a9y United States

US 20100042776A1

a2) Patent Application Publication (o) Pub. No.: US 2010/0042776 Al

Seo et al. 43) Pub. Date: Feb. 18, 2010
(54) METHOD AND APPARATUS FOR 30) Foreign Application Priority Data
PROVIDING ENHANCED WRITE
PERFORMANCE USING A BUFFER CACHE Aug. 18,2008 (KR) oo 10-2008-0080510
MANAGEMENT SCHEME BASED ON A Publication Classification
BUFFER REPLACEMENT RULE
(51) Imt.CL
GOG6F 12/08 (2006.01)
(76) Inventors: Dong Young Seo, Hwaseong-si GOGF 12/02 (2006.01)
(KR); Dong Kun Shin, (52) US.CL 711/103; 711/133; 711/E12.008;
Gwacheon-si (KR) 711/E12.017
7 ABSTRACT

Correspondence Address:
LEE & MORSE, P.C.

3141 FAIRVIEW PARK DRIVE, SUITE 500

FALLS CHURCH, VA 22042 (US)

An approach is provided for improving write performance
using a buffer cache based on a buffer replacement policy. A
buffer cache manager is configured to improve address map-
ping scheme associated with write performance between an
application system and a storage device system. The manager
selects a victim page to be evicted from a victim block of a
buffer cache according to a recently-evicted-first rule. And
the victim block is selected associated with a log block of a

100
e

(21) Appl. No.: 12/457,425
(22) Filed: Jun. 10, 2009 memory.
File System —~~—103
101

Memory Manager

Buffer Cache —~—109

—~—107

Victim Window |~—119

Most/Least
Recently Used

—~—117

FTL

Recent Victim

Block

—~—111

i

105~

Flash Memory
System

e

Page N

seo

US 2010/0042776 A1

Feb. 18,2010 Sheet1 of 8

Patent Application Publication

L X]

~—

SHE——

N abed

¢ obed

| obed

T 'S4

We)SAS

Aiowap ysej

|——s5o01

114
as) A|1uddd
L — 40019 JLL— pasn Al 4
wiloIA 1ud9dy 15e87/1SON
60L—J—1 ayoe) iajing
6LL—~ MODUIM WIJDIA
L0l—~—] 1ebeuep Aiowsy
oL
ooF\\u £01—~— wo)SAg 8|14

Patent Application Publication Feb. 18, 2010 Sheet 2 of 8 US 2010/0042776 Al

Fig. 2
212
MRU Z LRy
Buffer ™oe T p1 [P13] PO | P4 | PO
Cache
300
310 320
BO B B B B4, L0 L1/
PO | P4 | P8 | P12 | Pi6 P8 | P12

Flash P1 P5 P9 | P13 | P17
Memory P2 P6 | P10 | P14 | P18
P3 P7 | P11 | P15 | P19

Patent Application Publication Feb. 18, 2010 Sheet 3 of 8 US 2010/0042776 Al

fae] o)
S S
m\ m\
1—03521—@ Ll =2 Bl Bl B p)
—lalg o |a Sl]lalal
V) QY] ™
o | o o< o | oo o))
|l |g o |a ~lala|e|a
\ /
/
\ /
\ /
\ /
_\ Z
\ /
S \ /
m\ N 2
—
—
=)
o
CO\
o
ol
(Agn) || &
.)
= pu ('
o =1 el Dl el B
— olalo o
L\l\
<t
o ol {w
S & |a|a|a
o))
a
N|lo|lo|2| =
olafja |15
- a | o
-
o
| <T]WO|O©| N~
— ola|ad|a|a
o
IO~
=l a’ ojlalo|jala
0
=

Buf fer
Cache
Flash
Memory

Patent Application Publication = Feb. 18, 2010 Sheet 4 of 8 US 2010/0042776 Al

Fig. 4
212a
RvB={B2, B3}
MRU LRU
P5 P1 | P13 P9 P4 | PO P12 P8
B1 BO B3 B2 B1 BO B3 B2
B 4
"]
Inserted Pages:P2, P6, P10, P14
Evicted Pages:P8, P12, P9, P13
212b
RVB={B0, B1}
MRU LRU
P14 P10 P6 P2 P5 P1 P4 PO
B3 B2 B1 BO B1 BO B1 BO
e 4
wwW

Patent Application Publication = Feb. 18, 2010 Sheet 5 of 8 US 2010/0042776 Al

Fig. 5A

Receive write request
(e.g., sequential or random)

501

Buf fer cache
supports required
space ?

Yes

Enforce the buffer cache to evict
a page of a victim block based on
the recent history of the buffer
cache eviction

505

Insert a new page into the
buffer cache

507

Patent Application Publication = Feb. 18, 2010 Sheet 6 of 8 US 2010/0042776 Al

Fig. 9B

Select a victim block using
a victim window from a buffer cache
based on recent page eviction first
scheme, wherein the buffer cache
has a victim page associated with
the selected victim block

o11

Insert a new page by evicting the
victim page from the buffer cache
in consideration of the priority 513
of the recent victim page sent to a
log block of a memory system

Patent Application Publication = Feb. 18, 2010 Sheet 7 of 8 US 2010/0042776 Al

600
e L
: |
|
: 605 607 609 }
611 | {
I Main ROM Stor.age |
Host System : Memory Device :
(EG .y < : 4 A 4 :
File System) | |
{ 601 :
| 1 |
| l
: > BUS :
613 : - :
’ : .
I
Memory N 93 615 :
System N |
: o Communication '
, rocessor Interfaces :
| — |
| |
| |

US 2010/0042776 A1

Feb. 18,2010 Sheet 8 of 8

Patent Application Publication

T T T T, e, e — =
_ _
f — !
“ > 1 “
G0L 10Wspy yse|4 (ONVN Come—
“ 01607 10.43U0) !
[_
" S914Q 21LS 2.1npado.id “
“ yoi849.d “
g0z (WYYS) BUYoeY |
_ _
[|
“ 914q “
00/t 191 JBAUD) |
_ |
| 102 ooeyisiul 1soy K——N _
| 60Z I
[75 |
[_
e o o — — b e e e e] b e e e e e o ———— s — —— |
- >
sng $sa.ppy
< i >

sng eleQ

L ST

US 2010/0042776 Al

METHOD AND APPARATUS FOR
PROVIDING ENHANCED WRITE
PERFORMANCE USING A BUFFER CACHE
MANAGEMENT SCHEME BASED ON A
BUFFER REPLACEMENT RULE

RELATED APPLICATIONS

[0001] This U.S. non-provisional patent application claims
benefits of priority under 35 U.S.C. §119 of Korean Patent
Application No. 10-2008-80510 filed on Aug. 18, 2008, the
entirety of which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] Various exemplary embodiments of the invention
relate to a memory system, and more particularly, to a buffer
cache management scheme for applications using a flash
memory device and its system.

BACKGROUND

[0003] Flash memories have been widely used as storage
device for consumer systems such as MP3 players, digital
cameras, and personal digital assistants (PDA). With increas-
ing use of portable consumer devices such as MP3 players,
digital cameras, personal digital assistances and cell phones,
the market of NAND flash memories is sprightly extending in
recent years since NAND flash memory has many advantages
over hard disk drive i.e., low-power consumption, small size
and high shock resistance. Moreover, general purpose sys-
tems such as desktop PC are also going to use flash memory.
For example, hybrid hard disks, on-board disk cache and
turbo memories use flash memory as a nonvolatile cache of
hard disk drive. Eventually, solid state disks (SSD) based on
NAND flash memories are expected to replace the traditional
hard disks.

[0004] Unlike a traditional hard disk drive, flash memory
provides high read performance without a seeking time, how-
ever, the flash memory does not support overwrite operations
because of its write once nature, thus, basically has two char-
acteristics which constrain the writing performance. One of
obstacles to its wide use is the slow write performance of flash
memory caused by its ‘erase-before-write’ scheme—a block
must be erased before writing data into the block. Another
obstacle involves an erasing operation that should be per-
formed in the unit of block while a writing operation can be
performed in the unit of page. The special features of flash
memory require two management schemes. First, an address
mapping scheme, which maps the logical address from the
file system to the physical address of flash memory by main-
taining an address mapping table. Second scheme, to reclaim
the invalidated pages, employs selecting a block which has
many invalid pages and erase the block to be reused after
migration the valid pages in the block to clean the block.
However, as the write pattern becomes more random, the
space utilization of the log buffer of flash memory becomes
worse because even a single page update of the data block
requires a whole log block. Consequently, when a large num-
ber of small-sized random writes are issued form the file
system, most of log blocks are selected as victim blocks with
only a small portion of the block being utilized. Such a phe-
nomenon where most write requests invoke block merge
called log block thrashing. To prevent log block thrashing
problem, a mapping scheme where a log block ca e used for
multiple data blocks, however, this scheme possesses high

Feb. 18, 2010

block associability problem. In order to support these two
management tasks, a flash translation layer (FTL) is com-
monly used between the file system and memory system
including flash memory. However, most existing FTL
schemes have drawbacks that show poor write performance
in terms of random write request due to the block thrashing
problem and high block associability.

[0005] Therefore, there is a need foran approach to provide
more efficient management scheme capable of enhanced
write performance.

SOME EXEMPLARY EMBODIMENTS

[0006] These and other needs are addressed by the embodi-
ments of the invention, in which an approach is presented for
enhancing write performance using a buffer cache manage-
ment scheme based on a buffer replacement rule.

[0007] According to one aspect of an embodiment of the
invention, a method comprises selecting a victim block from
a buffer cache based on recent page eviction, wherein the
victim block is selected in consideration ofa current log block
of memory. The method also comprises inserting a new page
by evicting the victim page from the buffer cache in consid-
eration of the priority of the recent victim page sent to a log
block of a memory system.

[0008] According to another aspect of an embodiment of
the invention, an apparatus comprises a buffer cache manager
configured to improve address mapping scheme associated
with write performance between an application system and a
storage device system. The manager selects a victim page to
be evicted from a victim block of the buffer cache according
to a recently-evicted-first rule. The victim block is selected
associated with a log block of a storage device system.
[0009] According to yet another aspect of an embodiment
of the invention, a computer-readable medium carrying one
or more sequences of one or more instructions for improving
write performance between a host and a memory, the one or
more sequences of one or more instructions including instruc-
tions which, when executed by one or more processors, cause
the one or more processors to perform the steps. The step
comprises receiving a write request. The step also comprises
selecting a victim block from a buffer cache according to
recently-evicted-first buffer replacement rule, wherein the
victim block is associated with a log block of the memory.
The step further comprises enforcing the buffer cache to evict
a page of the victim block according to the recent history of
the buffer cache eviction. An the step includes inserting a new
page into the buffer cache.

[0010] Still other aspects, features, and advantages of the
invention are readily apparent from the following detailed
description, simply by illustrating a number of particular
embodiments and implementations, including the best mode
contemplated for carrying out the invention. The invention is
also capable of other and different embodiments, and its
several details can be modified in various obvious respects, all
without departing from the spirit and scope of the invention.
Accordingly, the drawings and description are to be regarded
as illustrative in nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The embodiments of the invention are illustrated by
way of example, and not by way of limitation, in the figures of
the accompanying drawings:

US 2010/0042776 Al

[0012] FIG.1 is a block diagram of a management system
capable of enhanced write performance associated with a
translation layer between a file system and a memory system
having a buffer cache management scheme based on a buffer
replacement policy in accordance with an embodiment of the
invention;

[0013] FIG.2isadiagramillustrating a buffer management
scheme in consideration oflog block of memory system using
a 1:1 log block mapping, in accordance with an embodiment
of the invention;

[0014] FIG.3isadiagram illustrating a buffer management
scheme in consideration oflog block of memory system using
1:N log-block mapping scheme, in accordance with an
embodiment of the invention;

[0015] FIG. 4 is a diagram illustrating selection of a victim
block from buffer cache based on recently-evicted-first buffer
replacement policy, in accordance with an embodiment of the
invention;

[0016] FIGS. 5A and 5B are flowcharts of processes for
providing a buffer cache management scheme, in accordance
with various embodiments of the invention;

[0017] FIG. 6 is a diagram of hardware that can be used to
implement various embodiments of the invention; and
[0018] FIG. 7 is a diagram of exemplary components of a
memory system capable of supporting the cache buffer man-
agement scheme and processes, in accordance with an
embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0019] A device, method and software for providing a
buffer cache management scheme are disclosed. In the fol-
lowing description, for the purposes of explanation, numer-
ous specific details are set forth in order to provide a thorough
understanding of the embodiments of the invention. It is
apparent, however, to one skilled in the art that the embodi-
ments of the invention may be practiced without these spe-
cific details or with an equivalent arrangement. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscuring
the embodiments of the invention.

[0020] Although the embodiments of the invention are dis-
cussed with respect to a flash memory system, it is recognized
by one of ordinary skill in the art that the embodiments of the
inventions have applicability to any type of memory and/or
cache that exploits buffer replacement policy associated with
write request for enhanced conducting reorders and clusters
to reduce overhead.

[0021] The address mapping scheme utilizing flash trans-
lation layers (FTL) is generally classified into three modes,
i.e., block-level mapping, page-level mapping, and hybrid
mapping. According to the bock-level mapping, a mapping
table retains mapping information between logical block
address and physical block address. Thus, a logical page can
be written by an in-place scheme. This means that page data
is written in a fixed location of a block defined by a page offset
within the block. The block-level mapping needs a small-
sized mapping table. But, when a specific page of block is
requested to be modified, a specified block should be erased
and pages not to be changed as well as to be changed should
be copied into a new block. This constraint incurs high migra-
tion overhead, thus degrading the writing performance.
[0022] In the page-level mapping, a mapping table retains
mapping information between logical address and physical

Feb. 18, 2010

page addresses. Thus, a logical page can be mapped by an
out-of-place scheme. Namely, page data can be written to any
physical page in a block. If a request for updating old page
data that is already written into the flash memory, the FTL
writes new data to a different empty page and changes the
page-level mapping information. The old page data is nulli-
fied by notification at a reserved space of the flash memory.
However, due to an inevitable large scale of mapping table,
the page-level mapping has a drawback.

[0023] The hybrid mapping scheme uses both of the page-
level mapping and block-level mapping. In this scheme, all
the physical blocks are divided into log blocks and data
blocks. The log blocks are also called log buffers. For that
reason, an FTL using the hybrid mapping scheme is also
referred to as log-buffer based FTL. The log blocks are oper-
able using the page-level mapping and the out-of-place
scheme, and the data blocks are processed by the block-level
mapping and the in-place scheme. Responding to a write
request, the FTL transfers data to a log block and nullifies
corresponding old data in data block.

[0024] If there is no unused space because the log blocks
are full of data, one log block is selected as a victim and all the
valid pages in the selected log block are moved into data
blocks to ready for receiving write requests. In this operation,
the log block is merged with data blocks which correspond to
the log block. Consequently, this operation is usually called
block merging process. The block merging process can be
classified into three modes: full merging mode, partial merg-
ing mode, and switch merging mode. The partial and switch
merging modes can be conducted if all the pages of a block are
written by the in-place scheme. While the full merging mode
requires many pages for copying and blocks for erasing, the
partial merging mode and switch merging mode can be oper-
able with minor cost for page shifting. Therefore, the hybrid
mapping is able to reduce page shift cost compared to the
block-level mapping scheme with a small-sized mapping
table.

[0025] To improve the input/output performance of flash
memory system, it is required to reduce overheads caused by
block merging operations. Therefore, FTL schemes mostly
aim to decreasing the number of block merging times. Since
flash memory system is designed for multimedia systems
such as MP3 player and digital cameras that manly requires
only sequential write pattern, the current FTL technologies
are focused on sequential writing patterns. However, as flash
memory technologies quickly improve, flash-memory-based
storage devices are becoming a viable alternatives as a sec-
ondary storage solution for general purpose computing sys-
tems such as personal computers and enterprise server sys-
tem, it is increasingly demand multiple processes capable of
dealing with both sequential and random writing requests
within FTL technology.

[0026] These and other needs are addressed by the inven-
tion in which FIG. 1 is a block diagram of a management
system capable of write performance associated with a trans-
lation layer between file system and memory system having a
buffer cache management scheme based on a buffer replace-
ment policy in accordance with an embodiment of the inven-
tion.

[0027] As seen in FIG. 1 the system 100 utilizes flash
translation layers (FTL) 101 that maps logical page addresses
of file system 103 into physical addresses of flash memory
system 105. In an exemplary embodiment, memory manager
107 can be deployed to a management system 100 to improve

US 2010/0042776 Al

the write performance of flash memory system 105 using a
flash aware buffer cache replacement policy. This manage-
ment scheme includes to select victim page to be evicted from
buffer cache 109 in consideration of recent victim page from
recent victim block 111 sent to flash memory log block (or
buffer) 113. For the purpose of illustration, flash memory 105
comprises data block 115 which governs block level managed
block, and log block 113 which governs page level managed
block. Log block 113 can be a temporary storage typically for
small size write to data block. The buffer cache 109 can
reduce the number of write requests sent to the flash system
105 by merging repeated write requests. The flash aware
buffer cache replacement policy of buffer cache 109 can
determine the flash memory system write pattern. This policy
considers log buffer 113 of flash memory system 105. This
policy can be called recently-evicted-first since it gives high
priorities to the pages of the block whose pages are recently
evicted to the log buffer 113 of flash memory system 105. By
way of example, a victim block can be selected using blocks
from most/least-recently-used register 117. It is noted that the
policy selects the blocks to be included into victim block
(VB) selected by memory manager 107 using victim window
(VW) 119 to prevent the recently-used pages from being
evicted.

[0028] FIG. 2 is a diagram illustrating a buffer cache man-
agement in consideration of log block of memory system
using a 1:1 log block mapping, in accordance with an embodi-
ment of the invention. Under this circumstance, to select
victim blocks which are associated with log blocks, the
recently-evicted-first policy determines the victim blocks
considering recent page eviction. By way of example, it is
assumed that a buffer cache has pages “p0, p4, p9, p13, p1 and
p5” in a least recently used (LRU) order, two log buffers has
the pages p8 and p12 and the log buffer can be managed by a
1:1 log block mapping. If the system uses the LRU page
replacement policy, the pages are evicted by the order of “p0,
4, p9, p13, p1, p5” and six (6) number of log block merges
are invoked. However, if the system reorders the page evic-
tion, the system can reduce the number of block merge. Since
the log blocks are associated with the data blocks B2 and B3,
it is better to evict the pages of B2 and B3 first, i.e., p9 and
p13. Therefore, if the buffer cache flushes the page by the
sequence of “p9, p13, p0, p4, pl, p5,” advantageously only
two number of log block merges are required.

[0029] FIG. 3 is a diagram illustrating a buffer cache man-
agement in consideration of log block of memory system
using 1:N log-block mapping scheme, in accordance with an
embodiment of the invention.

[0030] It is contemplated that under this scheme the block
associability of each log block can be reduced by recently-
evicted-first policy. As seen in FIG. 3, it is now assumed that
the page data p8 and p12 are stored in the log block L0 of the
log field 320. In this example, a first storage pattern 320a of
each block (L0 and L1) is resulted from when pages are
evicted from the buffer cache 212 in the sequence of using the
least-recently used (LRU), namely, in the order of p0, p4, p9,
p13, pl, and pS. A second storage pattern 3206 is resulted
from when pages data are evicted from the buffer cache 109 in
the sequence of using the recently-evicted-first (REF) in the
order of p9, p13, p0, p4, pl, and pS. The second storage
pattern utilized by the REF yields the advantages effect of
reducing block associative of log block. It is noted that the log
blocks L0 and L1 of the log field 320 are involved in the block
associability. As a result, the block associability of the log

Feb. 18, 2010

blocks L0 and L1 of the log field 3204 is reduced to 2.
Therefore, it is recognized utilizing the REF within a buffer
cache management scheme associated with considering of
log block is reducing the block associability of the log block
and the number of block merging times.

[0031] According to various of embodiments of the inven-
tion, the buffer cache management scheme involves three
main characteristics. Firstly, it is contemplated that eviction is
performed in block level. For reducing the block associability
and block merging times, only page data of victim blocks are
evicted from the buffer cache 109. It should be understood
that the overhead reduction associated with block associabil-
ity and block merging improves a performance over the
scheme using the LRU replacement policy. Secondly, main-
tain victim blocks as compatible as data blocks associated
with log blocks as possible. This makes all page data of the
block evicted at the same time that enables to reduce cost of
block merging. Thirdly, regarding to the latest page data level,
that is, in order to prevent the latest page data from being
evicted, the victim page is selected from not recently used.
[0032] FIG. 4is a diagram illustrating selection of a victim
block from buffer cache based on recently-evicted-first buffer
replacement policy, in accordance with an embodiment of the
invention.

[0033] As regards to FIG. 4, it is assumed that the buffer
cache 128a is able to store eight pages and each page is stored
in the LRU sequence. Based on recently-evicted-first (REF)
policy, memory manager maintains the set of victim block
(VB). The memory manager enforces the buffer cache to evict
only the pages of victim block. By way of example, in the
beginning process, the RVB register of FIG. 1 is empty. To
prevent an effect of log block thrashing, the number of the
recent victim blocks must be smaller than the number of log
blocks of the flash memory. Under this scheme, the size of
victim block (VB) is two (2).

[0034] A victim window VW of FIG. 1 can be used for
prevent recently-used pages from being evicted. By way of
example, the size of victim window is 75%. In this case, six
pages (75% of 8 pages) can be included in the victim window
(VW) in the order of the least-recently-used (LRU). In this
way, memory manager can find two blocks which has the
largest number of pages within the victim window (VW).
First, the blocks B2 and B3 can be selected as the victim
blocks (VB). Then, the memory manager compose the victim
page list with all the pages which are located within the victim
window (VW) and whose corresponding block is in the vic-
tim block (VB).

[0035] Ifitis permissible for any page data to be selectable
in the buffer cache 212a, the least-recently-used page is
selected from the buffer cache 2124 In case the log buffer 320
is empty or page data of the victim window, VW is included
in the same block. The LRU register 230 of FIG. 1 stores
information of the least-recently-used page data. If page of a
block corresponding to the recent victim block RVB is
located out of the victim window VW in the buffer cache
212a, the page data can be introduced into the victim window
VW after evicting another page from the buffer cache 212a.
[0036] As seen in the FIG. 4 it is illustrated that the page
data p8, p12, p9, and p13 are evicted while new page data p2,
p6, 10, and p14 are requested to be added. If there is no page
remains at the buffer cache 2124 because all victim page data
have been flushed into the flash memory 300, it is necessary to
form new recent victim blocks (RVB). In this example, the
new RVB includes B0 and B1.

US 2010/0042776 Al

[0037] It is noted that a size of the victim window (VW)
should be carefully selected in consideration for positions of
writing patterns. If the victim window (VW) is sized too
large, the latest page data is evicted to raise a miss ratio of the
buffer cache 212. Ifthe victim window VW is sized too small,
it operates as similar to the conventional LRU scheme and
thereby incurs a thrashing of log blocks. A size of the victim
window VW may be set by way of a test operation using
desktop benchmarking applications, which is preferred to be
about 75% of the total size of the buffer cache 109.

[0038] FIGS. SA and 5B are flowcharts of processes for
providing a buffer cache management scheme, in accordance
with an embodiment of the invention.

[0039] For the purposes of illustration, this buffer cache
management scheme process is described in FIG. 5A with
respect to a file system and memory system. The memory
manager, in step 501, receives write request which covers
sequential write request and random write request. After
determining whether a buffer cache is able to support required
space for performing the write request, per step 503, if the
buffer cache is determined to support required space, in step
507 memory manager instructs to insert a new page into the
buffer cache. If not, in step 505 memory manager enforces the
buffer cache to evict a page of a victim block based on the
recent history of the buffer cache eviction. Thereafter, per step
507, memory manager performs to insert a new page into the
buffer cache.

[0040] FIG. 5B is a flowchart of process for selecting a
victim block using a victim window associated with perfor-
mance of the buffer cache management scheme, in accor-
dance with an embodiment of the invention. As seen in FIG.
5B, in step 511, a memory manager selects a victim block
using a victim window from a buffer cache based on recent
page eviction first scheme, wherein the buffer cache has a
victim page associated with the selected victim block. In step
513, memory manager inserts a new page by evicting the
victim page from the buffer cache in consideration of the
priority of the recent victim page sent to a log block of a
memory system. According to an exemplary embodiment, if
there is a page whose corresponding block is in victim block
but is not within the victim widow, the page may enter the
victim window after the eviction of other pages. Thereafter,
the victim page is updated. In case there is no page in the
victim page because all the victim pages are inserted into the
memory system, a new victim block can be constructed.

[0041] FIG. 6 illustrates exemplary hardware upon which
various embodiments of the invention can be implemented. A
computing system 600 includes a bus 601 or other commu-
nication mechanism for communicating information and a
processor 603 coupled to the bus 601 for processing informa-
tion. The computing system 600 also includes main memory
605, such as a random access memory (RAM) or other
dynamic storage device, coupled to the bus 601 for storing
information and instructions to be executed by the processor
603. Main memory 605 can also be used for storing tempo-
rary variables or other intermediate information during
execution of instructions by the processor 603. The comput-
ing system 600 may further include a read only memory
(ROM) 607 or other static storage device coupled to the bus
601 for storing static information and instructions for the
processor 603. A storage device 609, such as a magnetic disk
or optical disk, is coupled to the bus 601 for persistently
storing information and instructions.

Feb. 18, 2010

[0042] The computing system 600 may be coupled via the
bus 601 to ahostsystem 611 (e.g., file system), such as mobile
applications (e.g., PDA) and computing system such as a
personal computer or an enterprise server. Memory system
613, such as a flash memory based storage devices and
NAND flash-based solid state disk (SSD) may be coupled to
the bus 601 for communicating information and command
selections associated with write performance to the processor
603.

[0043] According to various embodiments of the invention,
the processes described herein can be provided by the com-
puting system 600 in response to the processor 603 executing
an arrangement of instructions contained in main memory
605. Such instructions can be read into main memory 605
from another computer-readable medium, such as the storage
device 609. Execution of the arrangement of instructions
contained in main memory 605 causes the processor 603 to
perform the process steps described herein. One or more
processors in a multi-processing arrangement may also be
employed to execute the instructions contained in main
memory 605. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware instructions to implement the embodiment of the inven-
tion. In another example, reconfigurable hardware such as
Field Programmable Gate Arrays (FPGAs) can be used, in
which the functionality and connection topology of its logic
gates are customizable at run-time, typically by programming
memory look up tables. Thus, embodiments of the invention
are not limited to any specific combination of hardware cir-
cuitry and software.

[0044] Thecomputing system 600 also includes at least one
communication interface 615 coupled to bus 601. The com-
munication interface 615 provides a two-way data communi-
cation coupling to a network link (not shown). The commu-
nication interface 615 sends and receives electrical,
electromagnetic, or optical signals that carry digital data
streams representing various types of information. Further,
the communication interface 615 can include peripheral
interface devices, such as a Universal Serial Bus (USB) inter-
face, a PCMCIA (Personal Computer Memory Card Interna-
tional Association) interface, etc.

[0045] The processor 603 may execute the transmitted code
while being received and/or store the code in the storage
device 609, or other non-volatile storage for later execution.
In this manner, the computing system 600 may obtain appli-
cation code in the form of a carrier wave.

[0046] The term “computer-readable medium” as used
herein refers to any medium that participates in providing
instructions to the processor 603 for execution. Such a
medium may take many forms, including but not limited to
non-volatile media, volatile media, and transmission media.
Non-volatile media include, for example, optical or magnetic
disks, such as the storage device 609. Volatile media include
dynamic memory, such as main memory 605. Transmission
media include coaxial cables, copper wire and fiber optics,
including the wires that comprise the bus 601. Transmission
media can also take the form of acoustic, optical, or electro-
magnetic waves, such as those generated during radio fre-
quency (RF) and infrared (IR) data communications. Com-
mon forms of computer-readable media include, for example,
a floppy disk, a flexible disk, hard disk, magnetic tape, any
other magnetic medium, a CD-ROM, CDRW, DVD, any
other optical medium, punch cards, paper tape, optical mark
sheets, any other physical medium with patterns of holes or
other optically recognizable indicia, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave, or any other medium from which a
computer can read.

US 2010/0042776 Al

[0047] Various forms of computer-readable media may be
involved in providing instructions to a processor for execu-
tion. For example, the instructions for carrying out at least
part of the invention may initially be borne on a magnetic disk
ofaremote computer. In such a scenario, the remote computer
loads the instructions into main memory and sends the
instructions over a telephone line using a modem. A modem
of a local system receives the data on the telephone line and
uses an infrared transmitter to convert the data to an infrared
signal and transmit the infrared signal to a portable comput-
ing device, such as a personal digital assistant (PDA) or a
laptop. An infrared detector on the portable computing device
receives the information and instructions borne by the infra-
red signal and places the data on a bus. The bus conveys the
data to main memory, from which a processor retrieves and
executes the instructions. The instructions received by main
memory can optionally be stored on storage device either
before or after execution by processor.

[0048] FIG. 7 is a diagram of an exemplary architecture
capable of supporting various embodiments of the invention.
By way of illustration, the architecture for improving perfor-
mance of flash memory system 700 is explained. The system
700 comprises basic four components that are included in this
hardware design 700: host interface 701, SRAM (cache) 703,
NAND flash memory 705, and control logic 707. In order to
fill up the performance gap between NAND and NOR flash
memory, SRAM 703 serves as a cache layer for data access
over NAND flash memory 705. Host interface 701 is config-
ured responsible to the communication with the host system
via address and data buses. The control logic 707, as an
exemplary embodiment, can manage the caching activity and
can provide the service emulation of NOR flash with NAND
flash 705 and SRAM 703. It is contemplated that the control
logic 707 has an intelligence prediction mechanism imple-
mented to improve the system performance. By way of
example, there are two basic components in the control logic
707. The control logic 707 includes a converter 709 which
emulates NOR flash access over NAND flash with an SRAM
cache 703, where address translation must be done from byte
addressing (for NOR) to Logical Block Address (LBA)
addressing (for NAND). It is noted that each 512 B/2 KB
NAND page corresponds to one an four LBA’s, respectively.
A prefetch procedure 711 tries to prefetch data from NAND
to SRAM so that the hit rate of the NOR access is high over
SRAM.

[0049] While the invention has been described in connec-
tion with a number of embodiments and implementations, the
invention is not so limited but covers various obvious modi-
fications and equivalent arrangements, which fall within the
purview of the appended claims. Although features of the
invention are expressed in certain combinations among the
claims, it is contemplated that these features can be arranged
in any combination and order.

What is claimed is:

1. A method comprising:

selecting a victim block from a buffer cache based on
recent page eviction, wherein the victim block is
selected in consideration of a current log block of
memory; and

inserting a new page by evicting a victim page from the
buffer cache in consideration of the priority of the recent
victim page sent to a log block of a memory system.

2. A method according to claim 1, wherein the number of

the victim block is smaller than the number of the log block.

Feb. 18, 2010

3. A method according to claim 1, further comprising:

evicting a victim page of the victim block according to the
recent history of buffer cache eviction.

4. A method according to claim 1, selecting the victim
block using a victim window to prevent the recently-used
page from being evicted.

5. A method according to claim 4, wherein the size of the
victim window is around seventy five (75) percent of the total
size of the buffer cache, wherein the victim page is selected
based on the rule of the least-recently-used page.

6. A method according to claim 1, wherein the selecting the
victim block is performed according to the largest number of
pages of the victim block within the victim window, wherein
the selection is based on the consideration of the locality of
write pattern.

7. A method according to claim 1, further comprising:

a new victim block is designated if no page in the victim
block.

8. A method according to claim 1, wherein the memory
system includes a NAND flash.

9. An apparatus comprising:

A buffer cache manager configured to improve address
mapping scheme associated with write performance
between an application system and a storage device
system, wherein the manager selects a victim page to be
evicted from a victim block of the buffer cache accord-
ing to a recently-evicted-first rule, wherein the victim
block is selected associated with a log block of a storage
device system.

10. An apparatus according to claim 9, the storage device
system includes one of a memory system having NAND flash
memory or NAND flash-based solid-state device (SSD) and
the application system includes one of a cellular phone, a
computer system including a personal computer or enterprise
server system.

11. An apparatus according to claim 9, wherein the
recently-evicted-first rule governs to consider the victim page
recently sent to the log block of the storage device system.

12. An apparatus according to claim 9, wherein the number
of the victim block is smaller than the number of the log
block.

13. An apparatus according to claim 9, wherein the victim
block is selected using a victim window to prevent the
recently-used page from being evicted.

14. An apparatus according to claim 13, wherein the size of
the victim window is around seventy five (75) percent of the
total size of the buffer cache, wherein the victim page is
selected based on the rule of the least recently-used page.

15. A computer-readable medium carrying one or more
sequences of one or more instructions for improving write
performance between a host system and a memory system,
the one or more sequences of one or more instructions includ-
ing instructions which, when executed by one or more pro-
cessors, cause the one or more processors to perform the steps
of:

receiving a write request;

selecting a victim block from a buffer cache according to
recently-evicted-first buffer replacement rule, wherein
the victim block is associated with a log block of the
memory;

US 2010/0042776 Al

enforcing the buffer cache to evict a page of the victim
block according to the recent history of the buffer cache
eviction; and

inserting a new page into the buffer cache.

16. A computer-readable medium according to claim 15,
wherein the number of the victim block is smaller than the
number of the log block.

17. A computer-readable medium according to claim 15,
selecting the victim block using a victim window to prevent
the recently-used page from being evicted.

18. A computer-readable medium according to claim 17,
wherein the size of the victim window is around seventy five

Feb. 18, 2010

(75) percent of the total size of the buffer cache, wherein the
victim page is selected based on the rule of the least recently-
used page.

19. A computer-readable medium according to claim 17,
wherein the selecting the victim block is performed according
to the largest number of pages of the victim block within the
victim window.

20. A computer-readable medium according to claim 15,
the memory system includes a NAND flash memory.

sk sk sl ES sk

