal locality and gives the log
block to the DBG with a high temporal locality.

B. The effect of Data Block Group Size
The optimal size of a DBG is related to the log block

utilization and the log block merge cost. Generally, as we
increase the size of data block group, the log block utilization
increases because several data blocks can share a log block.
But, the log block merge cost also increases because the
associativity of a log block increases. Therefore, if an LBG
has a low utilization, which means that the associated DBG

cannot utilize log blocks effectively, it is better to use a larger
value for the size of corresponding DBG since it has a low
request density. If an LBG has too high associativity, which
increases the average merge cost, a smaller value is proper to
the size of corresponding DBG since it has a random request
pattern.

C. Data Block Group Reorganization
A-SAST adjusts the size of each DBG to adapt the I/O

pattern of the corresponding address range and the I/O pattern
change at run time. The adjustment is performed by merging
or splitting data groups.

For example, in Fig. 1, LBG0 and LBG1 consume small
numbers of pages thus have low utilizations. This is because
there were little updates for DBG0 and DBG1. In this case, if
we create a new larger data block group by merging DBG0 and
DBG1 and assign one log block group to the merged DBG, the
log block utilization will increase. On the other hand, the
LBG2 has a high utilization but the merge cost for each log
block is high because each log block is associated with several
data blocks. This means that the write pattern for DBG2 is
quite random. If we split DBG2 into two small data groups, the
merge cost for each log block can be reduced.

Fig. 3 shows how A-SAST changes the block groups by
merging and splitting for the example in Fig. 1. By merging
DBG0 and DBG1, a new DBG which consists of 8 data blocks
is created and it requires only two log blocks. As a result, it
increases the log block utilization and saves one log block.
Merging data block groups is performed when the following
conditions are satisfied for two consecutive DBGs, DBGi and
DBGj.

αφ
<

)(
))((

itotal

iused

DBGP
DBGP and α

φ
<

)(
))((

jtotal

jused

DBGP
DBGP and

βφφ <∪∈∀)(),()(, LADBGDBGLL ji

where φ(g), Pused, and Ptotal are the associated log block group
of data block group g, the number of used pages and the
number of allocated pages for DBG or LBG, respectively. The
first condition checks the utilizations of two LBGs and the
second condition checks the associativities of all log blocks in
the LBGs. The second condition prevents DBGs from being
merged when they have random write request patterns.

The group merge condition is examined for the DBG whose
one of associated log blocks is selected as a victim log block.
By merging data block groups which have small number of
updates and sequential write patterns, we can use the log blocks
more efficiently.

In Fig. 3, DBG2 is split into two data block groups. If write
requests for each page occur as the order of (32, 36, 40, 44, 33,
37, 41, 45), the merge cost of each log block is reduced by
half. Like this, when the log block association is high due to
many random updates for a certain group, the performance
will be enhanced by splitting the DBG. The condition for
DBG splitting is as follows:

A(L) > γ

where γ is the split threshold and L is the lastly written log
block of the log block group. We check the condition when we
should allocate a new log block for the DBG.

The optimal values of α, β, and γ depend on the workload
pattern. We provide the experiment results to explore the
optimal values in Section IV.

Fig. 3. Adjusted groups in A-SAST.

IV. EXPERIMENTS
Our proposed schemes are evaluated using simulation.

Three I/O workloads are used: PCtrace, Iozone-4, and Iozone-
80. PCtrace workload is collected in the Windows system by
executing the applications such as the word processor, moving
picture, web browsing, games, and so on. Iozone-4 and Iozone-
80 are collected using Iozone benchmark program [10]. While
Iozone-4 generates 1~4 KB write requests thus has a random
I/O pattern, Iozone-80 generates 2~80 KB write requests thus
has both random and sequential I/O requests. We assume that
each block of NAND flash memory is composed of 64 pages
and the page size is 2 KB. The number of total log blocks is
256. The timing parameters for NAND flash operations are
based on [11].

We first observed the irregular behavior of log block
merges under the original SAST scheme. Fig. 4 shows the total
number of log block merges for each data block group under
the SAST scheme. From the results, we can know that the
number of log block merges significantly different depending
on the address space. Therefore, we can know that the proper
values for the group size are different depending on the address
space.

We then compared the performance improvement of A-
SAST over SAST. Fig. 5 shows the total flash I/O execution
times under the original SAST (SAST), SAST with block-
level LRU victim selection policy (SAST-V), SAST with
group merge/split technique without block-level LRU victim
selection policy (SAST-G), and our proposed A-SAST (A-
SAST). SAST-V and SAST-G are experimented to examine
the effects of two proposed techniques independently. The X-
axis shows the initial value of data block group size N. The
size of log block group K is set to N/2 at the SAST scheme.
While SAST uses the value for all data block groups and does
not change it during the run time, A-SAST adapts the value
depending on the characteristic of I/O workload.

Under SAST, the performance changes significantly
depending on the value of N. In addition, the optimal values
for N are different depending on benchmarks. While the
optimal value is 8 for PCtrace, it is 16 for Iozone benchmarks.

Fig. 4. Log block merge counts of logical block group in SAST. (N=4, K=2)

(c) Iozone-80(a) PCtrace (b) Iozone-4

23000

24000

25000

26000

27000

28000

29000

30000

2 4 8 16 32 64 128 256 (N)

SAST A-SAST

SAST-V SAST-G

24000

26000

28000

30000

32000

34000

2 4 8 16 32 64 128 256 (N)

SAST A-SAST

SAST-V SAST-G

16000

17000

18000

19000

20000

21000

22000

23000

2 4 8 16 32 64 128 256 (N)

SAST A-SAST

SAST-V SAST-G

Fig. 5. Comparison of I/O execution time.

(a) PCtrace (b) Iozone-4 (c) Iozone-80

0

100

200

300

400

500

600

700

2 4 8 16 32 64 128 256 (N)

#
of

co
un

t
(x

10
00

)

SAST

A-SAST

0

50

100

150

200

250

300

av
er

ag
e

#
of

pa
ge

co
pi

es

SAST
A-SAST

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 128 256 (N)

#
of

co
un

t
(x

10
00

)

SAST

A-SAST

av
er

ag
e

#
of

pa
ge

co
pi

es

0

200

400

600

800

SAST
A-SAST

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 128 256 (N)

#
of

co
un

t
(x

10
00

)

SAST

A-SAST

av
er

ag
e

#
of

pa
ge

co
pi

es

0

50

100

150

200

250

SAST
A-SAST

Fig. 6. Comparison of number of log block merges.

One important observation is that the performance of A-
SAST has no significant change depending on the value of N.
This is because A-SAST changes the data block group size to
the optimal value even though the initial value is far from the
optimal data block group size. Even though we use the static
optimal value for N in SAST, A-SAST shows better
performances. A-SAST efficiently improves the performances
by 5%, 8%, and 15% compared to SAST under the best values
of N for PCtrace, Iozone-4, and Iozone-80, respectively.

A-SAST shows significant improvements for the workloads
which have both sequential and random requests (Iozone-80)
rather than the random workloads (PCtrace and Iozone-4).
This is because A-SAST can handle effectively the irregularity
and the dynamic change of workload.

SAST-G improves the performance significantly especially
when the initial value of N is too small or too large. The effect
of SAST-V is significant even when the initial value of N is
same to the static optimal value. If we use a small value for N,
the group-level LRU and block-level LRU have similar
behaviors since the log group size is small. Therefore, SAST-
V and SAST show similar performances when the group size

is small. Since the block-level LRU technique finds a better
victim DBG for group merge and split, it elevates the
performance of group size adjustments.

Fig. 6 shows the numbers of log block merges (bar graph)
and the average merge costs (line graph) under SAST and A-
SAST. When the initial value of N is small, SAST has a low
merge cost due to its low log block utilization but generates a
large number of log block merges. However, A-SAST reduces
the number of log block merge count because the log block
utilization is elevated by data block group merge operation.
When the initial value of N is large, SAST has a high merge
cost due to high log block associativity. A-SAST reduces the
average log block merge cost by performing data group split.

Fig. 7 shows the change of data block group size
distribution at run time under the A-SAST scheme. We
observed for Iozone-4 by using two different initial values of
N. When the initial value of N is 4, the number of data block
groups with N larger than 4 increases due to many data block
group merges. By contrast, when the value is 64, the number
of data block groups with N smaller than 64 increases due to
many data block group splits. Therefore, two experiments that

use different initial values for N show similar group size
distributions finally. Therefore, we can say that A-SAST can
find the optimal group sizes irrespective of the initial value of
N. A-SAST maintains diverse group sizes at a time suitable to
each address space. In addition, the group size distributions
are changed dynamically at run time. A-SAST repeats the
group merge and split as the workload pattern varies. This
means that A-SAST can adapt the workload change
effectively.

Finally, we examined the effects of parameters related to
group merge/split conditions. The proper values for α, β and γ
are observed to be similar at different benchmarks. Fig. 8(a)
shows the performance of the PCtrace with varying the values
of β and γ. The value of α is fixed to 0.4. The possible ranges
of β and γ are 0~64 since it is compared to the associativity of
log block. As we use a smaller value for β and a larger value
for γ, the group merge hardly occurs thus there will be many
small data groups. We can get the best performances when β
is 4~16 and γ is 4~8. Fig. 8(b) shows the effect of parameter α
when β and γ is 4 and 8, respectively. The best performance is
when α is 0.2~0.4.

V. CONCLUSION

In this paper, we proposed a novel FTL scheme to
proficiently deal with irregular I/O patterns in NAND flash
memory. While the previous FTL schemes do not consider the
variations of I/O workload depending on the execution time
and the address space thus use the fixed log block
associativities determined at the design time, the proposed A-
SAST scheme finds the optimal value for the associativity of
each address space and adjusts dynamically it during the run
time. As a result, we can reduce the log block merge overhead
of FTL significantly.

Fig. 7. The changes of group sizes.

se
c

β

γ

se
c

α
(b) parameter α

(a) parameters β and γ (PCtrace)

Fig. 8. The effect of parameters.

REFERENCES
[1] G. Lawton, “Improved flash memory grows in popularity,” IEEE

Computer, vol. 39, no. 1, 2006, pp. 16-18.
[2] Intel Corporation. “Understanding the flash translation layer (FTL)

specification,” http://developer.intel.com/.
[3] A. Ban. Flash file system optimized for page-mode flash technologies.

US Patent 5,937,425, Aug. 10, 1999.
[4] A. Ban. Flash file system. US Patent 5,404,485, Apr. 4, 1995.
[5] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. "A space-efficient

flash translation layer for compact flash systems," IEEE Transactions on
Consumer Electronics, vol. 48, no. 2, 2002, pp. 366-375.

[6] S. W. Lee, D. J. Park, T. S. Chung, W. K. Choi, D. H. Lee, S. W. Park,
and H. J. Song. "A log buffer based flash translation layer using fully
associative sector translation," ACM Transactions on Embedded
Computing Systems, vol. 6, no. 3, 2007.

[7] H. Cho, D. Shin and Y. Eom. “KAST: K-Associative Sector Translation
for NAND Flash Memory in Real-Time Systems,” Proc. of Design,
Automation and Test in Europe (DATE’09), pp. 507-512, 2009.

[8] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, "A
reconfigurable FTL architecture for NAND flash-based applications,"
ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4,
Article 38, 2008.

[9] J. U. Kang, H. Jo, J. S. Kim, and J. Lee. "A superblock-based flash
translation layer for NAND flash memory," in Proc. International
Conference on Embedded Software, 2006, pp. 161-170.

[10] Iozone Filesystem Benchmark, http://www.iozone.org
[11] Samsung Electronics, NAND Flash Memory Datasheet,

http://www.samsung.com/Products/Semiconductor/NANDFlash/SLC_L
argeBlock/16Gbit/K9KAG08U0M/ds_k9xxg08uxm_rev10.pdf.

