
Journal of Systems Architecture 56 (2010) 208–220
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Buffer flush and address mapping scheme for flash memory solid-state disk q

Hyunchul Park, Dongkun Shin *

School of ICE, Sungkyunkwan University, Suwon 440-746, Republic of Korea
a r t i c l e i n f o

Article history:
Received 22 August 2009
Received in revised form 7 February 2010
Accepted 25 March 2010
Available online 4 April 2010

Keywords:
Flash memory
Solid state disk
Buffer management
flash translation layer
Address mapping
1383-7621/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.sysarc.2010.03.006

q This work was supported by the Korea Research
the Korean Government (KRF-2008-314-D00351).

* Corresponding author. Tel.: +82 31 299 4584.
E-mail address: dongkun@skku.edu (D. Shin).
a b s t r a c t

The flash memory solid-state disk (SSD) is emerging as a killer application for NAND flash memory due to
its high performance and low power consumption. To attain high write performance, recent SSDs use an
internal SDRAM write buffer and parallel architecture that uses interleaving techniques. In such architec-
ture, coarse-grained address mapping called superblock mapping is inevitably used to exploit the parallel
architecture. However, superblock mapping shows poor performance for random write requests. In this
paper, we propose a novel victim block selection policy for the write buffer considering the parallel archi-
tecture of SSD. We also propose a multi-level address mapping scheme that supports small-sized write
requests while utilizing the parallel architecture. Experimental results show that the proposed scheme
improves the I/O performance of SSD by up to 64% compared to the existing technique.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Flash memory has been widely used as a storage device for mo-
bile embedded systems (such as MP3 players, PDAs, and digital
cameras) because of its low-power consumption, nonvolatility,
high random access performance and high mobility. Over the past
several years, there has been a significant growth in the NAND
flash market due to the tremendous popularity of MP3 players
and digital cameras since these devices need a large amount of
data storage. Recently, due to the dramatic price reduction of flash
memory, the solid-state disk (SSD) is emerging as a killer applica-
tion for NAND flash in general purpose computing such as desktop
PCs and enterprise servers. Moreover, SSD is enlarging its applica-
tion area to electrical portable appliances such as digital camcord-
ers and netbooks. While the main advantages of SSD are its low
power consumption, high reliability and high random access per-
formance, the disadvantage is its expensive cost. To reduce the cost
of SSD, MLC (multi-level cell) flash SSD is a popular recent solution.
However, MLC flash has a slower performance and a shorter life
span than SLC (single-level cell) flash for the sake of its low cost,
making the performance of SSD a critical issue.

Regarding the performance of NAND flash SSD, there are two
challenging points. The first is its slow response time for a write re-
quest: NAND flash memory has a lower write performance com-
pared to its read performance. For example, the write latency of
MLC NAND flash is about 13 times slower than the read latency.
ll rights reserved.

Foundation Grant funded by
Moreover, NAND flash memory could invoke an erase operation
before writing a page due to its ‘‘erase-before-write” constraint,
which requires 1.5–2 ms. By using an internal SDRAM write buffer,
we can mitigate the write performance problem. However, long
write latency is inevitable when the buffer should be flushed due
to its limited capacity.

The second challenging point of NAND flash SSD is its inferior
sequential access performance compared to a hard disk drive
(HDD). Recent products have begun to demonstrate sequential ac-
cess performance similar to or faster than HDD by adopting paral-
lel architectures called multi-channel and multi-way architectures.
Under such architecture, SSD can program multiple pages on dif-
ferent chips at a time, which increases its bandwidth, by using
bus-level interleaving and chip-level interleaving techniques. Gen-
erally, the multi-channel and multi-way SSD uses superblock-level
address mapping to utilize the parallel architecture, where
superblock means a set of multiple flash blocks that are located
at different flash chips and can be handled simultaneously using
interleaving techniques. For a 4-channel 2-way MLC SSD, the size
of a superblock is 4 MB. Although we can significantly enhance
the sequential access performance by using interleaving
techniques, concomitant superblock mapping can deteriorate the
performance for small-sized random write requests.

Therefore, to achieve high performance at both random write
requests and sequential write requests, we should manage the
write buffer and the parallel architecture of SSD effectively. In this
paper, we target two critical issues on designing the NAND flash
SSD: how to select victim pages for the write buffer flush and
how to write victim pages into the flash chips considering the par-
allel architecture of SSD. We propose a novel multi-level address
mapping technique, called MLAM, which reduces the overhead of

http://dx.doi.org/10.1016/j.sysarc.2010.03.006
mailto:dongkun@skku.edu
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220 209
superblock-level mapping for random write requests. The scheme
selects victim pages to be evicted from the write buffer considering
the overhead of superblock-level mapping and dynamically deter-
mines the mapping granularity based on the write pattern. The
proposed scheme requires only a small-sized mapping table and
reduces the flash memory I/O cost up to 64% compared to the exist-
ing technique.

The rest of this paper is organized as follows. In Section 2, re-
lated works on flash memory software and flash memory SSD are
introduced. Section 3 explains the multi-way and multi-channel
SSD architecture. Section 4 describes the proposed multi-level ad-
dress mapping scheme. Experimental results are presented in Sec-
tion 5 and Section 6 concludes the paper with a summary and
description of future works.
2. Related works

2.1. Flash translation layer

Flash memory has several special features unlike the traditional
magnetic hard disk. The first one is its ‘‘erase-before-write” archi-
tecture. To write a data in a block, the block should be first erased.
The erase operation in flash memory changes all the bits in the
block into the logical value 1. The write operation changes some
bits into the logical value 0 but cannot restore the logical value 0
into the logical value 1. The second feature is that the unit sizes
of the erase operation and the write operation are asymmetric.
While the write operation is performed by the unit of a page, the
flash memory is erased by the unit of a block, which is a bundle
of several pages. For example, in a large block MLC NAND flash
memory [1], one block is composed of 128 pages and the size of
a page is 4KB. Due to these two features, special software called
the flash translation layer (FTL) is required, which maps the logical
page address from the file system to the physical page address in
flash memory devices. Flash memory SSD also needs an embedded
FTL.

The address mapping schemes of FTL can be divided into three
classes depending on the mapping granularity: page-level map-
ping, block-level mapping, and hybrid-level mapping. In page-level
mapping, a logical page can be mapped to any physical page in
flash memory. If an update request is sent for data that has already
been written in flash memory, page-level mapping writes the new
data to a clean page and changes the mapping information for the
logical page since the flash memory page cannot be overwritten.
This requires the management of the page-level mapping table,
thus the mapping table size is inevitably large.

In block-level mapping, only the mapping information between
the logical block address and the physical block address is main-
tained. Therefore, a page should be in the same page offset within
both the logical block and the physical block. Block-level mapping
needs a small-sized block-level mapping table. However, when
data at a page is to be modified, the page should be written at a
new block and all the non-updated pages of the old block should
be copied into the new block. So, block-level mapping results in
large page migration costs.

Hybrid-level mapping is a compromise between page-level
mapping and block-level mapping [11,12,8,14]. In this scheme, a
small portion of physical blocks is reserved for a log buffer. While
the log blocks in the log buffer use the page-level mapping scheme,
the normal data blocks are handled by block-level mapping. When
a write request is sent to FTL, the data is first written into a log
block and the corresponding old data in the data block is invali-
dated. When the log buffer is full and there is no empty space,
one log block is selected as a victim and all the valid pages in the
log block are moved into the data blocks to make space for on-
going write requests. This process is referred to as a log block
merge, which consists of three different types: full merge, partial
merge and switch merge [11].

Hybrid-level mapping requires a small-sized mapping table
since only the log blocks are handled by the page-level mapping.
In addition, unlike block-level mapping, it does not invoke a large
page migration cost at every write request. Instead, it can invoke a
significant log block merge overhead when the log buffer is full. In
addition, hybrid-level mapping requires a two-step search (log
block and data block) to read data.

There are several studies on address mapping schemes for
large-scale NAND flash memory systems. Chang and Kuo [4] pro-
posed a tree-based management scheme that adopts multiple
granularities in flash-memory management to reduce the size of
the mapping table. Wu and Kuo [20] proposed a two-level address
mapping scheme that dynamically and adaptively switches be-
tween page-level mapping and block-level mapping. While the
small and restricted page-level mapping table has the mapping
information on the recently used blocks, the other blocks are man-
aged by block-level mapping. l-FTL [13] also provides multi-level
mapping managed by l-tree, which is a variant of B+-tree. l-FTL is
profitable for a large-sized storage system since it can dramatically
reduce the size of mapping information. However, when there are
many small-sized write requests, it can suffer due to its high over-
head for tree management. While these approaches that support
multiple mapping granularities have no consideration of the paral-
lel handling for interleaved flash chips in SSD, our scheme proposes
novel multi-level address mapping for the parallel architecture of
SSD.

2.2. Flash SSD

Recently, many flash memory SSD commercial products have
been introduced by several companies such as Samsung [17], Intel
[6], and SanDisk [18]. These products are mainly targeting high-
end laptop computers and enterprise server markets due to their
high costs.

Park et al. [15] proposed a multi-channel and multi-way con-
troller for SSD that supports parallel write operations. They used
automatic interleaving hardware logic to minimize the firmware
intervention and adopted hybrid-level mapping to minimize the
size of the mapping table. Kang et al. [9] proposed three techniques
to utilize several parallel channels for multi-channel SSD architec-
ture: striping, interleaving and pipelining. However, they experi-
mented with small-sized synthetic workloads instead of real
workloads and gave no comment on the address mapping scheme
and the overhead of FTL.

Chang [3] proposed a hybrid SSD architecture that combines
SLC flash and MLC flash. SLC flash is used as a write buffer of
MLC flash. When the SLC flash has no free space, a garbage collec-
tor is invoked and the least recently used data are moved into the
MLC flash. However, they do not consider on the parallel architec-
ture that uses an interleaving technique.

Agrawal et al. [2] presented taxonomy of SSD design choices
and analyzed the performance of various configurations by using
a trace-driven simulator and workload traces extracted from real
systems. They examined the performance of various configurations
of SSD parallel architecture but they did not consider the address
mapping scheme for SSD.

Dirik and Jacob [5] modeled various NAND Flash SSD architec-
tures and their management techniques, quantifying their perfor-
mances under diverse user applications.

Our approach basically follows multi-channel and multi-way
architecture. However, we propose a novel write buffer flush policy
that is integrated with the multi-level address mapping technique
to enhance the random write performance.

Channel A
Flash Chip A0

Flash Chip A1

Flash Chip B0

Flash Chip B1

Channel B

Flash Chip C0

Flash Chip C1

Flash Chip D0

Flash Chip D1

Data transfer time Page program time

Channel C

Channel D

200 us 800 us

Fig. 2. Parallel operation at 4-channel and 2-way architecture.

210 H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220
2.3. Flash-aware buffer schemes

There are several researches on the buffer cache management
scheme aiming to reduce the flash memory write cost.

Park et al. [16] proposed a clean-first LRU (CFLRU) replacement
policy which delays the flush of dirty pages in the buffer cache to
reduce the number of write requests to the flash memory. Though
CFLRU assumes that the buffer has both clean and dirty data, our
target is the write buffer which contains only dirty data.

Jo et al. [7] proposed a flash-aware buffer management scheme
called FAB. Using a block-level buffer replacement that evicts all
pages of a block at a time, it reduces the block merge cost. The
FAB scheme first finds a block that has the largest number of pages
in the buffer cache. Then, all pages of the block are flushed into the
flash memory. Kim and Ahn [10] proposed a block padding least re-
cently used (BPLRU) buffer management scheme, which also evicts
all pages of a victim block like FAB but determines the victim block
based on the block-level LRU value. In addition, the BPLRU writes
an entire block into a log block by the in-place scheme using the
block padding technique. Therefore, all log blocks can be merged
by the switch merge which requires no page migration. Since these
flash-aware buffer management schemes can show poor perfor-
mance for random writes due to the block thrashing problem,
Seo and Shin [19] proposed a flash-aware buffer cache replacement
policy, called REF, which selects the victim page to be evicted from
the buffer cache considering the recent victim page sent to the
flash log buffer.

These block-level buffer management schemes are conceptually
similar to our proposed scheme because our scheme also uses the
superblock-level replacement policy. However, we integrated the
buffer management scheme with a novel virtual superblock
scheme to reduce the overhead of superblock-level mapping.

3. Multi-channel and multi-way architecture

While the maximum bandwidths of recent I/O interfaces such
as serial ATA (SATA) and SCSI are over 150 MB/s, the bus band-
width of NAND flash is about 40 MB/s at current technology. To en-
hance the bandwidth of flash memory SSD, interleaving techniques
are used. Fig. 1 shows the overall architecture of the recent SSD
[15,5]. It has interleaved four buses and NAND controllers that
can be operated simultaneously. We call this architecture as mul-
ti-channel architecture. In addition, eight chips are connected to
each bus. We assume that each chip is MLC throughout this paper.
Generally, one of the eight chips is enabled at a time. However, we
can access two flash chips at interleaved manner, therefore we can
chip
A0

chip
B0

chip
C0

chip
D0

NAND
controller

NAND
controller

NAND
controller

NAND
controller

S
D

R
A

M
 B

uf
fe

r

SSD Controller

H
os

t I
nt

er
fa

ce

2-way

4-
ch

an
ne

l

supe
chip

Channel A

Channel B

Channel C

Channel D

Fig. 1. Multi-channel and multi-way (4-c
write at two interleaved chips at the same time. This is known as
multi-way architecture.

For the 4-channel and 2-way SSD architecture shown in Fig. 1,
two flash memories using different channels can be operated inde-
pendently and therefore the page program times for different chips
can overlap. However, since two flash memories sharing one bus
cannot occupy the bus simultaneously, the data transfer times can-
not overlap. Fig. 2 shows the parallel operations in 4-channel and
2-way SSD architecture. If the bus speed is 40 MB/s (100 ls/4KB)
and the program time for a 4KB page in MLC is 800 ls, the total
time to program 8 pages is 1 ms. Since we can program 8 pages
in parallel for 4-channel and 2-way SSD architecture as shown in
Fig. 2, we can assume that there are four superchips, where each
consists of eight flash chips respectively as shown in Fig. 1.

Fig. 3 illustrates the organization of a superchip. We can con-
sider the eight blocks aggregated from eight different chips as a
superblock. We can also derive a superpage in the same manner.
Conceptually, FTL programs a superpage (32KB) instead of a page
(4KB) in an interleaved manner. For this reason, the smallest map-
ping unit should be a superpage to exploit the high bandwidth of
the multi-channel and multi-way architecture.

Fig. 4 shows the logical address structure. The w1; w2; w3; w4

and w5 fields mean the logical superblock number, the superpage
number within a superblock, the way number, the channel num-
ber, and the sector offset within a page, respectively.
chip
A1

chip
A2

chip
A3

chip
A4

chip
A5

chip
A6

chip
A7

chip
B1

chip
B2

chip
B3

chip
B4

chip
B5

chip
B6

chip
B7

chip
C1

chip
C2

chip
C3

chip
C4

chip
C5

chip
C6

chip
C7

chip
D1

chip
D2

chip
D3

chip
D4

chip
D5

chip
D6

chip
D7

r
0

super
chip 1

super
chip 2

super
chip 3

hannel and 2-way) SSD architecture.

chip
A0

chip
B0

page
(4KB)

block
(512KB)

Super
page

(32KB)

Super
block

(4096KB)

chip
C0

chip
D0

chip
A1

chip
B1

chip
C1

chip
D1

Super chip

Fig. 3. Superblock and superpage.

Logical block-group #
Page-group # within

block-group
way # channel #

sector # within
page

w2w1 w3 w4 w5

Fig. 4. Logical address structure.

H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220 211
We can consider three kinds of mapping techniques: super-
page-level mapping, superblock-level mapping and hybrid-level
mapping. Superpage-level mapping and hybrid-level mapping are
generally profitable since they can handle frequent update re-
quests effectively. However, superpage-level mapping needs too
large mapping information. For example, 16 MB of memory is re-
quired for a 128 GB SSD (assuming each superpage mapping infor-
mation is represented with 4 bytes) while superblock-level
mapping requires only 64KB of memory (assuming each super-
block mapping information is represented with 2 bytes). The weak
point of hybrid-level mapping that uses a log buffer managed by
superpage-level mapping is that it may invoke significant log block
merge costs. Nevertheless, superpage-level mapping and hybrid-
level mapping are more efficient than superblock-level mapping
if a workload has high temporal locality and low spatial locality.
However, write requests on flash chips come through several buf-
fers such as the buffer cache in the host and the write buffer in SSD.
These buffers perform the merging and sorting for small-sized
write requests. Therefore, they have little temporal locality but
high spatial locality (due to buffer’s merging operation). Thus,
superpage-level mapping and hybrid-level mapping are unsuitable
for SSD.

Therefore, we target superblock mapping, where data are writ-
ten by the unit of a superblock. However, when there will be many
random write requests (large than a superpage but smaller than a
superblock) from the host, a significant overhead is inevitable. For
example, if only 20 pages (80KB) of an already-written superblock
(4096KB) are updated and in the write buffer as shown in Fig. 5,
the FTL should merge the remaining unchanged data (4016KB)
with the updated data when the pages are flushed into flash chips
to maintain superblock-level mapping. Thus we should copy the
unchanged data in physical superblock 0 to a new physical super-
block, e.g., physical superblock 100. We refer to this overhead as a
superblock merge overhead. If physical superblock 0 and physical
superblock 100 are located at the same superchip, we can exploit
the copyback flash memory operation which can copy data within
a chip without invoking external bus transactions. Otherwise, we
should read the unchanged pages into the external buffer and re-
write them at a new superblock (read-and-write operation). The
superblock merge overhead will be significant as SSD uses a
large-sized superblock with more intensive interleaving.

To estimate the cost of the superblock merge, we should divide
the logical superpages that compose a logical superblock into three
types: superpages in the write buffer, superpages in flash memory
and superpages partially in the write buffer. The write cost per
page when a logical superblock is written, Csb, is as follows:

Csb ¼
CwNbuf þ CcopyNflash þmaxðCw;CcopyÞNmixed

npage
ð1Þ

where Nbuf ; Nflash and Nmixed are the numbers of the three types of
superpages, respectively. The variable npage denotes the number of
pages flushed from the write buffer. For the example in Fig. 5,

Write BufferPhysical Superblock 0

Physical Superblock 100

write

copyback
 (or read/write)

0

8

16

...

24

1016

1

9

17

25

1017

2

10

18

26

1018

3

11

19

27

1019

4

12

20

28

1020

5

13

21

29

1021

6

14

22

30

1022

7

15

23

31

1023

...

8

16

24

9

17

10

18

11

19

12

20

5

13

21

6

14

22

7

15

23

0

8

16

...

24

1016

1

9

17

25

1017

2

10

18

26

1018

3

11

19

27

1019

4

12

20

28

1020

5

13

21

29

1021

6

14

22

30

1022

7

15

23

31

1023

...

Fig. 5. Superblock merge.

212 H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220
Nbuf ¼ 2; Nflash ¼ 124; Nmixed ¼ 2 and npage ¼ 20. Cw and Ccopy repre-
sent the costs for writing and copying a superpage, respectively.
Ccopy is the cost of the copyback operation, Ccopyback, if an old physical
superblock and a new physical superblock are included at the same
superchip. Otherwise, it is the cost of a read-and-write operation,
Crw, which is the sum of the read cost and the write cost. When
the page read time, the page program time and the bus speed are
60 ls, 800 ls and 40 MB/s respectively, Cw is 1000 ls (=200 +
800), Ccopyback is 860 ls (=60 + 800) and Crw is 1260 ls (=60 +
200 + 200 + 800). Therefore, Ccopyback < Cw < Crw. Consequently, to
reduce the superblock merge overhead Csb, we should select a log-
ical superblock with a large value of npage and allocate the new phys-
ical superblock at the superchip where the old physical superblock
is located.

The SDRAM write buffer within SSD can mitigate the superblock
merge overhead. FTL can send a large amount of data to flash mem-
ory by aggregating several small-sized write requests in the write
buffer. Then, the superblock merge overhead may be reduced.
Therefore, the management of the write buffer is an important is-
sue for the high performance of the SSD. When there is no free
space in the write buffer, the SSD controller should flush one or
more superblocks to the flash chips. The flush to flash memory
should be performed by the unit of superblock. However, if the
small-sized write requests are scattered beyond a superblock
boundary with low spatial locality, each logical superblock in the
write buffer may have only small data and the superblock merge
overhead is inevitable.

To minimize the superblock merge overhead, our proposed
scheme composes a virtual superblock with small-sized scattered
write requests in the write buffer. Therefore, the virtual superblock
is written at the flash chips using fine-grained mapping. However,
it does not require a large-sized mapping table but can utilize the
multi-channel and multi-way architecture efficiently.
4. Multi-level address mapping

4.1. Victim superblock selection policy

When there is no free space in the write buffer, it should be
flushed. We can consider two kinds of flushing policies: empty
the buffer once the flushing job begins or only evict the part of
the buffer that is not expected to be accessed in the near future.
The latter is suitable when the hit ratio of the buffer is high. In this
case, the locality-based approach such as the least-recently-used
(LRU) policy is generally used. However, considering only the local-
ity is not good. It is better to evict the superblock that invokes a
small superblock merge overhead. Therefore, we assign a high pri-
ority to the superblock filled with many updated data to maximize
the value of npage in Eq. (1). We also consider the LRU level of the
superblock to prevent an old superblock with small updated data
from remaining at the write buffer for a long time. Otherwise, it
will occupy the space of the write buffer unnecessarily. The follow-
ing equation shows the eviction priority of a superblock Bi:

PrðBiÞ ¼ a � tðBiÞ
T
þ ð1� aÞ � npageðBiÞ

N
ð2Þ

where tðBiÞ and npageðBiÞ represent the ranking of the last access
time and the number of pages in the write buffer of the logical
superblock Bi, respectively. T and N are the total number of logical
superblocks in the write buffer and the total number of pages in a
superblock, respectively, and a is the weighting value for the two
factors. We refer to this victim selection policy as the LRU+Size

scheme in this paper.

4.2. Virtual superblock composition

Although we select the victim superblock using the LRU+Size

policy, there may be many non-updated pages within the victim
superblock, which causes superblock merge overhead. Our scheme
solves this problem by providing fine-grained mappings for such a
superblock. We split it into several sub-superblocks and give the
sub-superblock with many updated data a high priority for evic-
tion. Then, the selected sub-superblocks are written by multi-level
address mapping (MLAM). To exploit the parallel architecture of
SSD, we compose a virtual superblock (VSB) which consists of sev-
eral sub-superblocks from different logical superblocks. We have
four policies for composing a virtual superblock: the value of
npage of the virtual superblock should be maximized to reduce the
superblock merge overhead; a coarse-grained mapping should be
used as much as possible to reduce the mapping table size; the vir-
tual superblock should be composed of sub-superblocks associated
with the same superchip to reduce the data copy overhead be-
tween different superchips; and only not-recently-used data
should be flushed.

We denote the logical superblock (LSB) with the address i, the
physical superblock (PSB) with the address j, and the logical block

H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220 213
with the address k as Bi; Uj and bk, respectively. Each LSB Bi is di-
vided into four sub-superblocks: Qi

0; Q i
1; Q i

2; Qi
3 ðBi ¼ fQ i

0;Q
i
1;

Q i
2;Q

i
3gÞ. (It is possible to divide a superblock into more than four

sub-superblocks, however, we determined the granularity consid-
ering the space overhead for the mapping table.) The sub-super-
block Q i

l consists of 2 consecutive logical blocks b8iþ2l and b8iþ2lþ1

(256 pages or 32 superpages). The four sub-superblocks within a
superblock have the values of 00, 01, 10, and 11, respectively, in
the first two bits of the w2 field in Fig. 4. Based on the value, we
can index each sub-superblock.

The detailed algorithm of VSB composition is as follows. First,
the set of candidate victim LSBs, R, is selected using the LRU policy
or the LRU+Size policy as shown in Fig. 6. The number of candi-
date victim LSBs is given as a configuration factor. We identify
the superchip index (SC) of the corresponding physical superblock
of each candidate victim LSB. If the LSB is written for the first time,
the superchip index is determined as don’t care (X). We also iden-
tify empty logical blocks that have no data in the write buffer; for
example, the superchip index of LSB B0 is 0 and it has 3 empty
blocks. The cost of the virtual superblock composition (VSC) de-
pends on the number of candidate LSBs ðjRjÞ and therefore we limit
jRj to 4.

Second, each LSB is partitioned into sub-superblocks if it has
more than kempty empty blocks to reduce the superblock merge
overhead when there are many empty blocks in the LSB. In this
case, it is better to write only a portion of the LSB. In Fig. 6, we as-
sumed kempty ¼ 1. While all the blocks of LSB B2 can be written into
a physical superblock, other LSBs are partitioned into sub-super-
blocks and empty sub-superblocks are discarded from the candi-
dates. In order to use a coarse-grained mapping as much as
possible, we merge two sub-superblocks if they are sequential.

Third, we group the victim sub-superblocks based on the super-
chip index to associate a virtual superblock with only one super-
0
B0

(SC 0)

Candidate victim LSBs in write buffer

2 4 6

block index

1 3 5 7

0 2 4 61 3 5 7

0 2 4 61 3 5 7

0 2 4 61 3 5 7

0 2 4 61 3 5 7

B1
(SC 0)

B4
(SC X)

B2
(SC 1)

B3
(SC 1)

4 65 7

Superchip 0

0 2 4 61 3 5 7

0 1 2 3

Superchip 1

VSB with the
maximum
data size

empty block

B0 B1

B2

B4

Fig. 6. Virtual superbl
chip. If a VSB is associated with multiple superchips, the external
bus transaction should be invoked to copy the unchanged data.
Thus this reduces the data copy overhead between different
superchips.

Fourth, we compose a VSB for each superchip. A virtual super-
block V is composed of several sub-superblocks such that it has
the largest number of updated pages. Then, we can maximize the
value npage in Eq. (1). Therefore, we can represent the VSB V as a
set of sub-superblocks as follows:

V ¼
[

i2R

Q i
l s:t: maximize npageðVÞ and jV j ¼ 4 ð3Þ

where npageðVÞ is the data size of V . To find the solution for Eq. (3)
within a short amount of time, we use an approximated technique.
The sub-superblocks are sorted by size and a VSB is composed by
merging several large-sized sub-superblocks. For the calculation
of the data size, the unpartitioned LSB with 8 sequential blocks
has some weight to prefer superblock-level mapping rather than
sub-superblock level mapping. In addition, we weight the sub-
superblocks with their recency values to increase the possibility
of selecting LRU blocks. In Fig. 6, the VSB for superchip 0 is made
up of one sub-superblock from B4 ðQ4

0Þ, one sub-superblock from
B0 ðQ0

1Þ, and two sub-superblocks from B1 ðQ1
2;Q

1
3Þ.

Lastly, we select the largest-sized VSB among the VSBs for sev-
eral superchips. Using the VSB composition algorithm, we can se-
lect victim blocks to be flushed into flash memory considering
the data size, the sequentiality of data, the data copy overhead,
and the recency of the data.

If we flush one of the logical superblocks in R instead of the vir-
tual superblock generated by the MLAM scheme, it can invoke a
large superblock merge overhead. For example, in Fig. 6, assume
that the logical superblock B0 has already been written in the phys-
ical superblocks U10. To write B0, we should copy three unchanged
0 2 4 61 3 5 7

2 4 63 5 7

4 65 7

0 1 4 65 7

0 1 4 5

2 4 63 5 7

4 65 7

0 2 4 61 3 5 7

0 1 4 5

0 1 4 65 7

Superchip 0

Superchip 1

0 1 4 65 7

Partitioned victim LSBs

Grouping based on
superchip

B0
(SC 0)

B1
(SC 0)

B4
(SC X)

B2
(SC 1)

B3
(SC 1)

B0 B0

B1

B2

B3B3

B4 B4

B4 B4

ock composition.

214 H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220
blocks from U10 to a free PSB since B0 has three empty blocks. How-
ever, there is no empty block in the VSB composed by the MLAM
scheme. (Even though there is no empty block in the VSB, we
should copy some unchanged data if the value of Nflash þ Nmixed in
Eq. (1) is larger than 0.) The composed VSB can be programmed
in flash memory in an interleaved manner since each block within
the VSB is targeted into different flash chips within a superchip.
4.3. Address mapping for virtual superblock

In the MLAM scheme, we support three levels of mapping: super-
block mapping (4096KB), half-superblock mapping (2048KB), and
quarter-superblock mapping (1024KB). We refer to the half-super-
block mapping and the quarter-superblock mapping as partial
superblock mapping. Fig. 7 shows the mapping table for the VSB
composed in Fig. 6. The VSB is written into the PSB U56 and thus sev-
eral sub-superblocks in U10 and U20 are invalidated. Any unchanged
pages in the sub-superblocks should be copied into U56. There are
three kinds of mapping tables that have mapping information for
the superblock level, half-superblock level, and quarter-super-
block-level mapping: L0; L1, and L2, respectively. If no partial super-
block is programmed, only the L0 mapping table has the mapping
information. After the partial superblocks are written, the L1 and
L2 mapping tables have entries.

Since the LSB B0 is divided into two quarter-superblocks and
one half-superblock in this example after the VSB V is written,
the psb field of the first row of the L0 mapping table has two indices
of the L1 and L2 mapping tables. The tab0 and tab1 columns of the L0

mapping table represent the mapping level used for the left half
and the right half of the LSB, respectively. Since the tab0 of LSB
B0 is 2, the left half should refer to the L2 mapping table. The L1

and L2 mapping tables have loc fields that denote the location of
the partial-superblock within the specified PSB.
PSB#

0
1

154

162

10
20

154

162

00
00

00

00

L0 m

Flash memory
(before eviction of V)

L0 mapping table
(initial state)

VSB

0 1 2 310

0 1 2 3

0 2 3

0 1 2 3

20

154

162

psb tabLSB

0
1

2

3

LSB

0
1

2

3

1

- -4 4 1

sub-superblock index

sub-superblo

psb0

Fig. 7. Mapping virt
To determine the physical block number for the logical block bj

with block address j, we first identify the corresponding LSB num-
ber ið¼ bj=8cÞ and the block offset within superblock dð¼ j%8Þ.
Using the block offset, the half-superblock index ðhÞ, the block off-
set within the half-superblock ðqÞ, the quarter-superblock index
ðqÞ, the block offset within the quarter-superblock ðhÞ, and the
quarter-superblock offset within the half-superblock ðtÞ are calcu-
lated as shown in Eq. (4). Then, we find the mapping level m by
examining the tabh field of the ith row of the L0 mapping table. If
the value of m is 0, we can find the physical block address using
the psb field of the L0 table and the block offset d as shown in Eq.
(5):

i bj=8c; d j%8
h bd=4c; q d%4
q bd=2c; h d%2; t q%2 ð4Þ
m L0½i�:tabh

if ðm ¼ 0ÞP L0½i�:psb
p 8P þ d ð5Þ

if ðm ¼ 1Þu L0½i�:psbh

P L1½u�:psb; k L1½u�:loc
p 8P þ 4kþ q ð6Þ

if ðm ¼ 2Þu L0½i�:psbh

P L2½u�:psbt; k L2½u�:loct

p 8P þ 2kþ h ð7Þ

If the value of m is 1, we first find the L1 table index by exam-
ining the h-th value of the psb field of the L0 table. Using the index,
we access the L1 table and get the physical superblock address P
and the half-superblock offset k. Then, we can calculate the phys-
ical block address by summing 8P;4k, and q as shown in Eq. (6).
For example, the item indexed by 1 in the L1 table is (10,1), which
represents the second half-superblock of the PSB U10.
100
20

2
1

0

0

apping table

L1 mapping table

L2 mapping table

0 1 2 3

PSB#

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 356

10

20

154

162

Flash memory
(after eviction of V)

copyback

invalidate

tab0 psbindex

0
1

2 56

2

psb0index

1
0

1

loc

loc0

1
1

0

0

tab1

write

2 --

10 560

1

0 1

56 0 - -

psb1 loc1

B0 B1B4

ck index

copyback

psb1

ual superblock.

Table 1
The change of mapping table size by superblock reorganization.

Before merging After merging Mapping s0 s1 s2 Space gain

Two 1/4-SBs One 1/2-SB L2 ! L1 – +1 �2 wþ 3
Two 1/2-SBs One SB L1 ! L0 – �2 – 2wþ 2
One 1/2-SB and

two 1/4-SBs
One SB L1; L2 ! L0 – �1 �2 3wþ 5

Four 1/4-SBs One SB L2 ! L0 – – �4 4wþ 8

Table 2
Simulation parameters.

Parameter Value Parameter Value

Page size 4KB Page read 60 ls
Block size 512KB (128 pages) Page write 800 ls
Superpage size 32KB Block erase 1.5 ms
Superblock size 4096KB Copyback 860 ls

H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220 215
If the value of m is 2, we examine the hth value of the psb field of
the L0 table to get the index of the L2 table. Then, we can calculate
the physical block address by summing 8P;2k, and h as shown in
Eq. (7). For example, consider the address mapping for the block
b0 that is included at the LSB B0. We should refer to the first half
item of the first row in the L0 mapping table. Since psb0 is 0 and
tab0 is 2, we examine the first item of the first row in the L2 map-
ping table. The value is (10,0), which means that b0 is located at the
first sub-superblock of PSB U10.

The proposed MLAM scheme can be regarded as being similar to
hybrid-level mapping because it also provides both fine-grained
(superpage-level) mapping and coarse-grained (superblock-level)
mapping. However, in hybrid-mapping, only two extreme mapping
levels exist and data must be first written at the log buffer with
superpage-level mapping. However, MLAM can select one of the
three mapping levels (including the superblock-level) depending
on the data access pattern. In hybrid-mapping, when the limited
log buffer has no free space, the garbage collection should be
invoked to perform the log block merge. However, MLAM has no
spatial constraint when writing data with fine-grained mapping.
Instead, superblock reorganization explained in Section 4.4 is
executed only when fine-grained mapping tables become too
big. While the hybrid-mapping invokes frequent garbage collec-
tion (log block merge), MLAM can delay the garbage collection
until there is no free space in SSD, which allows garbage collec-
tion to be invoked less frequently. Thus it invokes negligible
block erases.
(a) Desktop

(c) pcNTFS

(e) Internet Explorer

1

10

100

1000

10000

100000

1000000

128 1792 3456 5120 6784 8448 Others

N
um

be
r

of
w

ri
te

 r
eq

ue
st

s

Sector length

8192 sectors

1

10

100

1000

10000

100000

1000000

128 4608 9088 13568 18048 22528 Others

N
um

be
r

of
w

ri
te

 r
eq

ue
st

s

Sector length

8192 sectors

1

10

100

1000

10000

100000

128 768 1408 2048 2688 3328 Others

N
um

be
r

of
 w

ri
te

 r
eq

ue
st

s

Sector length

Fig. 8. The histogram
4.4. Superblock reorganization

The L1 and L2 mapping tables are built on demand, that is, when
partial superblocks are programmed into flash memory, the items
for the corresponding mapping table are inserted. Let us assume
that the maximum allowed size of mapping table is Smax. When
the sizes of the L0 mapping table, L1 mapping table, and L2 mapping
(b) pcFAT32

(f) Iozone

(d) JPEG File Copy

1

10

100

1000

10000

100000

1000000

128 2304 4480 6656 8832 Others

N
um

be
r

of
w

ri
te

 r
eq

ue
st

s

Sector length

8192 sectors

1

10

100

1000

10000

100000

128 3200 6272 9344 12416 15488 Others

N
um

be
r

of
w

ri
te

 r
eq

ue
st

s

Sector length

8192 sectors

1

10

100

1000

10000

100000

128 6272 12416 18560 24704 30848 Others

N
um

be
r

of
 w

ri
te

 r
eq

ue
st

s

Sector length

8192 sectors

of write requests.

216 H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220
table are S0; S1, and S2, respectively, the following equation should
be satisfied:

Smax P Stot ¼ S0 þ S1 þ S2 ð8Þ

If the used capacity of SSD is given, the size of L0 is determined and
fixed. When the number of allocated logical superblocks is s0, the
number of physical superblocks is Npsb, and each tab field consumes
2 bits, S0 is as follows:

S0 ¼ s0 � ðdlog2Npsbe þ 4Þ ¼ s0 � ðwþ 4Þ ð9Þ

The sizes of the L1 and L2 mapping tables are changed depending on
the number of written partial superblocks. While the L1 table re-
quires 1 bit for the loc filed, the L2 table requires 2 bits. When the
(a) Desktop

(c) pcNTFS

(e) Internet Explorer

L2-mapped L1-ma

0

10000

20000

30000

40000

0 1 2 3 4 5 6 7

N
um

be
r

of
bl

oc
ks

0

20000

40000

60000

0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s

Fig. 9. Mapping level compar

(a) Desktop

Buffer- flush Cost Reorgan

0

100

200

300

400

0 1 2 3 4 5 6 7

T
im

e
(s

)

Fig. 10. Execution time compa
number of half-superblocks is s1 and the number of quarter-super-
blocks is s2; S1 and S2 in the MLAM scheme are as follows:

S1 ¼ s1 � ðwþ 1Þ ð10Þ
S2 ¼ s2 � ðwþ 2Þ ð11Þ

So, the total size of the mapping table is as follows:

Stot ¼ ðs0 þ s1 þ s2Þ �wþ 4s0 þ s1 þ 2s2 ð12Þ

As the MLAM scheme evicts many partial superblocks to the flash
memory, Stot will increase and the constraint Stot 6 Smax will be inev-
itably broken. Then, we should merge some partial superblocks into
a superblock to make space for incoming write requests. This pro-
cess is referred to as superblock reorganization and is similar to
(b) pcFAT32

(d) JPEG File Copy

(f) Iozone

pped L0-mapped

0

4000

8000

12000

0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s

0

2000

4000

6000

8000

0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s

0

20000

40000

60000

80000

100000

0 1 2 3 4 5 6 7

N
um

be
r

of
 b

lo
ck

s

ison with varying kempty.

(b) pcNTFS

ization Overhead Total Cost

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

T
im

e
(s

)

rison with varying kempty .

H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220 217
defragmentation in hard disk driver because both make long
sequential data by collecting separated data that are logically
consecutive.

We should find partial superblocks that use fine-grained
mapping but can be merged into a coarse-grained superblock.
For example, by using L1 mapping instead of L2 mapping for
two sequential quarter-superblocks, s1 increases by 1 and s2

decreases by 2. Similarly, by using L0 mapping instead of L1

mapping for two sequential half-superblocks, s1 decreases by 2
but s0 is unchanged.

Table 1 summaries the benefit when finer-grained mapping is
replaced with coarser-grained mapping. As we can derive from
the table, space gain is best when we merge four quarter-super-
blocks into one superblock. In addition, it is better to give high pri-
ority to the partial superblocks that will not be updated in the near
future. So, the MLAM scheme selects the target partial-superblocks
considering the space gain and the time elapsed from the last write
access.

Since the block copy overhead is invoked during the superblock
reorganization, the MLAM scheme is effective when the blocks
using fine-grained mappings are frequently updated. Therefore,
we should adjust the mapping level observing the update fre-
quency of data using L1 or L2 mapping. If most of the partial super-
blocks are reorganized into L0-level superblock without an update,
the superblock reorganization will be frequently invoked. In such a
case, we reduce the possibility of fine-grained mappings by
increasing the value of kempty. If kempty ¼ 7, all LSBs are written by
L0 mapping. However, as the value of kempty gets higher, the super-
block merge overhead cost increases. Therefore, the MLAM scheme
(a) Desktop

(c) pcNTFS

(e) Internet Explorer

Erase RNW Copy

0

100

200

300

400

0 1 2 3 4 5 6 7

T
im

e
(s

)

0

500

1000

1500

2000

0 1 2 3 4 5 6 7

T
im

e
(s

)

0

5

10

15

20

25

0 1 2 3 4 5 6 7

T
im

e
(s

)

Fig. 11. Execution time compa
adjusts kempty observing both reorganization overhead and merge
overhead.
5. Experiments

There is only one SSD simulator publicly announced [2] but it
uses page-level mapping so does not coincide with our focus. Thus,
we developed a trace-driven simulator that follows the multi-
channel and multi-way SSD model to evaluate the performance
of the proposed scheme. It is configured to have a 16–128 MB
SDRAM write buffer and 32 1 GB MLC flash chips. Table 2 shows
the parameters of the MLC flash chip [3]. To obtain the exact time
to handle the flash chip, the bus transfer time should be added to
the values in Table 2. We assumed the data in the internal page
buffer of the flash chip is read-out at 40 MB/s (=100 ls/4KB) over
the flash memory bus and thus the time to write a superpage is
1 ms (=2 � 100 ls + 800 ls). Since the copyback operation does
not invoke an external bus transaction, the execution time for a
copyback is the sum of the page read time and the page program
time. Since the copyback operation can only be used when the
source page and the destination page are located within the same
chip, we should use the read-and-write operation if two pages are
in different chips. In this case, the bus transfer time should be con-
sidered. The target SSD uses 4-channel and 2-way architecture,
where 4 separated buses are provided and 8 MLC flash chips share
one bus.

We used five real disk I/O traces as inputs for the simulation:
Desktop was collected running several applications, such as
(b) pcFAT32

(d) JPEG File Copy

(f) Iozone

back Write Read

0

100

200

300

400

0 1 2 3 4 5 6 7

T
im

e
(s

)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

T
im

e
(s

)

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

T
im

e
(s

)

rison with varying kempty .

218 H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220
document editors, music players, web browsers, and games in
Microsoft Windows XP-based desktop PC; pcFAT32 and pcNTFS

were extracted from real user activity on the notebook of personal
usage [8]; Internet Explorer generates many small-sized tem-
porary files; and JPEG File Copy copies a total of 2 GB of JPEG
files, where each file size is 500–600 KB. While Internet Ex-

plorer generates highly random write requests, JPEG File Copy
generates both sequential writes and random writes because they
update the meta-data of the file system. So, there are many random
writes that are interposed between sequential writes. We also used
one synthetic benchmark program, Iozone, which generates
sequential access patterns.

We first examined the workload pattern of each benchmark.
Our concern was whether the write request size is large enough
to utilize the parallel architecture of SSD. If most of the write re-
quests have smaller sizes than the size of the superblock (8192 sec-
tors), superblock-level mapping without the proposed MLAM
scheme will be inefficient.

Fig. 8 shows the histogram of write request sizes. Since the file
system generally divides a long sequential write request into mul-
tiple small write requests before sending it to storage, we merged
such consecutive write requests into one when calculating the
sizes. As shown in Fig. 8, most of the write requests have smaller
sizes than 8192 sectors except the Iozone benchmark, which
has a sequential access pattern. Therefore, we can expect a large
superblock merge overhead without the MLAM scheme.

We first observed the behavior of the MLAM scheme at differ-
ent values of kempty which is the number of allowed empty blocks
(a) Desktop

(c) pcNTFS

(e) Internet Explorer

Erase RNW Copy

0

100

200

300

400

16MB 32MB 64MB 128MB

T
im

e
(s

)

0

200

400

600

800

1000

1200

16MB 32MB 64MB 128MB

T
im

e
(s

)

0

5

10

15

20

25

30

16MB 32MB 64MB 128MB

T
im

e
(s

)

Fig. 12. Execution time comparison
for L0 mapping. Fig. 9 shows the number of blocks written by
L0; L1, and L2 mappings, respectively. The empty blocks are also
counted because they invoke copyback or read-and-write opera-
tions. As kempty increases, more blocks use the L0 mapping. The to-
tal number of blocks written by either L0; L1, or L2 mapping also
increases because more empty blocks should be written. Since
Iozone has a sequential write pattern, many blocks are written
by L0 mapping even when kempty ¼ 0. Although the write pattern
of pcFAT32 is not sequential as shown in Fig. 8(b), it has a high
spatial locality. So, pcFAT32 generates many LSBs using L0

mapping.
Fig. 10 shows the buffer flush cost and the superblock reorgani-

zation cost with varying values of kempty. It shows the results of the
benchmarks Desktop and pcNTFS, which invoke the superblock
reorganization overhead. As the value of kempty increases, we can
see that the superblock merge overhead (included in the buffer
flush cost) increases but the superblock reorganization overhead
decreases. Therefore, the best value of kempty is when the sum of
the two types of overheads is minimized. Desktop and pcNTFS

show the best results when their kempty are 5 and 3, respectively.
Other benchmarks do not invoke superblock reorganizations under
our experiments. For the pcFAT32 and Iozone benchmarks, most
of the blocks are written by L0 mapping and the blocks using L1 or
L2 mapping are updated frequently. So, the superblock reorganiza-
tion is not invoked. Although the JPEG File Copy and Internet

Explorer benchmarks have many blocks written by fine-grained
mapping, they generate too small numbers of write requests to in-
voke superblock reorganization.
(b) pcFAT32

(d) JPEG File Copy

(f) Iozone

back Write Read

0

50

100

150

200

250

300

16MB 32MB 64MB 128MB

T
im

e
(s

)

0

20

40

60

80

100

16MB 32MB 64MB 128MB

T
im

e
(s

)

0

500

1000

1500

2000

2500

3000

16MB 32MB 64MB 128MB

T
im

e
(s

)

while varying the buffer size.

H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220 219
Fig. 11 shows the contributions of each flash operation for the
total I/O cost while varying the value of kempty. The costs of the
copyback and read-and-write operations resulting from super-
block merge overhead increase as the value of kempty increases.
Since pcFAT32, JPEG File Copy, Internet Explorer, and
Iozone do not invoke superblock reorganizations, their perfor-
mances are best when kempty is 0 or 1. Even though the MLAM
scheme composes a virtual superblock such that it is associated
with only one superchip and the corresponding physical super-
block is allocated at the superchip, it invokes a little cost for
the read-and-write (denoted by RNW) operation. This is because
MLAM cannot allocate a PSB at a superchip if the superchip has
no free PSB. In such a case, the MLAM scheme allocates a PSB at
the superchip that has free PSBs. In the current implementation,
the garage collector, which reclaims the invalid blocks, is in-
voked when there is no free PSB at any superchip. To design
more efficient PSB allocator and garbage collector is our future
work.

Fig. 12 shows the performances of the MLAM scheme while
varying the size of the write buffer. As the buffer size increases,
the performances improves because it can compose a better virtual
superblock which invokes a small overhead.

Finally, we compared five victim selection policies for the inter-
nal write buffer: FlushAll flushes all the blocks in the write buf-
fer into flash chips using superblock-level mapping; LRU selects
the least-recently-used LSB as a victim; Size selects the largest-
sized LSB as a victim and writes it by superblock-level mapping;
LRU+Size considers both the recency value and the number of up-
(a) Desktop

(c) pcNTFS

(e) Internet Explorer

Erase RNW Copyb

0

100

200

300

400

500

600

700

FlushAll LRU Size LRUSize MLAM

T
im

e
(s

)

0

500

1000

1500

2000

2500

3000

FlushAll LRU Size LRUSize MLAM

T
im

e
(s

)

0

10

20

30

40

FlushAll LRU Size LRUSize MLAM

T
im

e
(s

)

Fig. 13. Execution time comparison b
dated pages to find a victim; MLAM uses the proposed multi-level
address mapping.

When the free space of a write buffer is below 10% of the total
buffer size, the buffer flush process is invoked. The buffer flush
continues until the portion of free space is higher than 50% of
the total buffer size except for FlushAll scheme, which evicts
all pages in the write buffer during the buffer flush.

Fig. 13 shows the total execution time consumed when han-
dling I/O requests of the benchmark programs when the write buf-
fer size is 32 MB. The MLAM scheme shows the best results in most
of the benchmarks. It consumes less time in the read-and-write
and copyback operations because it reduces the superblock merge
overhead by using multi-level addressing mapping. Compared to
the LRU scheme, the MLAM scheme reduces the execution times
by 29–64%.

The Size scheme also shows a good performance. However, it
can show a worse performance than the LRU+Size scheme as
shown in Fig. 13(f) since the Size scheme wastes buffer space with
LRU data. For the Desktop and pcFAT32 benchmarks, the MLAM

and Size schemes show similar performances. The Desktop

benchmark writes a large amount of small random data and there-
fore too many blocks are written by L1 or L2 mapping as shown in
Fig. 9(a). This causes most of them to be reorganized before they
are updated, which invokes a significant superblock reorganization
overhead as shown in Fig. 10. Therefore, the performance gain from
multi-level mapping is canceled out. The write pattern of the
pcFAT32 benchmark has a high spatial locality, so most of the
blocks are written by L0 mapping even when kempty ¼ 0 as shown
(b) pcFAT32

(d) JPEG File Copy

(f) Iozone

ack Write Read

0

100

200

300

400

500

600

FlushAll LRU Size LRUSize MLAM

0

40

80

120

160

FlushAll LRU Size LRUSize MLAM

T
im

e
(s

)
T

im
e

(s
)

T
im

e
(s

)

0

1000

2000

3000

4000

FlushAll LRU Size LRUSize MLAM

etween victim selection policies.

220 H. Park, D. Shin / Journal of Systems Architecture 56 (2010) 208–220
in Fig. 9(b). Therefore, the performance gain from the MLAM scheme
is insignificant.

6. Conclusion

The parallel architecture that uses multi-channel and multi-
way techniques is essential to the high performance NAND flash
SSD. However, the accompanying coarse-grained mapping can
show poor performance when there are many random and scat-
tered write requests. In this paper, we proposed a novel buffer
management policy and a multi-level address mapping scheme
that consider the parallel architecture of SSD. The proposed
scheme reduced the superblock merge overhead significantly by
allowing fine-grained mappings. We expect that the future SSDs
will use parallel architecture more intensively and our proposed
schemes will reduce the overhead from the coarse-grained map-
ping effectively.

For future works, several other FTL issues to complement the
MLAM scheme will be studied, such as wear-leveling and crash
recovery. In addition, we plan to compare MLAM with hybrid-level
mapping and superpage-level mapping, and devise a hybrid-level
addressing mapping scheme for SSD that utilizes the log buffer
more efficiently.

References

[1] Flash memory k9xxg08xxm, Technical Report, Samsung Electronics Co. LTD.,
March 2007.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, R. Panigrahy,
Design tradeoffs for SSD performance, in: Proc. of USENIX’08, 2008, pp. 57–70.

[3] L.-P. Chang, Hybrid solid-state disks: combining heterogeneous nand flash in
large SSDs, in: Proc. of Asia and South Pacific Design Automation Conference
(ASP-DAC), 2008, pp. 428–433.

[4] L.-P. Chang, T.-W. Kuo, Efficient management for large-scale flash-memory
storage systems with resource conservation, ACM Transactions on Storage 13
(4) (2005) 381–418.

[5] C. Dirik, B. Jacob, The performance of pc solid-state disks (SSDs) as a function of
bandwidth, concurrency, device architecture, and system organization, in:
Proceedings of the 36th Annual International Symposium on Computer
Architecture, 2009, pp. 279–289.

[6] Intel, <http://www.intel.com/design/flash/nand>.
[7] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, J. Lee, Fab: flash-aware buffer

management policy for portable media players, IEEE Transactions on
Consumer Electronics 52 (2) (2006) 485–493.

[8] J.-U. Kang, H. Jo, J.-S. Kim, J. Lee, A superblock-based flash translation layer for
nand flash memory, in: Proc. of EMSOFT’06, 2006, pp. 161–170.

[9] J.-U. Kang, J.-S. Kim, C. Park, H. Park, J. Lee, A multi-channel architecture for
high-performance nand flash-based storage system, Journal of Systems
Architecture 53 (9) (2007) 644–658.

[10] H. Kim, S. Ahn, Bplru: A buffer management scheme for improving random
writes in flash storage, in: Proc. of Sixth USENIX Conference on File and Storage
Technologies (FAST), 2008, pp. 239–252.

[11] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, Y. Cho, A space-efficient flash translation
layer for compact flash systems, IEEE Transactions on Consumer Electronics 48
(2) (2002) 366–375.
[12] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, d H.-J. Song, A log buffer-
based flash translation layer using fully-associative sector translation, ACM
Transactions on Embedded Computing Systems 6 (3) (2007).

[13] Y.-G. Lee, D. Jung, D. Kang, J.-S. Kim, l-ftl: a memory-efficient flash translation
layer supporting multiple mapping granularities, in: Proc. of EMSOFT’08, 2008,
pp. 21–30.

[14] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, J.-S. Kim, A reconfigurable ftl (flash
translation layer) architecture for nand flash-based applications, ACM
Transactions on Embedded Computing Systems 7 (4) (2008) (article 38).

[15] C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, Y. Choi, A high performance
controller for nand flash-based solid state disk (nssd), in: Proc. of IEEE Non-
Volatile Semiconductor Memory Workshop, 2006, pp. 17–20.

[16] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, J. Lee, Cflru: a replacement algorithm
for flash memory, in: Proc. of International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, 2006, pp. 234–241.

[17] Samsung. <http://www.samsungssd.com>.
[18] SanDisk. <http://www.driveyourlaptop.com>.
[19] D. Seo, D. Shin, Recently-evicted-first buffer replacement policy for flash

storage devices, IEEE Transactions on Consumer Electronics 54 (3) (2008)
1228–1235.

[20] C.-H. Wu, T.-W. Kuo, An adaptive two-level management for the flash
translation layer in embedded systems, in: Proc. of International Conference
on Computer-Aided Design, 2006, pp. 601–606.

Hyunchul Park received the B.S. degree in computer
engineering from Sungkyunkwan University, Korea, in
2009. He is currently a Master student in the School of
Information and Communication Engineering, Sung-
kyunkwan University. His research interests include
embedded software and computer architecture.
Dongkun Shin received the B.S. degree in computer
science and statistics, the M.S. degree in computer sci-
ence, and the Ph.D. degree in computer science and
engineering from Seoul National University, Korea, in
1994, 2000 and 2004, respectively. He is currently an
Assistant Professor in the School of Information and
Communication Engineering, Sungkyunkwan University
(SKKU). Before joining SKKU in 2007, he was a senior
engineer of Samsung Electronics Co., Korea. His research
interests include embedded software, low-power sys-
tems, computer architecture, and multimedia and real-
time systems.

http://www.intel.com/design/flash/nand
http://www.samsungssd.com
http://www.driveyourlaptop.com

	Buffer flush and address mapping scheme for flash memory solid-state disk
	Introduction
	Related works
	Flash translation layer
	Flash SSD
	Flash-aware buffer schemes

	Multi-channel and multi-way architecture
	Multi-level address mapping
	Victim superblock selection policy
	Virtual superblock composition
	Address mapping for virtual superblock
	Superblock reorganization

	Experiments
	Conclusion
	References

