
Storage Architecture and Software Support
for SLC/MLC Combined Flash Memory

Soojun Im and Dongkun Shin
Sungkyunkwan University

Suwon, Korea
{lang33, dongkun}@skku.edu

ABSTRACT
We propose a novel flash memory management software for
SLC/MLC combined flash memories which are recently
introduced to provide flexible and cost-efficient embedded
storage systems. To provide a fast and large capacity of flash
memory, the proposed scheme utilizes the SLC area as log buffer
and the MLC area as data block. Considering the high write cost
of MLC flash, the garbage collection for the SLC log buffer
moves a page into the MLC data block only when the page is cold
or the page invokes a small migration cost. We also propose the
bypassing technique which sends a large sequential data into the
MLC flash directly not through the SLC log buffer. From the
experiments, we can know that the proposed scheme utilizes the
SLC log buffer effectively providing better performance
compared with the previous flash management schemes for the
SLC/MLC combined flash. 1

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems] real-
time and embedded systems.

J.7 [Computers in Other Systems]: consumer products.

General Terms
Algorithms, Design.

Keywords
flash memory, flash translation layer, SLC/MLC combined flash,
embedded system, storage system

1. INTRODUCTION
NAND flash memory has been used as a non-volatile storage
device for mobile embedded systems (such as MP3 players, PDAs
and digital cameras) because of its low-power consumption, high

1 This work was supported by the Koreas Research Foundation Grant funded
by the Korean Government (MOEHRD). (KRF-2007-331-D00358)

random access performance and high mobility. There has recently
been a significant growth in the NAND flash market due to the
increase of MP3 player and digital camera since these devices
should store a large amount of multimedia data.

There are two types of flash memories: single-level-cell (SLC)
and multi-level-cell (MLC). In SLC flash memory, one flash
memory cell represents one bit. In MLC flash memory, more than
one bit can be represented using multiple voltage thresholds [1].
SLC flash memory is faster, more reliable and has a larger
number of erase cycles than MLC. However, MLC flash provides
a larger storage capacity than SLC flash for the same-sized die,
thus it is cheaper than SLC flash. So, MLC flash is a promising
solution for large-scale flash memory systems such as USB flash
memory or solid-state disk (SSD).

Recently, SLC/MLC combined flash architectures are introduced.
One is to use both SLC flash chip and MLC flash chip to compose
a large scale SSD [2]. In this architecture, there are multiple flash
memory chips in an SSD and some portion of chips are SLC flash
chips and the other portion of chips are MLC flash chips. The
other approach is to use SLC/MLC combined flash chip which
has both SLC blocks and MLC blocks in a single chip. For
example, there are Samsung’s Flex-OneNAND [3] and Toshiba’s
mobileLBA-NAND [4]. In these flash memory chips, flash
memory blocks are divided into two areas: SLC area and MLC
area. Depending on the size of each area, the total storage
capacity of flash memory is changed. For example, if there are
1024 blocks in a flash memory chip where 256 blocks are SLC
blocks and 768 blocks are MLC blocks, the total capacity is
458MB (=65MB+393MB) when we assume the block sizes in
SLC and MLC are 256KB and 512KB, respectively.

Table 1. Characteristics of SLC and MLC Flash Blocks

SLC MLC

Page size 4KB

Block size 256KB (64pages) 512KB (128pages)

Page read 45us 50us

Page write 240us 1ms

Block erase 500us

P/E cycles 50K 10K

Table 1 shows the characteristics of SLC flash block and MLC
flash block of SLC/MLC combined flash chip. The page sizes of
two types are same but they have different block sizes. While
there are no significant difference between the read performances
of SLC and MLC, the write performances are significantly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

1664

different. The possible number of program and erase (P/E cycle)
of SLC block is five times of MLC block. This data is taken from
the data sheet of Samsung’s Flex-OneNAND [3]. Note that the
characteristics of SLC flash chip and MLC flash chip are different
from the SLC area and the MLC area of SLC/MLC combined
flash chip. For example, while the read performance of MLC chip
is generally slower than that of SLC chip, the read performances
of SLC area and MLC area of the combined flash are similar.

Flash memory has several special features unlike the traditional
magnetic hard disk. First one is its “erase-before-write”
architecture. To write data in a block, the block should be erased
before. Second feature is that the unit sizes of erase operation and
write operation are different. While the flash memory is erased by
the unit of block, the write operation is performed by the unit of
page. A block is a bundle of several pages. Third feature is that
the page writing (programming) within a block should be done
sequentially. That means that the LSB (least significant bit) page
of the block should be programmed before the MSB (most
significant bit) pages of the block. Random page address
programming is prohibited. The feature is called SOP
(Sequentiality of Programming).

Due to these features, special software called flash translation
layer (FTL) is required, which maps the logical page address from
the file system to the physical page address in flash memory
devices. The FTLs can be divided into three classes depending on
the address mapping granularity, i.e., block-level mapping, page-
level mapping and hybrid mapping. In the block-level mapping,
only a logical block address is mapped to a physical block address,
and the same page offset in a block is used. So, a logical page
should be written by the in-place scheme, which means a page is
written at the fixed location of a block determined by the page
offset in a block. The block-level mapping needs a small-sized
block-level mapping table. However, when data at a specific page
is to be modified, the specified block should be erased and the
non-updated pages as well as the updated page should be copied
into the new block. This constraint results in a high page
migration cost.

In the page-level mapping, a logical page can be mapped by the
out-of-place scheme, which means a page can be written at any
physical page in a block. If an update request is sent for a logical
page which is already written in flash memory, the page-level
mapping writes the new data to a different clean page and
invalidates the old page since flash memory page cannot be
overwritten. To do that, it should manage the page-level mapping
table, thus the mapping table size is inevitably large.

The hybrid mapping is a compromised version of page mapping
and block mapping. In this scheme, all the physical blocks are
divided into log blocks and data blocks. The log blocks are called
log buffer. So, the FTL using hybrid mapping scheme is called as
a log buffer-based FTL. While the log blocks use the page-level
mapping scheme, the data blocks are handled by the block-level
mapping. When a write request is sent to FTL, the data is first
written into the log buffer and the corresponding old data in data
block is invalidated. When the log buffer is full and there is no
empty space, one of log blocks is selected as a victim and all the
valid pages in the log block migrate into data blocks and the log
block is erased to make a room for on-going write requests. This
step is called block merge. There are three kinds of block merges:
full merge, partial merge and switch merge [4]. The partial merge

and switch merge can be possible only when all the pages are
written by the in-place scheme in a log block. When a log block
has all the pages of the associated data block, the switch merge is
possible. But, if a log block has free pages, the partial merge
should be used. The hybrid mapping invokes a lower page
migration cost compared to the block-level mapping, but requires
a smaller-sized mapping table compared to the page-level
mapping.

In this paper, we propose a novel FTL architecture for SLC/MLC
combined flash. The FTL is based on the hybrid mapping. It
exploits the SLC flash block as a log buffer of MLC flash block.
The main two techniques of the proposed FTL are garbage
collection and bypassing. They optimize the I/O performance of
SLC/MLC combined flash considering the large write cost of
MLC flash block.

The rest of the paper is organized as follows. In Section 2, the
related works are introduced. Section 3 describes the details of
proposed FTL scheme. Experimental results are presented in
Section 4. Section 5 concludes with a summary and future works.

2. RELATED WORKS
There have been many researches on log buffer-based FTL. The
log buffer-based FTLs are divided into two kinds depending on
the block association policy, i.e., 1:1 log block mapping (BAST)
[5] and N:1 log block mapping (FAST) [6]. The block association
policy means how many data blocks are associated with a log
block. When a log block has a page which is included to a data
block, we say that the data block is associated with the log block.
In the BAST (block associative sector translation) scheme, a log
block is allocated for only one data block. In the FAST (fully
associative sector translation) scheme, a log block can have a
page of any data block. However, if the write request pattern is
random, the 1:1 mapping scheme will show poor performance
since frequent log block merges are inevitable. This is called the
log block thrashing problem.
To solve the problem of 1:1 mapping scheme, N:1 scheme was
introduced. In N:1 scheme, a log block can be used for any data
block at a time, thus reducing the number of block merges. The
pages are written into a log block in the order of requests regardless
of the corresponding data block number. Using the N:1 mapping,
we can prevent the log block thrashing problem. However, the
problem of N:1 mapping is its high block associativity. If we merge
the log block with its associated data blocks, we should copy all the
pages of the associated data blocks to another free data blocks.
FAST maintains two kinds of log blocks, random log block (RLB)
and sequential log block (SLB). A SLB is associated to only one
data block. All the pages in the SLB are written by the in-place
scheme. So, the SLB can be merged by either switch merge or
partial merge.
Recently, LAST [7] FTL scheme further separates the log buffer
into three partitions: sequential log buffer, hot random log buffer,
and cold random log buffer. By utilizing the temporal locality and
the spatial locality, LAST scheme improved the performance of
garbage collection.
There are also N:K log block mapping techniques such as
Superblock [8] and SAST [9]. In the N:K log block mapping, K
number of log blocks are used for N number of data blocks. The
N:K mapping is a compromised version of BAST and FAST.

1665

3. STORAGE ARCHITECTURE
The SLC/MLC combined flash chip is originally proposed to
store applications at the SLC area and data at the MLC area.
However, since the reliability of MLC can be improved with an
error correcting controller and the read performance of MLC area
is similar to the SLC area, we think that it is better to use the SLC
area as write buffer for the frequently-updated data. The address
space provided to the file system is that of MLC area. The SLC
area is used for log buffer of MLC area by log buffer-based FTL.
Using these architectures, the SLC/MLC combined flash can
provides the similar performance of SLC only flash chip with the
similar capacity of MLC only flash chip.
In this paper, the write requests are first sent to the SLC area (log
buffer), which is managed by the page-level mapping, by the log
buffer-based FTL. The MLC area (data block) is managed by the
block-level mapping since it generally has a large number of
pages. A sequential large data bypasses the SLC area since they
are generally write-once data. When there is no free space in the
SLC area, the garbage collector is invoked. The garbage collector
makes free spaces by reclaiming the space occupied by invalid
pages or by sending cold data to the MLC area.
Park et al. [10] also proposed an FTL for SLC/MLC combined
flash chip. However, the FTL does not use the SLC block as a log
buffer instead it tries to store hot data at the SLC block and cold
data at the MLC block to optimize the I/O performance. In
addition, it uses a page-level mapping scheme for both the SLC
area and the MLC area. So, it requires a large-sized mapping table.
However, our proposed technique requires a small mapping table
since it is based on the hybrid mapping scheme.

3.1 Garbage Collection
In the current log buffer-based FTL, all the valid pages of a
victim log block are moved into the data block by block merge
operation. So, it can be called block-level merge. However, we
use a page-level merge considering the slow write performance of
MLC area. If a page is frequently-updated, it is better to keep the
page at the log buffer. So, the garbage collector transfers only the
cold pages into the MLC area, thus the hot pages remain in the
SLC area.
The garbage collector also considers the page migration cost. If
only a small portion of a data block is updated, the updated pages
are located at the SLC area and the non-updated pages are at the
MLC area. Then, moving the page into MLC area will invoke a
large amount of page copies within the MLC area to maintain the
block-level mapping. In such a case, it is better to leave it at the
log buffer until more write requests on the corresponding block
arrive. So, the garbage collector selects the page to be sent to
MLC area considering the number of valid pages in the
corresponding MLC data block to be merged with the page.
The garbage collection is composed of three steps: data block
classification, migration to data block and migration within log
buffer.

3.1.1 Data Block Classification
First, we classify all the pages in SLC log block into three types:
hot, warm and cold. If the update count of a page after the last
garbage collection is large than the specified threshold value Phot,
the page is classified into the hot page. If a page is not accessed
during more than Pcold number of garbage collections, the page is

classified into the cold page. The other pages are warm pages. For
example, in Figure 1, we assume that the pages 10, 20, 26, 27 and
28 are hot pages and the pages 11, 12 and 13 are cold.
Second, we classify all the MLC data blocks which are associated
with the log blocks. The data blocks MB0, MB1, MB2 and MB3
are the associated data blocks. We estimate the numbers of hot,
warm and cold pages of the data blocks. The number sequences
(hot, warm, cold) of data blocks MB0, MB1, MB2 and MB3 are
(0,6,0), (1,0,3), (1,2,0), and (3,1,0), respectively. If a data block
has more than Bcold number of pages whose corresponding page in
the log buffer is cold, the data block is regarded as cold block. If a
data block has more than Bhot number of pages whose
corresponding page in log buffer is hot and the data block is not
cold block, the data block is regarded as hot block. Otherwise, it
is considered as warm block. Therefore, if we assume that Bcold
and Bhot is 2, then the data block MB1 is cold, the data block MB3
is hot, and the data blocks MB0 and MB2 are warm. The aim of
this classification is to perform the page-level merge with only the
cold block and the warm block.

3.1.2 Migration to Data Block
We move all the log pages whose associated data blocks are cold
into data blocks. Since the cold block has a large number of cold
pages, we evict the cold pages from the log buffer to make free
spaces. For the warm block, we estimate the number of valid
pages of the warm block. For instance, the warm data block MB0
has two valid pages while the warm data block MB2 has five
valid pages in Figure 1(a). For the pages in log buffer whose
corresponding data block is warm block with many valid pages, it
is better to delay moving the pages into the MLC data block since
the page migration will invoke a large number of page copies
within the MLC blocks. So, if the number of valid pages in a
warm block is more than �, we does not merge the data block
with log blocks. If we assume that � is 4, only the data block MB0
is selected for block merge target. So, the logical pages 0, 1, 2, 3,
4, and 6 migrate into data blocks and they are invalidated at the
log blocks. After the page migrations, the data blocks MB0 and
MB1 can be erased as shown in Figure 1(b). Since the read
performances of SLC and MLC are similar, we invalidate all the
pages which migrate to the MLC block to reclaim the free space.
If the read performances are quite different, it could be better not
to invalidate the hot pages for the future read requests2. The value
of � determines the number of pages to migrate into MLC area. It
also affects the frequency of garbage collection.

3.1.3 Migration within Log Buffer
After the migration to data block, there will be many invalid
pages in the log buffer. Therefore, we should reclaim the free
space by erasing some log blocks. If all the pages in a log block
are invalid, we can erase the block and make it clean to be reused.
However, if there are both valid pages and invalid pages in a log
block, we should determine whether to move the valid pages into
another log blocks and erase the block or not to reclaim the
invalid pages of the log block. We should consider how many
valid pages are there since it determines the page copy overhead.
So, we estimate the number of valid pages in each log block. Only
when the log block has a smaller than � number of valid pages,

2 Even though a page is hot, the page can be merged with a data

block if the data block is cold or warm block.

1666

we move all the valid pages of the log block into another log
block. If we assume the value of � is 2, only the page 20 is copied
into the SB5 and the log blocks SB0, SB1 and SB3 are erased in
Figure 1(c).

Figure 1 Garbage collection on SLC log buffer

3.2 Bypassing the log buffer
FAST scheme uses a sequential log block for the sequential write
request. In the sequential log block, data is written by the in-place
scheme. So, we can perform the switch merge which changes the
sequential log block to a data block without page copy and block
erase. However, in the SLC/MLC combined flash, if we allocate a
sequential log buffer at SLC area, we cannot use the switch merge
since log block and data block are located at different areas.
Therefore, it is useless to allocate a sequential log block in SLC
area. Instead, we use the bypassing technique for the sequential
write request.
Generally, large and sequential data has a low temporal locality
[7]. So, we make the large data to bypass the SLC log buffer. If
the sector length of a write request from the file system is larger
than the specified threshold �, the FTL sends it directly to the
MLC area. In most of cases, the file system sends the write
request of a large data to the storage after dividing it into multiple
write requests. So, there will be subsequent write requests for a
large-sized file. Since we cannot overwrite a flash memory page,
even a small-sized update request invokes many page copies in
the block-level mapping. So, to reduce the page copy cost, we use
the update block as shown in Figure 2.
For example, if the write request write(1,4) (write four pages
from the logical page offset 1) is sent to the FTL, we allocates an
update block MB4 and writes the new five pages 0, 1, 2, 3 and 4
into the block and invalidate the corresponding old pages in MB0.

Even though the page 0 is not updated, we copy it from MB0 to
MB4 to preserve the in-place write scheme in MB4. Note that we
cannot write the page 0 after the pages 1, 2 and 3 are written in
MB4 due to the SOP feature of flash memory. The block mapping
table maintains the physical block number (PBN) and the update
physical block number (UPBN) for each logical block number
(LBN). After the update for a data block, a corresponding update
block is allocated and the UPBN is recorded into the block
mapping table.
If the update block is fully written, it is changed to a data block
and the old data block is erased to be reused. If the update request
for the valid page in the update block arrives, the update block
should be merged with the corresponding data block because only
one update block can be allowed for a data block. We also limit
the maximum number of update blocks. So, if there is no more
update block to be allocated, one of update blocks should be
merged with its corresponding data block. The victim should be
selected considering the number of free blocks in the update block.
Since we should copy pages as the number of free pages in the
update block, we select the update block which has the smallest
number of free pages.
To determine whether a write request bypasses the SLC log buffer
or not, we use the request data length (L) and the page offset from
the last update page (O). For example, the page offset of the first
write request write(1,4) is 1. However, if another write request
write(6,2) comes subsequently, the page offset from the last
update page is 1 (not 6) since the last written page is 4. The larger
the value of L is and the smaller the value of O is, the priority of
bypassing should be larger. So, we can represent the bypassing
condition as follows:

L � � and O �

We can adjust the values of � and � to limit the number of write
requests on SLC. If the SLC blocks are worn out too quickly, we
decrease � and increase � to make more write requests to bypass
the SLC log buffer. If the MLC blocks are worn out too quickly
or the write requests for the MLC block are too many, � is
increased and � is decreased. This technique is called bypassing-
throttling. Using the bypassing-throttling, we can balance the
number of program/erase cycles of SLC blocks and MLC blocks.

Figure 2 Using update block in the MLC block

4. EXPERIMENTS
We evaluated the performance of the proposed scheme using
simulation. The workloads used for our experiments were
extracted from Microsoft Windows XP-based desktop PC,
running several applications, such as documents editors, music

1667

players, web browsers and games. We collected the trace from
both FAT32 and NTFS file systems. We also collected other
traces running IOzone and Postmark benchmarks. For the
characteristic of SLC/MLC combined flash memory, we used the
values in Table 1.
We first evaluated the effects of variables related to the hot/cold
separation, Phot, Pcold, Bhot and Bcold. For all experiments, the best
values of Phot are 0. That is, if there are more than or equal to one
number of update on a page, we should consider the page is hot.
Figures 3 and 4 show the effects of Pcold, Bhot, Bcold and �. As we
decrease the values of Pcold and Bcold, there are many cold pages
and cold blocks, thus the number of page migration to MLC area
increases. As we decrease the value of Bhot, the number of hot
page migration to MLC area decreases. For FAT32 trace, the best
values are 25, 0, and 12 for Pcold, Bhot and Bcold, respectively. The
best value of � is 40. If the value of � is too small, there will be
frequent invocations of garbage collection since many invalid
pages are not reclaimed. If the value of � is too large, there will be
many page migrations within the SLC area.

Figure 3 The effect of Bhot and Pcold (�=64, �=40, Phot=0, Bcold=12, FAT32)

�

Figure 4 The effect of � and Bcold (�=64, Pcold=25, Bhot=0, FAT32)

We also evaluated the effects of �. Figure 5 shows the execution
time consumed by I/O. If � is 0, none of the pages associated with
the warm blocks migrates to MLC blocks. So, there are frequent
garbage collector invocations as shown in Figure 6. As we
increase the value of �, the performance is improved because the
number of garbage collector invocations decreases. However, if �
is larger than 64, there are performance degradations since the
numbers of page migrations from MLC to MLC and from SLC to
MLC per garbage collection increase as shown in Figure 6.

�

Figure 5 The effect of � (�=40, Pcold=25, Bcold=12, FAT32)

�

Figure 6 The garbage collections varying � (�=40, Pcold=25, Bcold=12, FAT32)

Figures 7 and 8 show the result of the trace collected on NTFS.
The result patterns are similar to the trace of FAT32. However,
the optimal value of � is smaller than that of FAT32. This means
that it is better to move the pages associated with the warm blocks
since there are little temporal locality on the trace. For the same
reason, the optimal values of Pcold and Bcold (15 and 6) are smaller
than those of FAT32 (25 and 12). From the experimental results,
we can know that the parameter values of Pcold, Bhot, Bcold, � and �
determine the numbers of garbage collection invocations, page
migrations within SLC area and page migrations from SLC to
MLC. These values should be selected considering the workload
patterns.

�

Figure 7 The effect of � (�=40, Pcold=15, Bcold=6, NTFS)

�
Figure 8 The effect of �. (�=32, Pcold=15, Bhot=0, NTFS)

Figure 9 shows the changes of normalized execution time varying
the size of SLC area. As the number of SLC blocks (NSLC)
increases, the execution time decreases since the garbage collector
is invoked infrequently. However, there is a significant difference
between FAT32 trace and Postmark benchmark. The FAT32 trace
has a high temporal locality. Our proposed FTL utilizes the
locality well and provides a good performance even when the
SLC size is small. So, there is little performance change as the
size of SLC area increases. However, there are little temporal
locality on the Postmark benchmark. So, the garbage collection is
invoked frequently if the SLC size is small. The number of
accesses to MLC area is significantly reduced as the SLC size
increases.

1668

Figure 9 Performance comparison varying the size of SLC area (� =
64, � = 40, Pcold = 25, Bcold = 12, Bhot = 0)

We compared the proposed FTL scheme with the previous FTL
schemes BAST and FAST. All the FTL schemes use the SLC area
as a log buffer. Figure 10 shows the normalized execution times
for four traces, FAT32, NTFS, IOzone and Postmark. We
experimented for two different SLC area sizes, NSLC=80 and
NSLC=160. The proposed scheme shows better performances for
all traces.

NSLC = 80 NSLC = 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BAST

FAST

Proposed

FAT32 NTFS IOzone FAT32 NTFS IOzonePostmark Postmark

Figure 10 Comparison with previous FTL schemes

Lastly, we evaluated the effect of bypassing technique varying the
parameters � and � explained in Section 3.2. Figure 11 shows the
I/O execution time when the bypassing technique is used.
Compared to the no-bypassing scheme, the performance is
improved up to 7% using the bypassing technique. As we use a
smaller value for �, the performance is more improved since the
number of page migrations within MLC area is reduced. However,
it is too small (for example, �=1), the benefit by the bypassing
technique is reduced. Figure 12 shows that how many flash
operations are reduced by the bypassing technique. When
�=192KB, there is little changes on the SLC area, but the number
of accesses on the MLC area is reduced. When �=64KB, the
number of accesses on the SLC area is significantly reduced.
However, the MLC area cost is increased due to the update block
management overhead.

Figure 11 The effect of bypassing parameters

Figure 12 The number of flash read/write/erase counts normalized by
those in no-bypassing technique

5. CONCLUSION
We have presented a novel flash memory management scheme for
SLC/MLC combined flash chip. The proposed scheme is based on
the hybrid mapping FTL and utilizes the SLC area as a log buffer.
The garbage collection algorithm in the proposed scheme moves the
pages in the SLC area into the MLC area selectively considering
their localities and the migration costs. The bypassing algorithm
sends a large sequential data into the MLC area to use the log buffer
effectively. In the experiments, we showed the several parameters in
the algorithm should be carefully determined considering the
workload pattern. As a future work, we plan to study an adaptation
scheme which adjusts the parameters used in the proposed scheme
observing the workload pattern.

6. REFERENCES
[1] T. Cho et al. “A dual-mode NAND flash memory: 1-Gb multilevel

and high-performance 512-Mb single-level modes,” IEEE Journal of
Solid-State Circuits, Vol. 36, Issue 11, 2001.

[2] L. Chang. “Hybrid solid-state disks: Combining heterogeneous NAND
flash in large SSDs,” Proc. of Asia and South Pacific Design Automation
Conference (ASPDAC), pp. 428-433, 2008.

[3] Samsung Electronics, 4Gb Flex-OneNAND M-die,
http://www.samsung.com/global/business/semiconductor/products/fu
sionmemory/Products_FlexOneNAND.html.

[4] Toshiba America Electronic Components, Inc., mobileLBA-NAND,
http://www.toshiba.com/taec.

[5] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. “A space-efficient
flash translation layer for compact flash systems,” IEEE Transactions on
Consumer Electronics, vol. 48, no. 2, pp. 366-375, 2002.

[6] S. W. Lee, D. J. Park, T. S. Chung, W. K. Choi, D. H. Lee, S. W.
Park, and H. J. Song. “A log buffer based flash translation layer
using fully associative sector translation,” ACM Transactions on
Embedded Computing Systems, vol. 6, no. 3, 2007.

[7] S. Lee, D. Shin, and J. Kim. “LAST: locality-aware sector translation
for NAND flash memory-based storage systems,” Proc. of
SPEED’08, Salt Lake City, Utah, Feb. 2008.

[8] J. U. Kang, H. Jo, J. S. Kim, and J. Lee. “A superblock-based flash
translation layer for NAND flash memory,” in Proc. International
Conference on Embedded Software, pp. 161-170, 2006.

[9] S. Y. Park, W. Cheon, Y. Lee, M.-S. Jung, W. Cho and H. Yoon. “A
Re-configurable FTL (Flash Translation Layer) Architecture for
NAND Flash based Applications,” in Proc. of International
Workshop on Rapid System Prototyping, pp. 202-208, 2007.

[10] S. H. Park, J. W. Park, J. M. Jeong, J. H. Kim and S. D. Kim. “A
mixed flash translation layer structure for SLC-MLC combined flash
memory system,” Proc. of SPEED’08, Salt Lake City, Utah, Feb.
2008.

1669

