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ABSTRACT
With continuing improvements in both the price and the capac-
ity, flash memory-based storage devices are becoming a viable so-
lution for satisfying high-performance storage demands of desk-
top systems as well as mobile embedded systems. Because of the
erase-before-write characteristic of flash memory, a flash memory-
based storage system requires a garbage collection, which often
introduces large performance degradation due to a large number of
page migrations and block erase operations. In order to improve the
overall I/O performance of the flash-based storage systems, there-
fore, it is important to support the garbage collection efficiently. In
this paper, we propose a novel garbage collection scheme, called
buffer-aware garbage collection (BA-GC), for flash memory-based
storage systems. In implementing two main steps of the garbage
collection module, the block merge step and the victim block se-
lection step, the proposed BA-GC scheme takes into account the
contents of a buffer cache (e.g., a page cache and a disk buffer)
which is used to enhance the I/O performance of storage systems.
The buffer-aware block merge (BA-BM) scheme reduces the num-
ber of unnecessary page migrations by enforcing a dirty page evic-
tion in the buffer cache during the garbage collection. The buffer-
aware victim block selection (BA-VBS) scheme, on the other hand,
selects a victim block so that the overall I/O performance can be
maximized. Our experimental results show that the proposed BA-
GC technique improves the overall I/O performance up to 45% over
existing buffer-unaware schemes.

1. INTRODUCTION
Flash memory has been widely used as a storage device for mo-

bile embedded systems because of its low-power consumption, non-
volatility, high random access performance and high mobility. For
the past several years, there has been a significant growth in the
NAND flash market due to the exponential growth in MP3 players
and digital cameras which require a large amount of data storage.
Recently, solid-state disks (SSDs), which are based on NAND flash
memory, are quickly expanding their market share in the general-
purpose storage market, replacing hard disks [1].

Flash memory has unique operation features which are not found
in other storage devices such as magnetic hard disks. First, flash
memory is based on the “erase-before-write" architecture. It means
that flash media must be erased before it is to be reused for new
data. Second feature is that the unit sizes of erase and read/write
operations are asymmetric. While flash memory is erased by the
unit of block, read/write operations are performed by the smaller
unit of page. A single block is composed of multiple pages.

Due to these two features, a special software called flash transla-
tion layer (FTL) is usually employed, which makes flash memory
fully emulates block devices. Although several FTL schemes have
been proposed, log buffer-based FTL schemes [2, 3, 4] are widely
used in many flash memory applications since they show a good
performance while requiring a relatively low system resource.

The basic concept of log buffer-based FTLs is quite similar to
that of LFS [5]. In this scheme, all the physical blocks are separated
between log blocks and data blocks. While log blocks are used for

storing update data temporally, data blocks are used for ordinary
storage space. Therefore, when an update request is sent to FTL,
the data is first written into a log block and the corresponding old
data in a data block is invalidated. However, when the log blocks
are full, FTL should do a garbage collection to make free space
for new data. The garbage collector first selects a victim log block
to be erased. Before erasing the victim log block, all valid pages
related to the victim log block should migrate to new data blocks.
Especially, this page migration step is called a block merge since
valid pages in both data blocks and log blocks are merged into new
data blocks. Therefore, we can divide the garbage collection into
two steps, the victim block selection and the block merge.

Due to the high erase and write costs of flash memory, the over-
all performance of flash memory systems heavily depends on the
number of erase and write operations. Especially, since the garbage
collection incurs many erase and write operations, the garbage col-
lection overhead accounts for a significant portion of the I/O exe-
cution time. Therefore, most existing FTLs were focusing on re-
ducing erase and write operations during the garbage collection.

In this paper, we propose a novel garbage collection scheme,
called buffer-aware garbage collection (BA-GC). The main differ-
ence of the BA-GC scheme over existing garbage collection algo-
rithms is that the BA-GC scheme takes into account the contents
of a buffer cache1 during the garbage collection steps. By exploit-
ing the contents of the buffer cache, better decisions can be made
during the garbage collection, thus improving the performance of
NAND flash-based storage systems. For the block merge step, we
propose a buffer-aware block merge (BA-BM) technique. The main
novelty of the BA-BM scheme is that it can avoid many unneces-
sary page migrations (which are required by existing techniques)
by examining the contents of the buffer cache. For the victim block
selection step, we propose a buffer-aware victim block selection
(BA-VBS) technique. The BA-VBS scheme selects a victim block
by considering a temporal locality of pages in the buffer cache so
that the overall I/O performance can be maximized.

Experimental results based on a trace-driven simulator show that
the proposed BA-GC scheme significantly improves the efficiency
of the garbage collection, and reduces the overall I/O execution
times by 10%-45% over existing buffer-unaware garbage collec-
tion schemes for various benchmark programs such as Iozone, Post-
mark, Bonnie++ and realistic workloads.

The rest of the paper is organized as follows. In Section 2, we
briefly explain the related works. Section 3 presents the motivation
of the buffer-aware garbage collection. Sections 4 and 5 describe
the buffer-aware block merge technique and the buffer-aware vic-
tim block selection technique, respectively. Experimental results
are presented in Section 6. Section 7 concludes with a summary
and future works.

2. RELATED WORKS
1In order to improve the performance of a file system or a storage
device, various storage buffers (e.g., a page cache and a disk buffer)
are used. In this paper, we call such storage buffers as the buffer
caches.
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Figure 1: An example of unnecessary page migrations.

The garbage collection techniques for FTL are seriously stud-
ied. Especially, in log buffer-based FTLs, there are three kinds of
approaches depending on the block association policy, i.e., block-
associative sector translation (BAST) [2], fully-associative sector
translation (FAST) [3] and set-associative sector translation (SAST) [4].
The block association policy means how many data blocks can
share a log block at a time. In the BAST scheme, a log block is
used for only one data block. In the FAST scheme, a log block
can be used for several data blocks. In the SAST scheme, a set
of log blocks can be used for a set of data blocks. Generally, a
round robin policy is used in selecting a victim log block in [2, 3].
FAST provides a quite efficient garbage collection for the random
write access pattern by increasing the number of data blocks shar-
ing for one log block. The superblock scheme [4], one example of
SAST, uses a utilization-based policy which selects a block with the
smallest number of valid pages. It also exploits the locality of write
accesses by combining several blocks into a superblock. All these
existing schemes are quite different from our proposed scheme in
that they have no consideration on the buffer cache.

There are not many researches on the buffer cache in flash mem-
ory systems. Jo et al. [6] proposed a flash-aware buffer manage-
ment scheme. Using a block-level buffer replacement which evicts
all the pages of a block at a time, it reduced the garbage collection
cost. Park et al. [7] proposed a clean-first LRU (CF-LRU) replace-
ment policy which delays the eviction of a dirty page in the buffer
cache to reduce the write requests to flash memory. Recently, Kim
et al. [8] presented a buffer management scheme especially for im-
proving the performance of random writes. This scheme also uses
the block-level buffer replacement like [6], but it tries to enhance
the sequentiality of flash writes when evicting a victim block in or-
der to reduce the garbage collection overhead. These three schemes
handled only the buffer cache management, but proposed no tech-
niques on the garbage collection and did consider neither the un-
necessary page migration nor the victim log block selection.

3. MOTIVATION
In this section, we explain the main benefits of making a garbage

collector buffer-aware using a simple scenario. When the garbage
collector selects a victim block and reclaims the block, a large num-
ber of page migrations are necessary. One of our main observations
is that many of these page migrations can be avoided if we refer to
the contents of the buffer cache.

Figure 1 shows an example in the FAST scheme [3]. There are a
buffer cache and flash memory blocks. The buffer cache has eight
pages and two of them (p2 and p4) are dirty pages. B0 and B1

are data blocks, and L0 is a log block. Each block consists of four
pages. While the block-level mapping is used for the data blocks,

the page-level mapping is used for the log blocks. Due to the up-
dates on the pages p0, p1, p6 and p7, the log block L0 has new up-
dated pages, thus making original pages in B0 and B1 invalidated.
If the garbage collector selects the log block L0 as a victim block,
new data blocksN0 andN1 are allocated and the valid pages inB0,
B1 and L0 are moved to N0 and N1. After the page migration, we
can erase the blocks B0, B1 and L0.

Under this scenario, the valid pages p2 and p4 in the data blocks
B0 andB1 are moved toN0 andN1 to eraseB0 andB1. However,
if we can examine the buffer cache, we know that moving p2 and
p4 is unnecessary because they will be invalidated shortly when the
dirty pages in the buffer cache are evicted into flash memory. If
we can move p2 and p4 from the buffer cache instead of B0 and
B1, we fill the new data blocks, N0 and N1, with up-to-date data.
Therefore, we can know that an FTL should be buffer-aware to
prevent unnecessary page migrations.

By using the buffer-aware approach, we can get two kinds of
benefits. First, we can reduce the number of page write requests
generated by the evicted dirty pages. Since the modified data of
p2 and p4 are written to new data blocks of flash memory at the
garbage collection time, the pages p2 and p4 in the buffer cache are
changed into clean state. Therefore, when the pages p2 and p4 are
evicted from the buffer cache by the buffer replacement policy, they
do not generate write requests to flash memory. Second, we can
eliminate the block merge which will occur in the near future. For
instance, if the pages p2 and p4 are moved from the blocks B0 and
B1 instead of the buffer cache, the dirty pages in the buffer cache
will be written in the log block (for example, L1) shortly. Once
the pages are written into the log block L1, they should be merged
with the corresponding data blocks, N0 andN1, at the garbage col-
lection time when all the empty pages in log blocks are exhausted.
However, by directly writing the pages p2 and p4 from the buffer
cache to the data blocks N0 and N1 at the garbage collection time
of L0, the block merge for L1 can be avoided.

We have observed that 5%-50% of total page migrations are un-
necessary depending on characteristics of workloads. It means that
the buffer-aware approach can significantly reduce the garbage col-
lection overhead. Especially, since the page migration during the
garbage collection is inevitable to all kinds of FTLs, eliminating
the unnecessary page migration will be quite beneficial to all FTL
schemes regardless of their block association policies. In this pa-
per, we evaluate the proposed BA-GC scheme under FAST FTL [3]
because it is the most representative FTL scheme.

For the garbage collector to be buffer-aware, it should be pos-
sible that FTL accesses the buffer cache. When flash memory is
used for the removable storage device using USB or ATA interface,
the FTL resides in the external storage device but the page cache
is managed by the host system. However, many CE devices such
as mobile phones and MP3 players have NAND flash memory as
embedded storage. In this case, the page cache manager and the
FTL can share their information because both of them are executed
at the same processor. If the page cache manager can notify the
FTL of the dirty page information, we can prevent the unnecessary
page migrations. SSD is also a good target. Generally, there is
an SDRAM buffer exploited as a disk buffer inside SSD [9], and
a controller which manages all of the address mapping, garbage
collection and buffer management. Therefore, the garbage collec-
tion module can access the disk buffer state. So, our buffer-aware
garbage collection technique can be targeted for the embedded flash
storage and the solid-state disk.

4. BUFFER-AWARE BLOCK MERGE
In order to prevent the unnecessary page migrations, the pro-

posed techniques refer to contents of the buffer cache during the
block merge. If there are the corresponding dirty pages in the buffer
cache for pages to be moved by the block merge at the garbage col-
lection time, we can take two kinds of approaches for an efficient



1: Buffer_Aware_Block_Merge(Li) {
2: for Dj ∈ A(Li) {
3: get the new data block Dnew

j from the free block list;
4: for pk ∈ Dj {
5: if pk exists in DPL {
6: move pk from DPL into Dnew

j ;
7: remove pk from DPL;
8: } else {
9: if pk ∈ Dvalid

j

10: move pk from Dj into Dnew
j ;

11: else { /∗ pk is invalid ∗/
12: find log block Lj , which has a valid pk , from L(Dj);
13: move pk from Lj into Dnew

j ;
14: }
15: }
16: invalidate pk in either Lj or Dj ;
17: }
18: erase the data block Dj ;
19: insert the erased block Dj into the free block list;
20: }
21: erase the log block Li;
22: insert the erased block Li into the free block list;
23: } /∗ end of function ∗/

Figure 2: The buffer-aware block merge algorithm.

FTL. First is to move the up-to-date pages in the buffer cache into
new allocated data blocks. Second, if the corresponding pages will
not be evicted to flash memory in the near future (for example, they
have high temporal locality), it is more beneficial to find another
victim log block, which is related to pages to be evicted soon. The
former is related to the block merge step and the latter is related to
the victim block selection step of the garbage collection. In this sec-
tion, we first propose a buffer-aware block merge (BA-BM) scheme
which eliminates the unnecessary page migrations by fetching dirty
pages from the buffer cache during the block merge. The buffer-
aware victim block selection (BA-VBS) technique is presented in
Section 5.

If the buffer cache is used for a read cache or a prefetch buffer as
well as a write buffer, it is more efficient to manage only the infor-
mation about the dirty pages. Therefore, we use the dirty page list
(DPL) which has the addresses of dirty pages in the order of writ-
ten time. Figure 2 shows the algorithm of the buffer-aware block
merge. Before the block merge, we should identify the set of as-
sociated data blocks, A(Li), of a victim log block Li. A(Li) is
composed of all data blocks which have the corresponding invalid
pages for valid pages in the log block Li. We can represent A(Li)
formally as follows:

A(Li) = {Dj |∃pk s.t. pk ∈ Lvalid
i ∧ pk ∈ Dinvalid

j }, (1)

whereDj means a block and pk means a page. Dinvalid
j andLvalid

i

denote the set of invalid pages of Dj and the set of valid pages of
Li, respectively. For example, A(L0) in Figure 1 is {B0, B1}.

For each page, pk, in an associated data blockDj in A(Li), DPL
is examined. If the page exists in DPL, the dirty page is moved
from the buffer cache into the new data block Dnew

j . Otherwise,
the page is moved from Dj or from another log block Lj if pk in
Dj is invalidated. In order to find Lj , we need to identify the set of
associated log blocks, L(Dj), of an associated data blockDj . This
is because one data block can be associated with several log blocks.
L(Dj) is composed of all log blocks which have the corresponding
valid pages for invalid pages in the data block Dj . Therefore, we
can represent L(Dj) formally as follows:

L(Dj) = {Lj |∃pk s.t. pk ∈ Dinvalid
j ∧ pk ∈ Lvalid

j }, (2)

where Dinvalid
j and Lvalid

j denote the set of invalid pages of Dj

and the set of valid pages of Lj , respectively. For example, L(B0)

in Figure 1 is {L0}. After the migration, the dirty page in the buffer
cache is changed into a clean state and removed from DPL. The
data block Dj and the log block Li are erased and moved into the
free block list for future use.

To know the effect of buffer-aware block merge, consider the
block merge cost for the victim log block Li. In the buffer-unaware
block merge (BU-BM), we can represent the block merge cost for
Li, δBU

merge(Li), as follows:

δBU
merge(Li) = |M(Li)| · Cf→f ,

where M(Li) =
⋃

bj∈A(Li)

(Md(bj) ∪
⋃

bk∈L(bj)

Ml(bj , bk)),

Md(bj) = {pk|pk ∈ bvalid
j },

Ml(bj , bk) = {pk|pk ∈ binvalid
j ∧ pk ∈ bvalid

k },

(3)

where bj is an associated data block and bk is an associated log
block. M(Li) is the set of valid pages to be moved when Li is
selected as a victim log block. For example, M(L0) in Figure 1 is
{p0, p1, p2, p3, p4, p5, p6, p7}. Cf→f denotes a page migration
cost between flash memory blocks. Cf→f can be represented as
Cr + Cp ignoring the computation cost, where Cr and Cp are the
read cost and the program cost for a flash memory page.

In the buffer-aware block merge, the block merge cost for Li,
δBA

merge(Li), can be represented as follows:

δBA
merge(Li) = |B(Li)| · Cb→f + |F(Li)| · Cf→f ,

where B(Li) =
⋃

bj∈A(Li)

B(bj),

F(Li) =
⋃

bj∈A(Li)

(Fd(bj) ∪
⋃

bk∈L(bj)

Fl(bj , bk)),

where B(bj) = {pk|pk ∈ DPL ∧ pk ∈ bj},

Fd(bj) = {pk|pk /∈ DPL ∧ pk ∈ bvalid
j },

Fl(bj , bk) = {pk|pk /∈ DPL ∧ pk ∈ binvalid
j ∧ pk ∈ bvalid

k },
(4)

where F(Li) is the set of valid pages to be moved from flash mem-
ory when Li is selected as a victim log block. B(Li) is the set of
valid pages to be moved from the buffer cache. For example, F(L0)
and B(L0) in Figure 1 are {p0, p1, p3, p5, p6, p7} and {p2, p4},
respectively. Cb→f denotes a page migration cost from the buffer
cache to flash memory block. Cb→f can be represented as Cb +Cp

ignoring the computation cost, where Cb is the read cost for a page
in the buffer cache. Generally, Cb→f is smaller than Cf→f since
the flash read cost is larger than the volatile memory (SDRAM)
read cost. So, as there are more dirty pages in the buffer cache to
replace the unnecessary page migrations, |B(Li)| increases and the
block merge cost decreases.

While the |B(Li)| number of dirty pages in DPL should be writ-
ten to log blocks after the garbage collection under BU-BM, the
pages will not be written to log blocks under BA-BM unless they
are changed again into dirty states after it is changed into the clean
state by BA-BM. Therefore, we can say that BA-BM reduces write
requests to the log block. So, it is necessary to investigate the po-
tential benefits, δBA

benefit(Li), of BA-BM, which represents the gain
from the reduced number of write requests. When we denote the
dirty page eviction cost after the garbage collection for Li under
BU-BM and under BA-BM as δBU

evict(Li) and δBA
evict(Li) respec-

tively, the δBA
benefit(Li) can be denoted by δBU

evict(Li)− δBA
evict(Li).

If we assume that all the pages changed into clean state by BA-BM
are not changed again into dirty state before they are evicted from
the buffer cache, we can say that δBA

benefit(Li)=|B(Li)| · Cp.
Moreover, there is an additional benefit of BA-BM. After dirty

pages are written into log blocks, these log blocks should be even-
tually merged with the corresponding data blocks. Since BA-BM
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reduces the number of dirty page evictions to log blocks, it has the
benefit of reducing the block merge cost. Therefore, we can express
this additional benefit as (δBU

evict(Li) − δBA
evict(Li)) · α where α is

the weight value which represents the block merge cost to be in-
curred by one dirty page eviction. The α value can be expressed as
(Cp +Cr) /Cp because one dirty page eviction typically incurs one
flash read cost and one flash program cost during the block merge.
Therefore, we can express the potential benefits, δBA

benefit(Li), as
follows:

δBA
benefit(Li) =(δBU

evict(Li)− δBA
evict(Li)) · (1 + α). (5)

Finally, we can represent the gain of the buffer-aware block merge
technique over the buffer-unaware block merge technique assuming
that δBU

evict(Li)− δBA
evict(Li) = |B(Li)| · Cp.

δBU
merge(Li)− δBA

merge(Li) + δBA
benefit(Li)

= |M(Li)| · Cf→f − |F(Li)| · Cf→f − |B(Li)| · Cb→f +

|B(Li)| · Cp · (1 + α)

= |B(Li)| · (Cr − Cb + Cp · (1 + α)).

(6)

Eq. (6) shows the maximum gain of the buffer-aware block merge
since we assume that all the pages changed into clean state by BA-
BM are not changed again into dirty state before they are evicted
from the buffer cache. However, some pages will be changed into
dirty state before their evictions, and then the benefit of BA-BM
will be decreased. This will be discussed in the following section.

5. BUFFER-AWARE VICTIM BLOCK
SELECTION

5.1 Motivation
To reduce the I/O cost and maximize the flash memory life time,

the previous studies considered the number of valid pages or the
wear-level of a block when selecting the victim block. For the
buffer-aware garbage collection, the merge cost of BA-BM for a
candidate victim block should be considered in the victim block
selection step. Especially, we should consider the potential bene-
fits of BA-BM to select the optimum victim. Otherwise, the victim
block selection cannot select the optimum victim block which will
produce the minimum I/O cost. The benefit of BA-BM will depend
on the characteristics of the dirty pages in the buffer cache.

Consider the snapshot of flash memory and the buffer cache
shown in Figure 3. In this example, the buffer cache has eight
pages and five of them (i.e., p1, p2, p3, p6 and p7) are dirty pages.
While the pages p1, p2 and p3 are hot pages, i.e., will be up-
dated frequently, the pages p6 and p7 are cold pages, i.e., will
not be updated before they are evicted from the buffer cache by
the replacement policy. There are two data blocks, B0 and B1,
and two log blocks, L0 and L1. If the log block L0 is selected
as a victim by the garbage collector, the block merge cost under

BA-BM, δBA
merge(L0) = 1 · Cf→f + 3 · Cb→f . If the log block

L1 is selected as a victim, the block merge cost, δBA
merge(L1) =

2 ·Cf→f + 2 ·Cb→f . Therefore, selecting the block L0 as a victim
seems to be better assuming Cb→f < Cf→f .

However, migrating the pages p1, p2, and p3 from the buffer
cache to flash memory is useless because they will be updated
shortly and become dirty pages. Since the dirty pages will be even-
tually written to flash memory, they will incur the write requests
on the three flash memory pages. Then, the benefit of BA-BM,
δBA

benefit(L0) becomes 0. On the other hand, if the log block L1 is
selected as a victim, the pages p6 and p7 will not incur write re-
quests when they are evicted from the buffer cache since the pages
will be clean. Then, the benefit of BA-BM, δBA

benefit(L1), becomes
2·Cp ·(1+α). Consequently, regarding the reduction of the overall
garbage collection cost, choosing the block L1 as a victim is more
beneficial.

5.2 Locality-aware victim block selection
In the proposed buffer-aware victim block selection, we use the

garbage collection cost of a log block Li, ∆(Li), as a priority in
selecting a victim log block; the log block with the lowest cost is
selected. The garbage collection cost consists of the block merge
cost, the block erase cost and the potential benefit. Since we should
select the log block with the lowest block merge cost, the lowest
block erase cost and the highest potential benefits, we define the
∆(Li) as follows:

∆(Li) = δBA
merge(Li) + δerase(Li)− δBA

benefit(Li)

where δerase(Li) = (|A(Li)|+ 1) · Ce,
(7)

where Ce stands for the erase cost of a flash block.
In order to know the potential benefits of the buffer-aware block

merge, we should estimate the exact value of (δBU
evict(Li)−δBA

evict(Li))
in Eq. (5). Though we know that the value of δBU

evict(Li) is |B(Li)|·
Cp, the value of δBA

evict(Li) cannot be known. By the buffer-aware
merge, all the dirty pages in B(Li) are moved into flash memory.
After the migration, the dirty pages are changed into clean state.
If there is no update on the clean pages until it is evicted from the
buffer cache by a page replacement policy, there is no write cost
due to the page eviction. Then, δBA

evict(Li) = 0. However, if all the
pages in B(Li) are changed again into dirty state after the buffer-
aware block merge and before the page eviction, δBA

evict(Li) is equal
to |B(Li)| · Cp. In this case, it will be more profitable to prevent
BA-BM from fetching the dirty pages in the buffer cache. To do
that, we should select another log block as a victim block for the
garbage collection. In this paper, we predict the value of δBA

evict(Li)
based on the update probabilities of pages in B(Li).

In order to identify how many pages in B(Li) will be updated
before it is evicted from the buffer cache, we divide B(Li) into two
subsets, Bc(Li) and Bd(Li). If a page pk ∈ B(Li) is dirty when
it is evicted from the buffer cache by a page replacement policy,
pk ∈ Bd(Li). Otherwise, pk ∈ Bc(Li). It is better to exclude
the block Li from a victim block if |Bd(Li)| is large. We should
assign a low benefit to a log block Li when most of dirty pages
are in Bd(Li) to prevent Li from being selected as a victim log
block. Using Bd(Li) for a log block Li, we can write the value of
δBA

evict(Li) as follows:

δBA
evict(Li) = |Bd(Li)| · Cp. (8)

Using this value, we can select a log block with the lowest garbage
collection cost as a victim block. Since |Bd(Li)| depends on how
frequently each page will be updated, we can get the approximated
value of |Bd(Li)| as follows:

|Bd(Li)| '
∑

pk∈B(Li)

P (Upk ), (9)

where Upk indicates an event that a page pk will be updated before



0.9 0.8 0.7

0.3 0.3 0.3

0.1 0.1 0.1 0.0 0.0

LRU order

TBU region

1.0

Initial region

TBE region

eviction to 

TBE region

promotion to 

TBU region

initial

write

(w0 )

(w1) (w2)

Figure 4: The 3-region LRU buffer.

it is evicted by a page replacement policy, and P (Upk ) indicates
the probability that the event Upk occurs.

However, it is impossible to know the exact value of P (Upk )
at the garbage collection time because the future behavior of the
buffer cache is unknown. To predict P (Upk ), we use a locality-
aware approach. Due to a temporal locality, it is probable that a
recently-updated page will be updated again. Therefore, as pk has
been written more frequently and recently, we assign a larger value
to P (Upk ).

To assign P (Upk ) of each pk easily, we invented a novel buffer
architecture called 3-region LRU buffer where the buffer cache is
divided into three regions: a TBU (To-Be-Updated) region, a TBE
(To-Be-Evicted) region, and an initial region, as shown in Figure 4.
While the P (Upk ) of a page in the TBU region is set to a value
close to 1, the value in the TBE region is set to a value close to 0. To
prevent the write-once data, which is not updated after it is written
to the buffer cache, from being in the TBU region just after it is
first written, the initial region is used. When a page is first written
at the buffer cache, it is located at the initial region. If the data is
updated afterward, it is promoted to the TBU region. Otherwise, it
is evicted to the TBE region in the order of the arrival time to the
initial region. The page in the TBE region is promoted to the TBU
region if it is updated. In each region, pages are managed by the
LRU order. If there is a temporal locality in the buffer cache write
pattern, the page with a small P (Upk ) value (i.e., no access during
long time) will be sent to flash memory shortly, but the page with
a large P (Upk ) value (i.e., accessed recently and frequently) will
reside in the buffer cache for a long time.

The sizes of the initial region (w0), the TBU region (w1), and
the TBE region (w2) should be dynamically adjusted depending on
the characteristic of the buffer cache access pattern because they
determine

∑
P (Upk ). Although the region size adjustment pro-

cess has been adopted in the proposed BA-GC scheme, due to the
limited space of the paper, we omit detailed explanation of the size
adjustment process. We encourage readers to refer to [10].

6. EXPERIMENTS

6.1 Experimental environments
In order to evaluate the performance of the proposed BA-GC

scheme, we have developed a trace-driven simulator. In simula-
tions, we used a flash memory model based on Samsung large block
NAND flash memory (K9WBG08U1M) with 64 2 KB pages in
each block. The access times of page read, page write and block
erase are 25 µsec, 200 µsec and 2 msec, respectively.

We compared the proposed BA-GC scheme with two existing
buffer management schemes, FAB [6] and BPLRU [8]. For a fair
comparison, all three schemes were implemented using the same
FAST FTL scheme [3]. For the BA-GC scheme, the block merge
and the victim log block selection modules of the FAST scheme
were modified to be buffer-aware as mentioned in Sections 4 and
5. All the data stored on the 3-region LRU buffer were managed
at the block level like in FAB and BPLRU. Therefore, all the pages
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Figure 5: A comparison of the normalized execution times of
three schemes

that belong to the same logical block had the same P (Upk ) value,
and they were evicted from the buffer cache by the buffer replace-
ment policy at a time. Regarding the parameters used in the BA-GC
scheme, P (Upk ) values for pages of the initial, TBU, and TBE re-
gions were set as 0.3, 1.0 and 0.0, respectively. The α value was
set to as 1.125 because Cp=200 µsec and Cr=25 µsec.

The main performance metric used in our experiments was the
I/O execution time, which includes the normal flash write cost as
well as the garbage collection cost. Since the BPLRU scheme was
designed for the write buffer in the storage device, for the compar-
ison, read requests issued from file system are filtered by the sim-
ulator. We ignored the time spent for accessing data in the buffer
cache because it was negligible compared to the access time of flash
memory. In addition, we also adopted the compulsory flush policy
for dirty pages to ensure data consistency. Therefore, dirty pages
that stayed in the buffer cache more than 30 seconds were flushed
into flash memory and their states were changed into clean.

We used six benchmarks: Iozone, Bonnie++, Postmark, Tiobench
and two realistic desktop workloads. All the traces were collected
from Windows XP operating system with NTFS file system. Two
realistic desktop workloads were gathered from a desktop PC, run-
ning several applications, such as documents editors, music play-
ers, web browsers and games.

6.2 Evaluation results
Figure 5 shows the execution times of the evaluated schemes.

In this figure, X-axis denotes the evaluated benchmarks and Y-axis
represents the I/O execution time normalized to that of the FAB
scheme. Unless otherwise stated, the size of the buffer cache is
assumed to be 16 MB while 128 log blocks are used 2.

As shown in Figure 5, the proposed BA-GC scheme effectively
reduces the execution times by 30% and 15%, on average, com-
pared to FAB and BPLRU, respectively. BPLRU exhibits a better
performance than FAB, but BA-GC also outperforms BPLRU for
most of the benchmarks. In BPLRU, before evicting dirty pages
from the buffer cache, it reads some pages that are not in a victim
block from flash memory, and then writes all pages to flash mem-
ory. Although this approach increases the sequentiality of flash
writes, it also incurs extra I/O operations on flash memory [8].
Therefore, BPLRU shows a better I/O performance than FAB only
for benchmarks where victim blocks have relatively many pages.

In the BA-GC scheme, the overall I/O performance is substan-
tially improved across all the benchmarks, but the degree of perfor-
mance improvement is quite different depending on the character-
istics of the evaluated workloads. To analyze these differences in
detail, we have examined how much garbage collection overhead is
reduced by BA-GC for each benchmark.

Figure 6 shows the garbage collection overhead normalized to
2We have evaluated the performance of the proposed scheme while
varying the number of log blocks assigned to FTL. For more de-
tailed experimental results, see the reference [10].
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Figure 6: A comparison of the normalized garbage collection
overhead of three schemes

FAB. In cases of Tiobench and Postmark, the garbage collection
overhead reduced by BA-GC is smaller than the other benchmarks,
when compared to FAB. From the observation on the write ac-
cess patterns of these benchmarks, we found that Tiobench and
Postmark exhibit low temporal locality (i.e., write hit ratios for
Tiobench and Postmark are 4.4% and 3.1%, respectively). This
means that there are many write-once requests, and thus most pages
will not be rewritten to the buffer cache after they are evicted to log
blocks by the buffer-aware block merge. For this reason, when
merging the victim log block, the small number of dirty pages can
be moved from the buffer cache to flash memory. This is why the
performance improvement by BA-GC is relatively small.

For Bonnie++, Iozone and two realistic workloads, on the other
hand, the reduction in the garbage collection overhead is more sig-
nificant than Tiobench and Postmark. These benchmarks have high
temporal locality, and thus many dirty pages can be moved from
the buffer cache during the block merge step, reducing the number
of writes to flash memory. In addition, by considering temporal lo-
cality of dirty pages in the buffer cache, BA-GC can find a proper
victim log block which can make a significant impact on the reduc-
tion of the overall merge cost.

In the Bonnie++ benchmark, although the garbage collection
overhead is significantly reduced, the overall performance gain by
BA-GC is small as shown in Figure 5. This is because the garbage
collection overhead accounts for a small portion of the I/O time
(about 20%). For the Iozone benchmark, BPLRU outperforms BA-
GC. However, the 3-region LRU buffer exhibits a higher write hit
ratio than BPLRU, and thus the overall performance of BA-GC is
almost equivalent to that of BPLRU. In order to efficiently manipu-
late sequential writes, BPLRU compulsorily evicts the block where
all pages are fully sequentially written, regardless of its recency.
However, in the Iozone benchmark, since there are many sequential
writes and lots of them are likely to be rewritten shortly, BPLRU
incurs many write misses. On the other hand, by evicting a block
in the LRU order, BA-GC can achieve a higher write hit ratio.

Figure 7 shows the execution times for each evaluated scheme
when the size of the buffer cache varies from 1 MB to 32 MB. Over-
all, the execution time decreases as the size of the buffer cache in-
creases. BA-GC shows a better performance over FAB and BPLRU,
regardless of the buffer cache size. Especially, BA-GC exhibits a
good I/O performance when the size of the buffer cache is small.
For example, for FAB and BPLRU to achieve a similar improve-
ment compared to BA-GC, they require 16 MB buffer cache while
BA-GC only needs 2-4 MB buffer cache.

7. CONCLUSION
We have presented a buffer-aware garbage collection technique

called BA-GC which exploits the contents of the buffer cache to
reduce the garbage collection cost. The buffer-aware block merge
(BA-BM) technique improves the efficiency of the block merge by
reducing the number of unnecessary page migrations that turns out
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Figure 7: I/O execution time variations under different buffer
cache sizes (Postmark benchmark)

to be useless if we consider the contents of the buffer cache. The
buffer-aware victim block selection (BA-VBS) technique improves
the overall I/O performance by selecting a proper victim block con-
sidering the potential benefits of BA-BM.

As a future work, we will try to refine the parameter values used
in this work. We have observed from the experiments that different
combinations of BA-GC parameters have a relatively large effect on
the overall I/O performance. Therefore, it would be an interesting
future work to extend the proposed BA-GC scheme.
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