
Performance Comparison of Dynamic Voltage Scaling Algorithms for
Hard Real-Time Systems

Woonseok Kim� Dongkun Shin� Han-Saem Yun� Jihong Kim� Sang Lyul Min�

School of Computer Science and Engineering
Seoul National University ENG4190, Seoul, Korea, 151-742

wskim@archi.snu.ac.kr,�sdk, hsyun, jihong�@davinci.snu.ac.kr, symin@dandelion.snu.ac.kr

Abstract

Dynamic voltage scaling (DVS) is an effective low-power
design technique for embedded real-time systems. In recent
years, many DVS algorithms have been proposed for reduc-
ing the energy consumption of embedded hard real-time sys-
tems. However, the proposed DVS algorithms were not quan-
titatively evaluated under a unified framework, making it a
difficult task to select an appropriate DVS algorithm for a
given application/system. In this paper, we compare several
key DVS algorithms recently proposed for hard real-time pe-
riodic task sets, analyze their energy efficiency, and discuss
the performance differences quantitatively. Our evaluation
results give quantitative answers to several important DVS
questions.

1 Introduction

Dynamic voltage scaling (DVS), which adjusts the sup-
ply voltage and correspondingly the clock frequency dynam-
ically, is an effective low-power design technique for embed-
ded real-time systems. Since the energy consumption E of
CMOS circuits has a quadratic dependency on the supply
voltage���, lowering the supply voltage��� is one of the
most effective ways of reducing the energy consumption.

With a recent explosive growth in the portable and mo-
bile embedded device market, where a low-power consump-
tion is an important design requirement, several commer-
cial variable-voltage microprocessors [19, 1, 8] were devel-
oped. Targeting these microprocessors, many DVS algo-
rithms have been proposed or developed, especially for hard

�This work was supported in part by the Ministry of Education under
the BK21 program, and by the Ministry of Science and Technology under
the National Research Laboratory program.

�This work was supported by grant No. R01-2001-00360 from the Ko-
rea Science & Engineering Foundation.

real-time systems [7, 9, 18, 2, 14, 16, 5, 10]. Since lowering
the supply voltage also decreases the maximum achievable
clock speed [15], various DVS algorithms for hard real-time
systems have the goal of reducing supply voltage dynami-
cally to the lowest possible level while satisfying the tasks’
timing constraints.

Although each DVS algorithm is shown to be quite effec-
tive in reducing the energy/power consumption of a target
system under its own experimental scenarios, these recent
DVS algorithms have not been quantitatively evaluated un-
der a unified framework, making it a difficult task for low-
power embedded system developers to select an appropriate
DVS algorithm for a given application/system. A quanti-
tative analysis of the energy-efficiency is particularly impor-
tant because most of these DVS algorithms are based on both
static and dynamic slack analysis techniques whose perfor-
mance is difficult to predict analytically. In addition, their
energy efficiency fluctuate significantly depending on the
workload variations, task set characterizations, and execu-
tion paths taken, further requiring a quantitative comparison
study.

In this paper, we quantitatively evaluate the energy effi-
ciency of several recent DVS algorithms proposed for hard
real-time systems using a unified DVS simulation envi-
ronment calledSimDVS [17]. We focus on a preemptive
hard real-time systems in which periodic real-time tasks are
scheduled with the Earliest-Deadline-First (EDF) algorithm
or the Rate-Monotonic (RM) algorithm, the two most widely
used real-time system models [12]. Our study is different
from the previous performance comparisons such as [13, 6].
[13] and [6] focus onaperiodic tasks in hard real-time
systems and non real-time systems, respectively, while our
study focuses on periodic tasks in hard real-time systems.

For the target hard real-time systems, two categories of al-
gorithms are used: inter-task DVS (InterDVS) and intra-task
DVS (IntraDVS). InterDVS algorithms determine the supply
voltage on task-by-task basis, while IntraDVS algorithms

adjust the supply voltage within an individual task bound-
ary. For a comparative study, we use eight InterDVS algo-
rithms [18, 2, 14, 10] and two IntraDVS algorithms [16, 5]
that were recently proposed.

We also evaluate the energy efficiency of HybridDVS al-
gorithms. (If a DVS algorithm uses both the IntraDVS and
InterDVS approaches, we call the algorithm a hybrid DVS
algorithm (HybridDVS).)

Since many factors affect the energy efficiency of DVS al-
gorithms, our comparative study cannot answer all the DVS
performance questions. In this paper, we limit our evalua-
tion goals to the following questions which represent some
of the most important unanswered questions:

� InterDVS: What is the best InterDVS algorithm under
given conditions? How close is the algorithm’s energy
efficiency to the theoretical lower bound? What restric-
tions of variable-voltage processors, if any, limit the
achievable energy efficiency of InterDVS algorithms?

� IntraDVS: Which IntraDVS algorithm performs better
under what condition?

� HybridDVS: Can we achieve better energy efficiency
if we combine an InterDVS algorithm and an IntraDVS
algorithm?

Our comparative study shows that the existing EDF Inter-
DVS algorithms such as [2, 14, 10], are very effective; their
energy consumption is only 9�12% worse than the theoret-
ical lower bound. Moreover, this gap can be further reduced
by using a more intelligent slack distribution method. With
a better slack distribution heuristic, we strongly believe that
the energy efficiency of the current state-of-art EDF Inter-
DVS algorithms is very close to that of the theoretical opti-
mal algorithm. However, in the RM InterDVS algorithms,
there still remains a room for improvement. Also, the en-
ergy efficiency of each algorithm can vary from 10% to 32%
according to the number of voltage levels supported by the
target variable-voltage processor.

For the IntraDVS algorithms, our results indicate that the
path-based IntraDVS [16] achieves better performance than
the stochastic IntraDVS [5] when the slack time is limited.
On the other hand, when there is a large amount of slack
time, the stochastic IntraDVS algorithm works better.

For the HybridDVS algorithms, our experiments show
that the energy efficiency of a HybridDVS is better than the
one that can be achieved by using an IntraDVS algorithm or
an InterDVS algorithm alone.

The rest of the paper is organized as follows; before the
selected DVS algorithms are evaluated, we first classify ex-
isting DVS techniques in Section 2. In Section 3, we sum-
marize the selected DVS algorithms using the classification
framework of Section 2. Simulation environments are de-
scribed in Section 4. We present the performance evaluation

Table 1. Classification of DVS techniques.
Voltage Scaling Methods Scaling Decision

IntraDVS (1) Path-based method
(2) Stochastic method Off-Line

(3) Maximum constant speed
InterDVS (4) Stretching to NTA

(5) Priority-based slack-stealing On-Line
(6) Utilization updating

results in Section 5, and Section 6 concludes with a sum-
mary.

2 Classification of DVS algorithms

In this section, we classify the existing DVS techniques
and briefly describe the key characteristics of each tech-
nique. (See Table 1 for summary.)

For hard real-time systems, there are two kinds of volt-
age scheduling approaches depending on the voltage scaling
granularity: intra-task DVS (IntraDVS) and inter-task DVS
(InterDVS). The intra-task DVS algorithms [16, 5] adjust the
voltage within an individual task boundary, while the inter-
task DVS algorithms determine the voltage on a task-by-task
basis at each scheduling point. The main difference between
them is whether the slack times are used for the current task
or for the tasks that follow. InterDVS algorithms distribute
the slack times from the current task for the following tasks,
while IntraDVS algorithms use the slack times from the cur-
rent task for the current task itself.

2.1 Intra-task DVS algorithm design factors

In scheduling hard real-time tasks, in order to guaran-
tee the timing constraint of each task, the execution times
of tasks are usually assumed to be the worst case execu-
tion times (WCETs). However, since a task has many pos-
sible execution paths, there are large execution time varia-
tions among them. So, when the execution path taken at run
time is not the worst case execution path (WCEP), the task
may complete its execution before its WCET, resulting in a
slack time. In that case, IntraDVS exploits such slack times
and adjusts the processor speed. IntraDVS algorithms can be
classified into two types depending on how to estimate slack
times and how to adjust speeds.

2.1.1 Path-based method

In the path-based IntraDVS, the voltage and clock speed are
determined based on a predicted reference execution path,
such as WCEP. For example, when the actual execution de-
viates from the predicted reference execution path (say, by a
branch instruction), the clock speed is adjusted. If the new
path takes significantly longer to complete its execution than

the reference path, the clock speed israised to meet the dead-
line constraint. On the other hand, if the new path can finish
its execution earlier than the reference path, the clock speed
is lowered to reduce the energy consumption.

In the path-based IntraDVS, program locations for possi-
ble speed scaling are identified using static program analy-
sis [16] or execution time profiling [11].

2.1.2 Stochastic method

The stochastic method is based on the idea that it is better
to start the execution at a low speed and accelerate the exe-
cution later when needed than to start with a high speed and
reduce the speed later when slack time is found. By starting
at a low speed, if the task finishes earlier than its WCET, it
does not need to execute at a high speed. Theoretically, if
the probability density function of execution times of a task
is knowna priori, the optimal speed schedule can be com-
puted [5]. Under the stochastic method, the clock speed is
raised at specific time instances, regardless of the execution
paths taken. Unlike the path-based IntraDVS that can utilize
all the slack times of the task in scaling speed, the stochastic
IntraDVS may not utilize all the potential slack times.

2.2 Inter-task DVS algorithm design factors

InterDVS algorithms exploit the “run-calculate-assign-
run” strategy to determine the supply voltage, which can be
summarized as follows: (1) run a current task, (2) when the
task is completed, calculate the maximum allowable execu-
tion time for the next task, (3) assign the supply voltage for
the next task, and (4) run the next task. Most InterDVS al-
gorithms differ during step (2) in computing the maximum
allowed time for the next task� which is the sum of WCET
of � and the slack time available for� .

A generic InterDVS algorithm consists of two parts: slack
estimation and slack distribution. The goal of the slack es-
timation part is to identify as much slack times as possible
while the goal of the slack distribution part is to distribute
the resulting slack times so that the resulting speed schedule
is as uniform as possible. Slack times generally come from
two sources;static slack times are the extra times available
for the next task that can be identified statically, whiledy-
namic slack times are caused from run-time variations of the
task executions.

2.2.1 Slack estimation methods

(1) Static slack estimation
Maximum constant speed One of the most commonly

used static slack estimation methods is to compute themaxi-
mum constant speed, which is defined as the lowest possible
clock speed that guarantees the feasible schedule of a task
set [18]. For example, in EDF scheduling, if the worst case

cT
current time

current time

bTaT

current time
time time

NTA NTA

current time

(a) A single task activation

time

Case I

time

NTA

NTA

current time

time

NTACase II

(b) Multiple task activations

Figure 1. Examples of Stretching-to-NTA.

processor utilization (WCPU)� of a given task set is lower
than 1.0 under the maximum speed����, the task set can be
scheduled with a new maximum speed� �

��� � � �����. Al-
though more complicated, the maximum constant speed can
be statically calculated as well for RM scheduling [18, 5].

(2) Dynamic slack estimation
Three widely-used techniques of estimating dynamic

slack times are briefly described below.
Stretching to NTA Even though a given task set is

scheduled with the maximum constant speed, since the ac-
tual execution times of tasks are usually much less than their
WCETs, the tasks usually have dynamic slack times. One
simple method to estimate thedynamic slack time is to use
the arrival time of the next task [18]. (The arrival time
of the next task is denoted by NTA.) Assume that the cur-
rent task� is scheduled at time�. If NTA of � is later than
(��WCET���), task� can be executed at a lower speed so
that its execution completes exactly at the NTA.

Figure 1 shows examples of theStretching-to-NTA
method. When a single task� is activated as shown in Fig-
ure 1(a), the execution of� can be stretched to NTA. When
multiple tasks are activated, there can be several alternatives
in stretching options. For example, the dynamic slack time
may be given to a single task or distributed equally to all ac-
tivated tasks. Cases I and II of Figure 1(b) illustrate these
two options, respectively.

Priority-based slack stealing This method exploits the
basic properties of priority-driven scheduling such as RM
and EDF. The basic idea is that when a higher-priority task
completes its execution earlier than its WCET, the following

Table 2. Target DVS algorithms.
Category Scheduling Policy DVS Policy Used Methods�

lppsEDF [18] (3)+(4)
ccEDF [14] (6)

EDF laEDF [14] (6)�

InterDVS DRA [2] (3)+(4)+(5)
AGR [2] (4)�+(5)

lpSHE [10] (3)+(4)+(5)�

RM lppsRM [18] (3)+(4)
ccRM [14] (3)+(4)�

IntraDVS Path-based Method intraShin [16] (1)
Stochastic Method intraGruian [5] (2)

� Numbers indicate corresponding techniques in Table 1.

(�)� indicates an improved version of�.

lower-priority tasks can use the slack time from the com-
pleted higher-priority task. It is also possible for a higher-
priority task to utilize the slack times from completed lower-
priority tasks. However, the latter type of slack stealing is
computationally expensive to implement precisely. There-
fore, the existing algorithms are based on heuristics [2, 10].

Utilization updating The actual processor utilization
during run time is usually lower than the worst case proces-
sor utilization. The utilization updating technique estimates
the required processor performance at the current scheduling
point by recalculating the expected worst case processor uti-
lization using the actual execution times of completed task
instances [14]. When the processor utilization is updated,
the clock speed can be adjusted accordingly. The main merit
of this method is its simple implementation, since only the
processor utilization of completed task instances have to be
updated at each scheduling point.

2.2.2 Slack distribution methods

In distributing slack times, most InterDVS algorithms have
adopted a greedy approach, where all the slack times are
given to the next activated task. This approach is not an
optimal solution, but the greedy approach is widely used be-
cause of its simplicity.

3 Target DVS algorithms

Table 2 summarizes the DVS algorithms selected for the
comparative study. Here, eight InterDVS algorithms are
chosen, two [18, 14] of which are based on the RM schedul-
ing policy, while the other six algorithms [18, 14, 2, 10] are
based on the EDF scheduling policy. For IntraDVS algo-
rithms, two algorithms are selected, one from path-based In-
traDVS algorithms [16], and the other from stochastic meth-
ods [5].

In these selected DVS algorithms, one or sometimes more
than one slack estimation methods explained in the previous
section were used. InlppsEDF andlppsRM which were
proposed by Shinet. al. in [18], slack time of a task is es-

timated using the maximum constant speed and Stretching-
to-NTA methods.

The ccRM algorithm proposed by Pillaiet. al. [14] is
similar to lppsRM in the sense that it uses both the max-
imum constant speed and the Stretching-to-NTA methods.
However, whilelppsRM can adjust the voltage and clock
speed only when a single task is active (Figure 1(a)),ccRM
extends the stretching to NTA method to the case where mul-
tiple tasks are active (Case-II in Figure 1(b)).

Pillai et. al. also proposed two other DVS algo-
rithms [14],ccEDF andlaEDF, for EDF scheduling pol-
icy. These algorithms estimate slack time of a task using the
utilization updating method. WhileccEDF adjusts the volt-
age and clock speed based on run-time variation in processor
utilization alone,laEDF takes a more aggressive approach
by estimating the amount of work required to be completed
before NTA.

DRA andAGR, which were proposed by Aydinet. al. in
[2], are two representative DVS algorithms that are based
on the priority-based slack stealing method. TheDRA algo-
rithm estimates the slack time of a task using the priority-
based slack stealing method along with the maximum con-
stant speed and the Stretching-to-NTA methods. Aydinet.
al. also extended theDRA algorithm and proposed another
DVS algorithm calledAGR for more aggressive slack esti-
mation and voltage/clock scaling. InAGR, in addition to the
priority-based slack stealing, more slack times are identified
by computing the amount of work required to be completed
before NTA (Case-I in Figure 1(b)).

lpSHE is another DVS algorithm which is based on
the priority-based slack stealing method [10]. UnlikeDRA
andAGR, lpSHE extends the priority-based slack stealing
method by adding a procedure that estimates the slack time
from lower-priority tasks that were completed earlier than
expected. DRA, AGR, and lpSHE algorithms are some-
what similar to one another in the sense that all of them use
the maximum constant speed in the off-line phase and the
Stretching-to-NTA method in the on-line phase in addition
to the priority-based slack stealing method.

For IntraDVS algorithms, Shin’s intra-task DVS algo-
rithm [16] (intraShin) and Gruian’s’ algorithm [5] (in-
traGruian) are used as representative algorithms of the
path-based method and the stochastic method, respectively.
(The details of these algorithms were described in Section
2.)

4 Simulation environment

In this section, we describe SimDVS [17], a unified DVS
simulation environment, used for the quantitative analysis.
In order to support a wide variety of DVS algorithms and
simulation scenarios, SimDVS was designed to achieve the
following goals: 1) support both IntraDVS and InterDVS

Inputs

Executable Program

* . . .

* Energy
Consumption

Outputs

InterDVS Module

IntraDVS Preprocessing Module

Scaler
CFG

CFG
DVS−aware

Generator
IntraDVS Module

Profile Information

CFG

TableStochastic Data
Speed Transition

Intra−task Simulator

Module

Voltage
Scaler

Machine Specification

Task Execution

Module

Module

Slack Estimation

Offline

Slack

Information

Task Set Specification

Energy Estimation

Figure 2. Overview of the SimDVS simulation
environment.

algorithms, 2) integrate different DVS algorithms easily,
3) support different task workloads, variations in execution
paths taken, and different task set configurations easily, and
4) support different variable-voltage processors easily.

Figure 2 shows an overview of SimDVS, which consists
of three main modules: 1) the InterDVS module, 2) the In-
traDVS module, and 3) the IntraDVS pre-processing mod-
ule. SimDVS takes as an input a task set specification for
an InterDVS algorithm and a DVS-aware control flow graph
(CFG) for an IntraDVS algorithm. The DVS-aware CFG is
built from the input binary program. As output, SimDVS
reports the energy consumption of the input task set (or the
input CFG).

The InterDVS module is responsible for the overall op-
eration of SimDVS. It simulates a given task set under the
selected scheduling policy using a given slack estimation
heuristic. The IntraDVS module simulates IntraDVS algo-
rithms using the Intra-task simulator. The input to the In-
traDVS module is pre-processed by the tools available in
the IntraDVS pre-processing module. For faster simulations
of IntraDVS algorithms, the CFG of the input program is
simulated rather than the instructions in the program. For
a comparative study, SimDVS supports all DVS algorithms
described in Section 3.

4.1 Submodules of InterDVS module

The InterDVS module, responsible for scheduling tasks,
plays the role of a real-time scheduler in a hard real-time
system. It takes as an input the specification of a periodic
task set. The task set specification describes the properties
of simulated periodic tasks, such as the period and WCET of
each task and the workload variation factors (e.g., the worst
case utilization and execution time distribution). To simulate

a given InterDVS scheduling algorithm, it has two modules,
one for slack estimation and the other for slack distribution.
Slack estimation is done by theslack estimation module that
computes the total available time of the scheduled task, and
the slack distribution is done by thetask execution module
that determines the operating speed of the scheduled task
and simulates the execution of the task instance. To simulate
a new InterDVS algorithm, these two modules for the new
algorithm need to be added.

Slack estimation module This module is highly de-
pendent on the simulated target InterDVS algorithm. There-
fore, the exact implementation of this module depends on
the DVS algorithm. Currently, all the InterDVS algorithms
described in Table 2 are supported. In addition, an optimal
slack stealing method under EDF scheduling is also sup-
ported to evaluate the effectiveness of the slack estimation
parts of various InterDVS algorithms.

Some DVS algorithms (e.g., [5]) may require off-line
pre-processing steps for a more efficient on-line slack esti-
mation. In this case, the slack estimation module takes such
an off-line information as an additional input.

Task execution module This module has two roles.
First, it determines the voltage and clock speed based on
the available execution time�� for the current task. Using
the supported voltage levels by the target machine (speci-
fied in themachine specification file), it sets the voltage and
clock speed so that the activated task finishes its execution
within �� time units even in the case where its execution
takes WCEP. Second, it simulates the execution of the task.
It generates the effective workload of each task based on the
input workload variation factor, calculates the elapsed time
and the unused time from the assigned available time inter-
val, and reports this timing/speed information to theenergy
estimation module. If an intra-task scheduling is used, this
module calls theIntra-task simulator of the IntraDVS mod-
ule to simulate intra-task voltage scaling.

Energy estimation module This module takes the tim-
ing and speed information from the task execution module,
and computes the energy consumption of the current task ex-
ecution using the current machine configuration. By default,
the energy consumption is estimated based on the equations
described in [3]. The current version of SimDVS supports
the specifications ofXScale [8], AMD’s K6-2+ [1], andCru-
soe [19] processors.

4.2 Submodules of IntraDVS & its pre-processing
modules

The IntraDVS module that contains the intra-task simu-
lator has two roles; it simulates the execution behavior of
real applications, and performs intra-task DVS. To reflect
the execution behavior of real applications, the CFG gener-
ator in theIntraDVS pre-processing module produces CFGs

from SimpleScalar 2.0 [4] binary program. Each node of a
CFG is annotated with extra information (e.g., the number
of instructions in a basic block) necessary for proper simula-
tion runs. In order to support the simulation of path-based
IntraDVS algorithms and stochastic IntraDVS algorithms,
voltage scaling locations within a task should be determined
during the off-line phase. The following two submodules in
the IntraDVS pre-processing module are responsible for this.

Voltage scaler This module takes the CFG of the
target application and extracts the timing information from
the CFG. It analyzes the given CFG and computes the pre-
dicted remaining execution times from each basic block.
Then, it inserts the voltage scaling information at selected
scaling points. Finally, Voltage scaler generates theDVS-
aware CFG, which includes voltage scaling information,
and passes it to the Intra-task simulator for the path-based
IntraDVS.

Speed transition table To simulate stochastic IntraDVS
algorithms, the stochastic data (such as the cumulative dis-
tribution function of task execution times) should be col-
lected from profiling. Based on the stochastic data, the speed
transition table, which describes when the execution speed
is changed to what level, is constructed. Then, the speed
transition table is passed to the Intra-task simulator for the
stochastic Intra-DVS.

5 Experimental results

The DVS algorithms described in Section 3 are evaluated
by implementing them in SimDVS and performing exper-
iments with various key parameters that may affect the en-
ergy efficiency of the DVS algorithms. Three classes of DVS
algorithms were evaluated: InterDVS algorithms, IntraDVS
algorithms, and HybridDVS algorithms.

For the experiments, the energy consumption model
based on the ARM8 microprocessor core is used. The clock
speed can be varied in the range of [8, 100] MHz with a step
size of 1 MHz and the supply voltage can be varied in the
range of [1.1, 3.3] V. We assume that the system enters a
power-down mode whenever the system becomes idle and
that no energy is consumed in the power-down mode. We
also assume that the voltage scaling overhead is negligible
both in the time and the energy consumed.

5.1 Performance evaluation of InterDVS algo-
rithms

The energy efficiency of InterDVS algorithms depends
significantly on the accuracy of slack estimation and the ap-
propriateness of slack distribution. To evaluate the effective-
ness of the slack estimation method used in each InterDVS
algorithm, extensive experiments while varying the num-
ber of tasks and WCPUs of task sets are performed. Then,

the energy efficiency of the algorithms are measured while
changing the number of available voltage levels, in order
to evaluate their adaptability to different machine specifi-
cations. Finally, to evaluate the effect of slack distribution
methods, experiments were performed while restricting the
amount of slack time that a task can utilize.

5.1.1 Number of tasks

To evaluate the impact of the number of tasks on the en-
ergy efficiency of DVS algorithms, experiments with var-
ious numbers of tasks were performed. For each task set
with � tasks (where� � �� �� �� � � � � ��), 100 task sets
were randomly generated. The period and the WCET of
each task were randomly generated using uniform distribu-
tion with the ranges of	�
� �

� ms and	�� �	
��� ms, re-
spectively. To eliminate the effect of static slack times, we
chose the task sets which have high worst case processor
utilization; WCPUs are equal to 1.0 for EDF InterDVS al-
gorithms and 0.9 for RM InterDVS algorithms. The execu-
tion time of each task instance was randomly drawn from a
Gaussian distribution� with the range of	 �

��
WCET, WCET�

of each task, and the resulting average case processor uti-
lization (ACPU) was set to 0.55.

Figure 3 shows the impact of the number of tasks on the
energy consumption. In the figure, the� axis indicates the
normalized energy consumption value over the energy con-
sumption of an application running on a DVS-unaware sys-
tem with a power-down mode only. As the number of tasks
increases, the energy efficiency oflppsEDF, lppsRM,
andccRM that only use theStretching-to-NTA technique do
not significantly improve, while that of the other more ag-
gressive InterDVS algorithms improves significantly. This
can be explained by the fact that, in theStretching-to-NTA
method, the slack time that can be exploited is limited to the
time between the completion of a task instance and the ar-
rival time of the next task instance, which is largely indepen-
dent of the number of tasks in the system. On the other hand,
for the other InterDVS algorithms, since the slack times can
be taken from any completed task instance, as the number of
task increases, each task has more slack sources and can be
scheduled with a lowered clock speed.

Since the energy efficiency of each InterDVS algorithm is
not affected by the number of tasks when there are more than
eight tasks, the rest of experiments were performed using
task sets with 8 tasks.

5.1.2 Worst case processor utilization of task set

When the WCPU of a given task set is less than 1.0, the tasks
have inherent static slack times. Figure 4(a) shows the re-

�With the mean� �
WCET����WCET

�
and the standard deviation� �

����WCET
�

.

�

���

���

���

���

���

���

��	

��

���

�

� � �
 �� �� �� ��

Number of Tasks

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

lppsEDF ccEDF laEDF DRA AGR lpSHE

����������������������

(a) EDF InterDVS

�

���

���

���

���

���

���

��	

��

���

�

� � �
 �� �� �� ��

Number of Tasks

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

lppsRM ccRM

Theoretical Lower Bound

(b) RM InterDVS

Figure 3. Impact of the number of tasks.

sults for varying WCPUs of 8-task task sets. The results in-
dicate that, except forlppsEDF, the energy consumption of
InterDVS algorithms increases as a linear function of WCPU
of a task set. ForlppsEDF, the energy consumption in-
creases faster than a linear function of WCPU of a task set.
This indirectly indicates that the dynamic slack estimation
method oflppsEDF is not very effective.

One interesting observation from Figure 4(a) is that
lppsEDF shows better energy efficiency thanccEDFwhen
WCPU is less than 0.7. This is because, inccEDF, the clock
speed is determined using theactual processor utilization� at
the scheduling point. Since the actual processor utilization
increases when a low-speed task instance completes its exe-
cution, the next task instance needs to be executed in a higher
speed. Such voltage fluctuation occurs more often as the
WCPU decreases. Thus, as the WCPU decreases, the energy
efficiency ofccEDF becomes worse than that oflppsEDF.

Because of the space limitation, the results forlppsRM
andccRM are not included but they are very similar to that
of lppsEDF.

5.1.3 Machine specification

Variable-voltage processors provide a finite number of volt-
age levels, from two to as many as 100 levels. To evalu-
ate the impact of the number of scaling levels on the energy
efficiency of the InterDVS algorithms, several different ma-
chine specifications were tested. In the experiments, when
there are� scaling levels, the voltage and the clock speed
can be varied with a step size of��

�
MHz within the range of

[8,100] MHz.
Figure 4(b) shows the effect of the number of scaling

levels on the energy efficiency of the InterDVS algorithms.

�The actual processor utilization is computed by summing the individual task pro-
cessor utilization, i.e.,�� �

� ��
��

where	� is the period of task
� and�� is

assumed to be WCET if
� is not completed, otherwise the actual execution time of

�.

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

Worst Case Processor Utilization

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

lppsEDF ccEDF laEDF DRA AGR lpSHE

(a) WCPU

�

���

���

���

���

���

���

��	

��

���

�

��� �� �� �� � � � �

Number of Scaling Levels

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

lppsEDF ccEDF laEDF DRA AGR lpSHE

(b) Number of scaling levels

Figure 4. Impact of WCPU and the number of
scaling levels.

As shown, the energy consumption increases as the num-
ber of scaling levels decreases. For more aggressive algo-
rithms (e.g.,DRA, AGR, laEDF, andlpSHE), the impact of
the number of scaling levels is relatively marginal (roughly
8%) compared to that of less aggressive algorithms (e.g.,
lppsEDF andccEDF).

5.1.4 Speed bound

In the previous experiments, we assumed the greedy method
in the slack distribution. That is, all the slack time identi-
fied is given to the current task instance. While the greedy
policy is simple, it is not the best one. For example, in ag-
gressive InterDVS algorithms such aslaEDF,AGR andlp-
SHE, slack times may be distributed unevenly among task in-
stances. When the current task instance exhausts its assigned
slack time by the greedy distribution policy, task instances
that follow may not benefit from slack times at all. In order
to understand the effect of different slack distribution poli-
cies, we experimented by varying the amount of usable slack
times. In the experiments, we specified the lower bound on
the clock speed regardless of available slack times.

Figure 5 shows the experimental results for various min-
imum speeds. In each experiment, it is assumed that the
clock speed can be varied within the range of	������� �����
with a step size of 1 MHz where���� � �

 MHz and�
is the speed bound factor. As� becomes larger, the task
instances is scheduled with lowered clock speed less aggres-
sively because the clock scaling is restricted by� � ����.
When� � ���� is close to the lowest possible clock speed
of the target machine, it is similar to when the greedy slack
distribution is used. The experiments were performed vary-
ing � from 0.1 to 0.9. In Figure 5, the�-axis indicates the
speed bound factor�. The energy efficiency of InterDVS
algorithms (except forlppsEDF andccEDF) is generally
higher when� values are between 0.3 and 0.5. For exam-

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��	 ��
 ���

�����������������

�
�
��

�
��
�
�
�
��
�
�
�
!
�"
�
�
#
�
�

��
�
�

�#�$� ���$� ���$�

$%& &'% ��(�

Theoretical Lower Bound = 0.46

(α)

(a) Under WCPU=1.0 and ACPU=0.55

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��	 ��
 ���

�����������������

�
�
��

�
��
�
�
�
��
�
�
�
!
�"
�
�
#
�
�

��
�
�

�#�$� ���$� ���$�

$%& &'% ��(�

Theoretical Lower Bound = 0.24

(α)

(b) Under WCPU=0.6 and ACPU=0.33

Figure 5. Impact of speed bound.

���
���

���
���

���
���

��	
��

���

���

���

���

��	

���

�

���

���

���

���

���

���

��	

��

���

�

Speed Bound Factor

WCPU

(a) Normalized energy
consumption oflaEDF

���
���

���
���

���
���

��	
��

���

���

���

���

��	

���

�

���

���

���

���

���

���

��	

��

���

�

Speed Bound Factor

WCPU

(b) Normalized energy
consumption ofccEDF

Figure 6. Impact of speed bound.

ple, when the speed bound factor is 0.5 in Figure 5(a), an
improvement of 6�11% was achieved over when the greedy
policy is used.

In Figure 5, it is shown that the energy efficiency ofAGR
andlpSHE is very close to the theoretical lower bound	

when the speed bound factor is near 0.5. In fact, one in-
teresting observation is that for theaggressive InterDVS al-
gorithms, the energy efficiency is highest when the speed
bound factor was set to ACPU. This trend can be noted in
Figure 5(a) and 5(b).

To show the relationship between the speed bound and
ACPU, extensive experiments were performed for various
task sets while varying ACPU and scaling bound. Fig-
ure 6 shows the results. (Due to the lack of space, only
the results forlaEDF (an example of aggressive InterDVSs)
andccEDF (an example of non-aggressive InterDVSs) are
shown. (The results forAGR andlpSHE are very similar to
that oflaEDF.) The results confirm that when the selected
speed bound factor is close to ACPU (=
���� WCPU), the

�The theoretical lower bound is computed with the complete execution trace in-
formation using Yao’s algorithm [20].

best energy efficiency is achieved forlaEDF. ForccEDF,
however, this trend does not hold as we can notice in Fig-
ure 6(b).

Similar study with the RM InterDVS algorithms show
that the performance gap between the energy efficiency of
the RM InterDVS algorithms and that of the theoretical
lower bound was roughly 35�40. This result indicates
that there is a substantial room for improvement in devel-
oping more energy-efficient RM InterDVS algorithms.

5.2 Performance evaluation of Intra-Task DVS al-
gorithms

We have evaluated the energy efficiency ofintraShin
andintraGruian using an MPEG4 video decoder and an
MPEG4 video encoder that were previously used in [16].
Both applications were pre-processed for speed/voltage
changes as described using the tools in the IntraDVS pre-
processing module described in Section 4.2.

For intraGruian, the execution times of both the
MPEG4 decoder and encoder were assumed to follow a
normal distribution�� � ����� �

��

��� where�� �

�

�
�WCET and�� �

�

��
�WCET.

ForintraShin, we first collected a large number of ex-
ecution paths; in SimDVS, each execution path can be repre-
sented by a pair of parameters [17]. For each execution path,
we estimated the energy consumption of the execution path
using the IntraDVS simulator. The overall average energy
consumption is computed by taking the weighted average
of estimated energy consumptions using the execution path
distributions used forintraGruian.

Since the energy efficiency ofintraGruian largely
depends on the slack ratio� given in the on-line phase and
the accuracy of the execution time distribution used in the
off-line profiling, we performed experiments varying these
two factors. Figure 7 shows the relative energy consump-
tion ratio ofintraGruian overintraShin. If the ra-
tio is larger (smaller) than 1,intraGruian performs bet-
ter (worse) thanintraShin. In Figure 7, the�� line
represents the case when the actual execution times fol-
low the assumed�� distribution. The��, � and ��

lines indicate the cases where the actual execution times
follow different normal distributions from the assumed� �,
where�� � ����� �

��

�
���, � � ����� �

��

��� and

�� � ����� ���� �
��

���.

When the slack ratio is less than 1.2,intraShin
outperformsintraGruian becauseintraShin spends
more time in the lower speed region thanintraGruian.
When the slack ratio is increased,intraGruian spends
more time in the lower speed region thanintraShin. Fig-
ure 7 also shows thatintraShin works better thanin-

�The slack ratio is defined as the ratio of WCET to the assigned execu-
tion time.

���

����

�

����

���

� ��� ��� ��� ��	 � ��� ��� ��� ��	

Slack Ratio

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Na
No
Nb
Nc

(a) MPEG4 Decoder

���

����

�

����

���

� ��� ��� ��� ��	 � ��� ��� ��� ��	

Slack Ratio

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Na
No
Nb
Nc

(b) MPEG4 Encoder

Figure 7. Energy consumption ratio of in-
traShin and intraGruian.

traGruianwhen the distribution of actual execution times
is significantly different from the assumed distribution, as
shown in the�� line.

5.3 Performance evaluation of hybrid methods

In this section, the question of whether HybridDVS al-
gorithms will perform better than pure IntraDVS algorithms
or pure InterDVS algorithms is investigated. Although both
intraShin andintraGruian can be used for a com-
parative study, we useintraShin as a base IntraDVS al-
gorithm. This is becauseintraShin is less likely to gener-
ate dynamic slack times, thus making the distinctions among
the different HybridDVS methods clearer.

HybridDVS algorithms select either theintra mode or the
inter mode when slack times are produced during the execu-
tion of the current task instance. In the inter mode, the slack
time is used not for the current task instance but for the fol-
lowing task instances. In the intra mode, all the slack times
are used for the current task instance, allowing it to execute
at a lower speed. Table 3 summarizes four heuristics [17]
for HybridDVS algorithms considered in this section. The
heuristics differ in how close they are to the pure IntraDVS
approach or pure InterDVS approach.

We have experimented four heuristics in Table 3 with
six EDF InterDVS algorithms and two RM InterDVS algo-
rithms in Table 2. H1 and H3 are close to the pure InterDVS
approach and H2 is close to the pure IntraDVS approach.
The performance of HybridDVS algorithms depends on the
dynamic slack estimation methods adopted by each Inter-
DVS algorithm. InlaEDF, DRA, AGR, andlpSHE where
slack times are identified more aggressively, it is a good
idea that some (or all) slack times produced by the current
task instance are passed to the following tasks. However, in
lppsEDF/RM andccEDF/RM where slack times are less
aggressively identified, it is better for the current task in-

Table 3. Four heuristics for HybridDVS algo-
rithms.

Heuristic Description

H1 uses the inter mode as a default but uses the intra mode
if no activated task instance exists.

H2 uses the intra mode first, but changes into the inter mode
when the current task instance has used a predefined amount of
slack time.

H3 uses the inter mode first, but changes into the intra mode
when the unused slack time is more than a predefined
amount of slack time.

H4 alternates the intra mode and the inter mode keeping
the balance of slack consumption in each mode.

����

����

����

����

����

����

��� ��� ��	 ��� ��
 �

�����������������������������

�
�
�

�
��
�
�
�
��
�
�
�

��

�
�
�
!
�
"
��
�
�

����#$�� %� %� %& %� ���'(

(a)ccEDF

����

����

����

����

����

����

��� ��� ��	 ��� ��
 �

�����������������������������

�
�
�

�
��
�
�
�
��
�
�
�

��

�
�
�
!
�
"
��
�
�

����#$�� %� %� %& %� ���'(

(b)laEDF

Figure 8. Energy efficiency of HybridDVS al-
gorithms.

stance to utilize most of the slack time generated. There-
fore, if a HybridDVS is based onlaEDF, DRA, AGR, or
lpSHE, H1 and H3 are better choices. On the other hand,
for lppsEDF/RM andccEDF/RM, H2 and H4 are better
choices.

Figure 8 shows the energy efficiency of the HybridDVS
methods. The graphs show the energy consumption for var-
ious WCPUs. As explained before, if a HybridDVS algo-
rithm is based on a non-aggressive InterDVS algorithm, the
heuristic H2 gives good results as shown in Figure 8(a). For
an aggressive InterDVS algorithm, H1 and H3 give good
results as shown in Figure 8(b). Though the performance
of HybridDVS algorithms is also dependent on the proper-
ties of the task set tested and the execution time variations,
in these experiments, HybridDVS algorithms are shown to
reduce the energy consumption by 5�20% over that of the
pure DVS algorithms.

6 Conclusions

We have compared the energy efficiency of recent DVS
algorithms for hard real-time periodic tasks. The evaluated
DVS algorithms include eight InterDVS algorithms and two

IntraDVS algorithms. We also performed experiments with
four versions of HybridDVS algorithms. For a fair and effi-
cient comparative study, we have also developed SimDVS, a
unified DVS simulation environment.

Our comparative study shows that the existing EDF Inter-
DVS algorithms such asAGR, laEDF andlpSHE are close
to optimal; for our test task sets, their power consumption
is only 9�12% worse than the theoretical lower bound. We
demonstrated that the performance gap from the theoretical
lower bound can be further reduced with a more intelligent
slack distribution policy. However, in the RM InterDVS al-
gorithms, our study indicates that there is still a significant
performance gap from the theoretical lower bound. There-
fore, our findings strongly suggest that more research should
be directed toward developing better RM InterDVS algo-
rithms.

From the evaluation of IntraDVS algorithms, we demon-
strated that two representative IntraDVS algorithms perform
quite differently depending on available slack times. Our
study indicates that the performance of a HybridDVS algo-
rithm can be better than a pure IntraDVS algorithm or a pure
InterDVS algorithm. However, the differences in energy ef-
ficiency depend on the characteristics of both the IntraDVS
and the InterDVS components used in the HybridDVS algo-
rithm. One of interesting future research topics will be to
devise an intelligent guideline on selecting the best Hybrid-
DVS algorithm for a given task set.

References

[1] AMD Corporation. PowerNow! Technology. http://
www.amd.com, December 2000.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dy-
namic and Aggressive Scheduling Techniques for Power-
Aware Real-Time Systems. InProceedings of IEEE Real-
Time Systems Symposium, December 2001.

[3] T. Burd and R. Brodersen. Design Issues for Dynamic Volt-
age Scaling . InProceedings of the International Sympo-
sium on Low Power Electronics and Design, pages 9–14, July
2000.

[4] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
version 2.0. Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

[5] F. Gruian. Hard Real-Time Scheduling Using Stochastic Data
and DVS Processors. InProceedings of the International
Symposium on Low Power Electronics and Design, pages 46–
51, August 2001.

[6] D. Grunwald, P. Levis, and K. I. Farkas. Policies for Dynamic
Clock Scheduling. InProceedings of the 4th Symposium on
Operating Systems Design and Implementation, pages 73–
86, October 2000.

[7] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthe-
sis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processor. InProceedings of the IEEE Real-
Time Systems Symposium, pages 178–187, December 1998.

[8] Intel Corporation. Intel XScale Technology.http:// devel-
oper.intel.com/ design/ intelxscale/, November 2001.

[9] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for
Dynamically variable voltage processors. InProceedings of
the International Symposium on Low Power Electronics and
Design, pages 197–202, August 1998.

[10] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scal-
ing Algorithm for Dynamic-Priority Hard Real-Time Sys-
tems Using Slack Time Analysis. InProceedings of Design,
Automation and Test in Europe (DATE’02), pages 788–794,
March 2002.

[11] S. Lee and T. Sakurai. Run-time Voltage Hopping for Low-
power Real-Time Systems. InProceedings of the 37th Design
Automation Conference, pages 806–809, June 2000.

[12] W.-S. Liu. Real-Time Systems. Prentice Hall, Englewood
Cliffs, NJ, June 2000.

[13] T. Pering and R. Brodersen. Energy Efficient Voltage
Scheduling for Real-Time Operating Systems. InProceed-
ings of the 4th IEEE Real-Time Technology and Applications
Symposium, Work in Progress Session, June 1998.

[14] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems. InProceed-
ings of 18th ACM Symposium on Operating Systems Princi-
ples (SOSP’01), pages 89–102, October 2001.

[15] T. Sakurai and A. Newton. Alpha-power Law MOSFET
Model and Its Application to CMOS Inverter Delay and
Other Formulars. IEEE Journal of Solid State Circuits,
25(2):584–594, 1990.

[16] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time Applications.IEEE Design
and Test of Computers, 18(2):20–30, March 2001.

[17] D. Shin, W. Kim, J. Jeon, J. Kim, and S. L. Min. SimDVS: An
Integrated Simulation Environment for Performance Evalua-
tion of Dynamic Voltage Scaling Algorithms. InProceed-
ings of Workshop on Power-Aware Computer Systems (PACS
2002), February 2002.

[18] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed Proces-
sors. In Proceedings of the International Conference on
Computer-Aided Design, pages 365–368, November 2000.

[19] Transmeta Corporation. Crusoe Processor.http://
www.transmeta.com, June 2000.

[20] F. Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. InProceedings of the IEEE Founda-
tions of Computer Science, pages 374–382, October 1995.

