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ABSTRACT
We propose a novel flash memory management software for 
SLC/MLC combined flash memories which are recently 
introduced to provide flexible and cost-efficient embedded 
storage systems. To provide a fast and large capacity of flash 
memory, the proposed scheme utilizes the SLC area as log buffer 
and the MLC area as data block.  Considering the high write cost 
of MLC flash, the garbage collection for the SLC log buffer 
moves a page into the MLC data block only when the page is cold 
or the page invokes a small migration cost. We also propose the 
bypassing technique which sends a large sequential data into the 
MLC flash directly not through the SLC log buffer. From the 
experiments, we can know that the proposed scheme utilizes the 
SLC log buffer effectively providing better performance 
compared with the previous flash management schemes for the 
SLC/MLC combined flash. 1

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems] real-
time and embedded systems.

J.7 [Computers in Other Systems]: consumer products.

General Terms
Algorithms, Design. 

Keywords
flash memory, flash translation layer, SLC/MLC combined flash, 
embedded system, storage system 

1. INTRODUCTION 
NAND flash memory has been used as a non-volatile storage 
device for mobile embedded systems (such as MP3 players, PDAs 
and digital cameras) because of its low-power consumption, high 
                                                                
1 This work was supported by the Koreas Research Foundation Grant funded 
by the Korean Government (MOEHRD). (KRF-2007-331-D00358) 

random access performance and high mobility. There has recently 
been a significant growth in the NAND flash market due to the 
increase of MP3 player and digital camera since these devices 
should store a large amount of multimedia data. 

There are two types of flash memories: single-level-cell (SLC) 
and multi-level-cell (MLC). In SLC flash memory, one flash 
memory cell represents one bit. In MLC flash memory, more than 
one bit can be represented using multiple voltage thresholds [1]. 
SLC flash memory is faster, more reliable and has a larger 
number of erase cycles than MLC. However, MLC flash provides 
a larger storage capacity than SLC flash for the same-sized die, 
thus it is cheaper than SLC flash. So, MLC flash is a promising 
solution for large-scale flash memory systems such as USB flash 
memory or solid-state disk (SSD). 

Recently, SLC/MLC combined flash architectures are introduced. 
One is to use both SLC flash chip and MLC flash chip to compose 
a large scale SSD [2]. In this architecture, there are multiple flash 
memory chips in an SSD and some portion of chips are SLC flash 
chips and the other portion of chips are MLC flash chips. The 
other approach is to use SLC/MLC combined flash chip which 
has both SLC blocks and MLC blocks in a single chip. For 
example, there are Samsung’s Flex-OneNAND [3] and Toshiba’s 
mobileLBA-NAND [4].  In these flash memory chips, flash 
memory blocks are divided into two areas: SLC area and MLC 
area. Depending on the size of each area, the total storage 
capacity of flash memory is changed. For example, if there are 
1024 blocks in a flash memory chip where 256 blocks are SLC 
blocks and 768 blocks are MLC blocks, the total capacity is 
458MB  (=65MB+393MB) when we assume the block sizes in 
SLC and MLC are 256KB and 512KB, respectively.  

Table 1. Characteristics of SLC and MLC Flash Blocks

SLC MLC 

Page size 4KB

Block size 256KB (64pages) 512KB  (128pages) 

Page read 45us 50us 

Page write 240us 1ms 

Block erase 500us

P/E cycles 50K 10K 

Table 1 shows the characteristics of SLC flash block and MLC 
flash block of SLC/MLC combined flash chip. The page sizes of 
two types are same but they have different block sizes. While 
there are no significant difference between the read performances 
of SLC and MLC, the write performances are significantly 
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different. The possible number of program and erase (P/E cycle) 
of SLC block is five times of MLC block. This data is taken from 
the data sheet of Samsung’s Flex-OneNAND [3]. Note that the 
characteristics of SLC flash chip and MLC flash chip are different 
from the SLC area and the MLC area of SLC/MLC combined 
flash chip. For example, while the read performance of MLC chip 
is generally slower than that of SLC chip, the read performances 
of SLC area and MLC area of the combined flash are similar. 

Flash memory has several special features unlike the traditional 
magnetic hard disk. First one is its “erase-before-write” 
architecture. To write data in a block, the block should be erased 
before. Second feature is that the unit sizes of erase operation and 
write operation are different. While the flash memory is erased by 
the unit of block, the write operation is performed by the unit of 
page. A block is a bundle of several pages. Third feature is that 
the page writing (programming) within a block should be done 
sequentially. That means that the LSB (least significant bit) page 
of the block should be programmed before the MSB (most 
significant bit) pages of the block. Random page address 
programming is prohibited. The feature is called SOP 
(Sequentiality of Programming). 

Due to these features, special software called flash translation 
layer (FTL) is required, which maps the logical page address from 
the file system to the physical page address in flash memory 
devices. The FTLs can be divided into three classes depending on 
the address mapping granularity, i.e., block-level mapping, page-
level mapping and hybrid mapping. In the block-level mapping, 
only a logical block address is mapped to a physical block address, 
and the same page offset in a block is used. So, a logical page 
should be written by the in-place scheme, which means a page is 
written at the fixed location of a block determined by the page 
offset in a block. The block-level mapping needs a small-sized 
block-level mapping table. However, when data at a specific page 
is to be modified, the specified block should be erased and the 
non-updated pages as well as the updated page should be copied 
into the new block. This constraint results in a high page 
migration cost. 

In the page-level mapping, a logical page can be mapped by the 
out-of-place scheme, which means a page can be written at any 
physical page in a block. If an update request is sent for a logical 
page which is already written in flash memory, the page-level 
mapping writes the new data to a different clean page and 
invalidates the old page since flash memory page cannot be 
overwritten. To do that, it should manage the page-level mapping 
table, thus the mapping table size is inevitably large.  

The hybrid mapping is a compromised version of page mapping 
and block mapping. In this scheme, all the physical blocks are 
divided into log blocks and data blocks. The log blocks are called 
log buffer. So, the FTL using hybrid mapping scheme is called as 
a log buffer-based FTL. While the log blocks use the page-level 
mapping scheme, the data blocks are handled by the block-level 
mapping. When a write request is sent to FTL, the data is first 
written into the log buffer and the corresponding old data in data 
block is invalidated. When the log buffer is full and there is no 
empty space, one of log blocks is selected as a victim and all the 
valid pages in the log block migrate into data blocks and the log 
block is erased to make a room for on-going write requests. This 
step is called block merge. There are three kinds of block merges: 
full merge, partial merge and switch merge [4]. The partial merge 

and switch merge can be possible only when all the pages are 
written by the in-place scheme in a log block. When a log block 
has all the pages of the associated data block, the switch merge is 
possible. But, if a log block has free pages, the partial merge 
should be used. The hybrid mapping invokes a lower page 
migration cost compared to the block-level mapping, but requires 
a smaller-sized mapping table compared to the page-level 
mapping.

In this paper, we propose a novel FTL architecture for SLC/MLC 
combined flash. The FTL is based on the hybrid mapping. It 
exploits the SLC flash block as a log buffer of MLC flash block. 
The main two techniques of the proposed FTL are garbage 
collection and bypassing. They optimize the I/O performance of 
SLC/MLC combined flash considering the large write cost of 
MLC flash block.

The rest of the paper is organized as follows. In Section 2, the 
related works are introduced. Section 3 describes the details of 
proposed FTL scheme. Experimental results are presented in 
Section 4. Section 5 concludes with a summary and future works. 

2. RELATED WORKS 
There have been many researches on log buffer-based FTL. The 
log buffer-based FTLs are divided into two kinds depending on 
the block association policy, i.e., 1:1 log block mapping (BAST) 
[5] and N:1 log block mapping (FAST) [6]. The block association 
policy means how many data blocks are associated with a log 
block. When a log block has a page which is included to a data 
block, we say that the data block is associated with the log block. 
In the BAST (block associative sector translation) scheme, a log 
block is allocated for only one data block. In the FAST (fully 
associative sector translation) scheme, a log block can have a 
page of any data block. However, if the write request pattern is 
random, the 1:1 mapping scheme will show poor performance 
since frequent log block merges are inevitable. This is called the 
log block thrashing problem. 
To solve the problem of 1:1 mapping scheme, N:1 scheme was 
introduced. In N:1 scheme, a log block can be used for any data 
block at a time, thus reducing the number of block merges. The 
pages are written into a log block in the order of requests regardless 
of the corresponding data block number. Using the N:1 mapping, 
we can prevent the log block thrashing problem. However, the 
problem of N:1 mapping is its high block associativity. If we merge 
the log block with its associated data blocks, we should copy all the 
pages of the associated data blocks to another free data blocks. 
FAST maintains two kinds of log blocks, random log block (RLB) 
and sequential log block (SLB). A SLB is associated to only one 
data block. All the pages in the SLB are written by the in-place 
scheme. So, the SLB can be merged by either switch merge or 
partial merge.  
Recently, LAST [7] FTL scheme further separates the log buffer 
into three partitions: sequential log buffer, hot random log buffer, 
and cold random log buffer. By utilizing the temporal locality and 
the spatial locality, LAST scheme improved the performance of 
garbage collection.
There are also N:K log block mapping techniques such as 
Superblock [8] and SAST [9]. In the N:K log block mapping, K 
number of log blocks are used for N number of data blocks. The 
N:K mapping is a compromised version of BAST and FAST. 
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3. STORAGE ARCHITECTURE 
The SLC/MLC combined flash chip is originally proposed to 
store applications at the SLC area and data at the MLC area. 
However, since the reliability of MLC can be improved with an 
error correcting controller and the read performance of MLC area 
is similar to the SLC area, we think that it is better to use the SLC 
area as write buffer for the frequently-updated data. The address 
space provided to the file system is that of MLC area. The SLC 
area is used for log buffer of MLC area by log buffer-based FTL. 
Using these architectures, the SLC/MLC combined flash can 
provides the similar performance of SLC only flash chip with the 
similar capacity of MLC only flash chip.  
In this paper, the write requests are first sent to the SLC area (log 
buffer), which is managed by the page-level mapping, by the log 
buffer-based FTL. The MLC area (data block) is managed by the 
block-level mapping since it generally has a large number of 
pages. A sequential large data bypasses the SLC area since they 
are generally write-once data. When there is no free space in the 
SLC area, the garbage collector is invoked. The garbage collector 
makes free spaces by reclaiming the space occupied by invalid 
pages or by sending cold data to the MLC area.  
Park et al. [10] also proposed an FTL for SLC/MLC combined 
flash chip. However, the FTL does not use the SLC block as a log 
buffer instead it tries to store hot data at the SLC block and cold 
data at the MLC block to optimize the I/O performance. In 
addition, it uses a page-level mapping scheme for both the SLC 
area and the MLC area. So, it requires a large-sized mapping table. 
However, our proposed technique requires a small mapping table 
since it is based on the hybrid mapping scheme.  

3.1 Garbage Collection 
In the current log buffer-based FTL, all the valid pages of a 
victim log block are moved into the data block by block merge 
operation.  So, it can be called block-level merge. However, we 
use a page-level merge considering the slow write performance of 
MLC area. If a page is frequently-updated, it is better to keep the 
page at the log buffer. So, the garbage collector transfers only the 
cold pages into the MLC area, thus the hot pages remain in the 
SLC area.  
The garbage collector also considers the page migration cost. If 
only a small portion of a data block is updated, the updated pages 
are located at the SLC area and the non-updated pages are at the 
MLC area. Then, moving the page into MLC area will invoke a 
large amount of page copies within the MLC area to maintain the 
block-level mapping. In such a case, it is better to leave it at the 
log buffer until more write requests on the corresponding block 
arrive. So, the garbage collector selects the page to be sent to 
MLC area considering the number of valid pages in the 
corresponding MLC data block to be merged with the page. 
The garbage collection is composed of three steps: data block 
classification, migration to data block and migration within log 
buffer.

3.1.1 Data Block Classification 
First, we classify all the pages in SLC log block into three types: 
hot, warm and cold. If the update count of a page after the last 
garbage collection is large than the specified threshold value Phot,
the page is classified into the hot page. If a page is not accessed 
during more than Pcold number of garbage collections, the page is 

classified into the cold page. The other pages are warm pages. For 
example, in Figure 1, we assume that the pages 10, 20, 26, 27 and 
28 are hot pages and the pages 11, 12 and 13 are cold.
Second, we classify all the MLC data blocks which are associated 
with the log blocks. The data blocks MB0, MB1, MB2 and MB3 
are the associated data blocks. We estimate the numbers of hot, 
warm and cold pages of the data blocks. The number sequences 
(hot, warm, cold) of data blocks MB0, MB1, MB2 and MB3 are 
(0,6,0), (1,0,3), (1,2,0), and (3,1,0), respectively. If a data block 
has more than Bcold number of pages whose corresponding page in 
the log buffer is cold, the data block is regarded as cold block. If a 
data block has more than Bhot number of pages whose 
corresponding page in log buffer is hot and the data block is not 
cold block, the data block is regarded as hot block. Otherwise, it 
is considered as warm block. Therefore, if we assume that Bcold
and Bhot is 2, then the data block MB1 is cold, the data block MB3 
is hot, and the data blocks MB0 and MB2 are warm. The aim of 
this classification is to perform the page-level merge with only the 
cold block and the warm block.

3.1.2 Migration to Data Block 
We move all the log pages whose associated data blocks are cold 
into data blocks. Since the cold block has a large number of cold 
pages, we evict the cold pages from the log buffer to make free 
spaces. For the warm block, we estimate the number of valid 
pages of the warm block. For instance, the warm data block MB0 
has two valid pages while the warm data block MB2 has five 
valid pages in Figure 1(a). For the pages in log buffer whose 
corresponding data block is warm block with many valid pages, it 
is better to delay moving the pages into the MLC data block since 
the page migration will invoke a large number of page copies 
within the MLC blocks. So, if the number of valid pages in a 
warm block is more than �, we does not merge the data block 
with log blocks. If we assume that � is 4, only the data block MB0 
is selected for block merge target. So, the logical pages 0, 1, 2, 3, 
4, and 6 migrate into data blocks and they are invalidated at the 
log blocks. After the page migrations, the data blocks MB0 and 
MB1 can be erased as shown in Figure 1(b). Since the read 
performances of SLC and MLC are similar, we invalidate all the 
pages which migrate to the MLC block to reclaim the free space. 
If the read performances are quite different, it could be better not 
to invalidate the hot pages for the future read requests2. The value 
of � determines the number of pages to migrate into MLC area. It 
also affects the frequency of garbage collection. 

3.1.3 Migration within Log Buffer 
After the migration to data block, there will be many invalid 
pages in the log buffer. Therefore, we should reclaim the free 
space by erasing some log blocks. If all the pages in a log block 
are invalid, we can erase the block and make it clean to be reused. 
However, if there are both valid pages and invalid pages in a log 
block, we should determine whether to move the valid pages into 
another log blocks and erase the block or not to reclaim the 
invalid pages of the log block. We should consider how many 
valid pages are there since it determines the page copy overhead. 
So, we estimate the number of valid pages in each log block. Only 
when the log block has a smaller than � number of valid pages, 
                                                                
2 Even though a page is hot, the page can be merged with a data 

block if the data block is cold or warm block. 
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we move all the valid pages of the log block into another log 
block. If we assume the value of � is 2, only the page 20 is copied 
into the SB5 and the log blocks SB0, SB1 and SB3 are erased in 
Figure 1(c).

Figure 1 Garbage collection on SLC log buffer 

3.2 Bypassing the log buffer 
FAST scheme uses a sequential log block for the sequential write 
request. In the sequential log block, data is written by the in-place 
scheme. So, we can perform the switch merge which changes the 
sequential log block to a data block without page copy and block 
erase. However, in the SLC/MLC combined flash, if we allocate a 
sequential log buffer at SLC area, we cannot use the switch merge 
since log block and data block are located at different areas. 
Therefore, it is useless to allocate a sequential log block in SLC 
area. Instead, we use the bypassing technique for the sequential 
write request. 
Generally, large and sequential data has a low temporal locality 
[7]. So, we make the large data to bypass the SLC log buffer. If 
the sector length of a write request from the file system is larger 
than the specified threshold �, the FTL sends it directly to the 
MLC area. In most of cases, the file system sends the write 
request of a large data to the storage after dividing it into multiple 
write requests. So, there will be subsequent write requests for a 
large-sized file. Since we cannot overwrite a flash memory page, 
even a small-sized update request invokes many page copies in 
the block-level mapping. So, to reduce the page copy cost, we use 
the update block as shown in Figure 2. 
For example, if the write request write(1,4) (write four pages 
from the logical page offset 1) is sent to the FTL, we allocates an 
update block MB4 and writes the new five pages 0, 1, 2, 3 and 4 
into the block and invalidate the corresponding old pages in MB0. 

Even though the page 0 is not updated, we copy it from MB0 to 
MB4 to preserve the in-place write scheme in MB4. Note that we 
cannot write the page 0 after the pages 1, 2 and 3 are written in 
MB4 due to the SOP feature of flash memory. The block mapping 
table maintains the physical block number (PBN) and the update 
physical block number (UPBN) for each logical block number 
(LBN). After the update for a data block, a corresponding update 
block is allocated and the UPBN is recorded into the block 
mapping table.
If the update block is fully written, it is changed to a data block 
and the old data block is erased to be reused. If the update request 
for the valid page in the update block arrives, the update block 
should be merged with the corresponding data block because only 
one update block can be allowed for a data block. We also limit 
the maximum number of update blocks. So, if there is no more 
update block to be allocated, one of update blocks should be 
merged with its corresponding data block. The victim should be 
selected considering the number of free blocks in the update block. 
Since we should copy pages as the number of free pages in the 
update block, we select the update block which has the smallest 
number of free pages. 
To determine whether a write request bypasses the SLC log buffer 
or not, we use the request data length (L) and the page offset from 
the last update page (O). For example, the page offset of the first 
write request write(1,4) is 1. However, if another write request 
write(6,2) comes subsequently, the page offset from the last 
update page is 1 (not 6) since the last written page is 4. The larger 
the value of L is and the smaller the value of O is, the priority of 
bypassing should be larger. So, we can represent the bypassing 
condition as follows:

L � � and O �

We can adjust the values of � and � to limit the number of write 
requests on SLC. If the SLC blocks are worn out too quickly, we 
decrease � and increase � to make more write requests to bypass 
the SLC log buffer. If the MLC blocks are worn out too quickly 
or the write requests for the MLC block are too many, � is 
increased and � is decreased. This technique is called bypassing-
throttling. Using the bypassing-throttling, we can balance the 
number of program/erase cycles of SLC blocks and MLC blocks. 

Figure 2 Using update block in the MLC block 

4. EXPERIMENTS 
We evaluated the performance of the proposed scheme using 
simulation. The workloads used for our experiments were 
extracted from Microsoft Windows XP-based desktop PC, 
running several applications, such as documents editors, music 
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players, web browsers and games. We collected the trace from 
both FAT32 and NTFS file systems. We also collected other 
traces running IOzone and Postmark benchmarks. For the 
characteristic of SLC/MLC combined flash memory, we used the 
values in Table 1. 
We first evaluated the effects of variables related to the hot/cold 
separation, Phot, Pcold, Bhot and Bcold. For all experiments, the best 
values of Phot are 0. That is, if there are more than or equal to one 
number of update on a page, we should consider the page is hot. 
Figures 3 and 4 show the effects of Pcold, Bhot, Bcold and �. As we 
decrease the values of Pcold and Bcold, there are many cold pages 
and cold blocks, thus the number of page migration to MLC area 
increases. As we decrease the value of Bhot, the number of hot 
page migration to MLC area decreases. For FAT32 trace, the best 
values are 25, 0, and 12 for Pcold, Bhot and Bcold, respectively. The 
best value of � is 40. If the value of � is too small, there will be 
frequent invocations of garbage collection since many invalid 
pages are not reclaimed. If the value of � is too large, there will be 
many page migrations within the SLC area. 

Figure 3 The effect of Bhot and Pcold (�=64, �=40, Phot=0, Bcold=12, FAT32) 

�

Figure 4 The effect of � and Bcold (�=64, Pcold=25, Bhot=0, FAT32) 

We also evaluated the effects of �. Figure 5 shows the execution 
time consumed by I/O. If � is 0, none of the pages associated with 
the warm blocks migrates to MLC blocks. So, there are frequent 
garbage collector invocations as shown in Figure 6. As we 
increase the value of �, the performance is improved because the 
number of garbage collector invocations decreases. However, if �
is larger than 64, there are performance degradations since the 
numbers of page migrations from MLC to MLC and from SLC to 
MLC per garbage collection increase as shown in Figure 6.  

�

Figure 5 The effect of � (�=40, Pcold=25, Bcold=12, FAT32) 

�

Figure 6 The garbage collections varying � (�=40, Pcold=25, Bcold=12, FAT32) 

Figures 7 and 8 show the result of the trace collected on NTFS. 
The result patterns are similar to the trace of FAT32. However, 
the optimal value of � is smaller than that of FAT32. This means 
that it is better to move the pages associated with the warm blocks 
since there are little temporal locality on the trace. For the same 
reason, the optimal values of Pcold and Bcold (15 and 6) are smaller 
than those of FAT32 (25 and 12). From the experimental results, 
we can know that the parameter values of Pcold, Bhot, Bcold, � and �
determine the numbers of garbage collection invocations, page 
migrations within SLC area and page migrations from SLC to 
MLC. These values should be selected considering the workload 
patterns.

�

Figure 7 The effect of � (�=40, Pcold=15, Bcold=6, NTFS) 

�  
Figure 8 The effect of �. (�=32, Pcold=15, Bhot=0, NTFS) 

Figure 9 shows the changes of normalized execution time varying 
the size of SLC area. As the number of SLC blocks (NSLC)
increases, the execution time decreases since the garbage collector 
is invoked infrequently. However, there is a significant difference 
between FAT32 trace and Postmark benchmark. The FAT32 trace 
has a high temporal locality. Our proposed FTL utilizes the 
locality well and provides a good performance even when the 
SLC size is small. So, there is little performance change as the 
size of SLC area increases. However, there are little temporal 
locality on the Postmark benchmark. So, the garbage collection is 
invoked frequently if the SLC size is small. The number of 
accesses to MLC area is significantly reduced as the SLC size 
increases.  
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Figure 9 Performance comparison varying the size of SLC area (� = 
64, � = 40, Pcold = 25, Bcold = 12, Bhot = 0) 

We compared the proposed FTL scheme with the previous FTL 
schemes BAST and FAST. All the FTL schemes use the SLC area 
as a log buffer. Figure 10 shows the normalized execution times 
for four traces, FAT32, NTFS, IOzone and Postmark. We 
experimented for two different SLC area sizes, NSLC=80 and 
NSLC=160. The proposed scheme shows better performances for 
all traces.  
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Figure 10 Comparison with previous FTL schemes 

Lastly, we evaluated the effect of bypassing technique varying the 
parameters � and � explained in Section 3.2. Figure 11 shows the 
I/O execution time when the bypassing technique is used. 
Compared to the no-bypassing scheme, the performance is 
improved up to 7% using the bypassing technique. As we use a 
smaller value for �, the performance is more improved since the 
number of page migrations within MLC area is reduced. However, 
it is too small (for example, �=1), the benefit by the bypassing 
technique is reduced. Figure 12 shows that how many flash 
operations are reduced by the bypassing technique. When 
�=192KB, there is little changes on the SLC area, but the number 
of accesses on the MLC area is reduced. When �=64KB, the 
number of accesses on the SLC area is significantly reduced. 
However, the MLC area cost is increased due to the update block 
management overhead. 

Figure 11 The effect of bypassing parameters 

Figure 12 The number of flash read/write/erase counts normalized by 
those in no-bypassing technique 

5. CONCLUSION 
We have presented a novel flash memory management scheme for 
SLC/MLC combined flash chip. The proposed scheme is based on 
the hybrid mapping FTL and utilizes the SLC area as a log buffer. 
The garbage collection algorithm in the proposed scheme moves the 
pages in the SLC area into the MLC area selectively considering 
their localities and the migration costs. The bypassing algorithm 
sends a large sequential data into the MLC area to use the log buffer 
effectively. In the experiments, we showed the several parameters in 
the algorithm should be carefully determined considering the 
workload pattern. As a future work, we plan to study an adaptation 
scheme which adjusts the parameters used in the proposed scheme 
observing the workload pattern. 
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