US 20130332690A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0332690 A1

Seo et al. 43) Pub. Date: Dec. 12,2013
(54) MEMORY SYSTEMS AND MEMORY 30) Foreign Application Priority Data
MANAGING METHODS OF MANAGING
MEMORY IN A UNIT OF MEMORY CHUNK Jun. 12,2012 (KR) oo 10-2012-0062811
(71) Applicants: SAMSUNG ELECTRONICS CO., Publication Classification
LTD., Suwon-si (KR); RESEARCH &
BUSINESS FOUNDATION (51) Int.CL
SUNGKYUNKWAN UNIVERSITY, GO6F 3/06 (2006.01)
Suwon-si (KR) (52) US.CL
CPC ..ot GO6F 3/0631 (2013.01)
(72) Inventors: Dong-Young Seo, Seoul (KR); Dongkun USPC oot 711/170
Shin, Seoul (KR)
57 ABSTRACT
(73) Assignees: Research & Business Foundation
Sungkyunkwan University, Suwon-si A method of managing a memory by a unit of memory chunk
(KR); Samsung Electronics Co., Ltd., is provided. The method includes managing multiple memory
Suwon-si (KR) chunks according to a chunk tree structure, managing pro-
gram frequencies of the memory chunks of the memory
(21) Appl. No.: 13/832,144 according to a program of the memory, and allocating the
memory chunks based on the program frequencies and the
(22) Filed: Mar. 15,2013 chunk tree structure.
100
120 1}0 1?0
Auxiliary Main
Modem
Processor Processor
7 3] 180

< s

(\J150 (\1130 (\/170
Nonvolatile Controller User
Main Storage CNT Inter face
(\/140
SCRAM

Patent Application Publication Dec. 12, 2013 Sheet 1 of 20 US 2013/0332690 A1

100
120 1}0 1?0
Auxiliary Main Moden
Processor Processor

) 180

A

(\/150 (\—/180 (’\/170
Nonvolatile Controller User
Main Storage CNT Inter face
(‘\/140
SCRAM

Patent Application Publication Dec. 12, 2013 Sheet 2 of 20 US 2013/0332690 A1

Fig. 2

200
Application —~—210
I
Operating system —~—220
I
Memory manager ——230
Wear leveling unit 231

I

Memory —— 240

Patent Application Publication

Dec. 12,2013 Sheet 3 of 20

Fig. 3A

US 2013/0332690 A1

Number of programs

Number of programs

Addresses

Patent Application Publication

Dec. 12,2013 Sheet 4 of 20

Fig. 3C

US 2013/0332690 A1

Addresses

+
2, -
S +
>
(@]
oS
s
o
Ko
=
>
=
[+
] | |
Addresses
Fig. 3D
2} +
S b
2 -l—_|:+ + +
. +
N T S R
© t+4 4, 4+
+
£ AR
E 4 A+
= F o+ LS + +
T+ +
I+ *
+
+i N

Patent Application Publication Dec. 12, 2013 Sheet S of 20 US 2013/0332690 A1

Fig. 4

Manage memory chunks according to
chunk tree structure

l

Manage the numbers of programs of
memory chunks according to —~—420
program of memory

l

Allocate the memory chunks based on
the numbers of programs and ——430
the chunk tree structure

——410

End

US 2013/0332690 A1

Dec. 12,2013 Sheet 6 of 20

Patent Application Publication

i N N SN N N n [
K1ouep
(1S°dN) 200 | (1S*dN) 900 | (1S'dN) G0O | (1S°dN) ¥00 | (1S dN) €00 | (1S dN) 200 | (IS*dN) 10D | (1S"dN) 000 | 0
(1S"dN) €10 (IS°dN) 210 (IS“dN) 110 (I1SdN) 010 !
(1S"dN) 120 (1S°dN) 020 ¢
(18°dN) 080 £
|one

91n1on11g 981 Yunyj

G o1y

Patent Application Publication Dec. 12, 2013 Sheet 7 of 20 US 2013/0332690 A1

Fig. 6

Detect allccation of memory chunk —~—610

l

Set first allocation bit of the allocated
memory chunk to indicate allocation

l

Set second allocation bits of the allocated
memory chunk to indicate allocation

l

When at least one of first allocation bits of

higher memory chunks of the allocated memory

chunk indicates unallocation, set the at least §k—~—640

one of first allocation bits indicating
unal location to indicate allocation

l

When a level whose all memory chunks are
allocated appears, set second allocation bits
indicating the level to indicate allocation on 650

memory chunks of higher levels

——620

——630

End

Patent Application Publication Dec. 12, 2013 Sheet 8 of 20 US 2013/0332690 A1

Fig. 7
(Start)

Y

Receive program interrupt and program address }~—710

l

Increase the number of programs of
memory chunk of lowest level which ——720
corresponds to the program address

l

Set the number of programs of parent memory
chunk as sum of the numbers of programs of child
memory chunks when all child memory chunks of ——730
the parent memory chunk are allocated

l

Set the number of programs of parent memory
chunk as sum of the numbers of programs of child
memory chunks when all child memory chunks of ——740
the parent memory chunk are unallocated

l

Set the number of program of parent memory
chunk as twice of unallocated child memory chunk
when one child memory chunk is allocated and 750
another child memory chunk is unallocated

End

Patent Application Publication Dec. 12, 2013 Sheet 9 of 20 US 2013/0332690 A1

@
—
0
Lo
=
O =
o®) >
| S—
= >
CD -
° o g
QD 5 O]
bt =
o = —
e . <
= =
3
=
)
fap)
=

Level

Patent Application Publication Dec. 12, 2013 Sheet 10 of 20 US 2013/0332690 A1

Fig. 9

(Start)

A 4

Receive memory allocation request ——910

l

Access allocation bits of root

memory chunk information ——920
Search target level having unal located memory
chunk having size equal to or larger than size 930

corresponding to the memory allocation
request based on the allocation information

:

Allocate memory chunk of the target level
according to chunk tree structure and ——940
the number of programs

End

Patent Application Publication Dec. 12, 2013 Sheet 11 of 20 US 2013/0332690 A1

Fig. 10 (o)

Access root memory chunk 1010

Target level?

Nol

1030—— Access child memory chunks

Detect child memory chunks
which have unallocated memory
chunk on the target level among
the accessed memory chunks

1040—

Two or more

No
child memory chunks are

detected?

1055 1060 1025
N y
Select the Compare the number of Select the

detected child programs of the detected accessed

memory chunk child memory chunks memory chunk
v (\»/1070

Setect child memory chunk
having the lowest number of

programs
. 1080
Yes|,

Allocate the selected

memory chunk 1090

End

US 2013/0332690 A1

Dec. 12,2013 Sheet 12 of 20

Patent Application Publication

N N G N e
Klows
(0°01) 209 | (0°5) 900 | (0°€) GO0 | (0°8) ¥0D | (0°€) €00 | (0°%) 200 | (0°'2) 00 ﬁ\ow@ 000 |0
(00°GL) €10 (00°LL) 21D (00°Z) 11D ©®© »T00°e) o !
(000°92) 129 @\go.o: 020 2
(0000°9€) 0£9 f £
oA

2.In1onilg se8ll Yuhyd @

TT 914

US 2013/0332690 A1

Dec. 12,2013 Sheet 13 of 20

Patent Application Publication

N N N SH i en N
K1owep
(0°0L) 200 | (0°G) 900 | (0°c) G0D | (0°8) ¥00 | (0°€) €00 | (0°%) 200 S%.V 100 0
(00°GL) €19 (00°LL) 21D ’
(000°92) 129 ¢
£
) |oAL]

9IN10NJI1S 991] Muny)

ARRUL

®

US 2013/0332690 A1

Dec. 12,2013 Sheet 14 of 20

Patent Application Publication

A Jowsp

(0°01) 200 | (0°5) 900 | (0°€) S0 | (0°8) ¥0D | (0°€) moo (0°%) 209 0
(00°GL) €19 (00°LL) 21D (00°2) :J@ |
(000°92) 120 ¢
£

8IN1ONI1S 8811 MUY |y

a1 814

US 2013/0332690 A1

Dec. 12,2013 Sheet 15 of 20

Patent Application Publication

AJowsp

(

00t

)

L00

(0°G

)

900

(

0

H

£) 609

(

0°8) ¥0D

(

00°Gl

)

€l

(00° L1

)

¢kl

(000°92) 120 4@/

9IN10N11G 881 Muny)

ﬁ

T 31

Patent Application Publication Dec. 12, 2013 Sheet 16 of 20 US 2013/0332690 A1

Memory

Chunk Tree Structure

Fig. 15

Patent Application Publication Dec. 12, 2013 Sheet 17 of 20 US 2013/0332690 A1

®
-
=
=
1)
un }
—
e)
= © >
o S
| —
° — (]E_)
&0 X~ =
" S
= 5 s
S =
™®
=

Level

Patent Application Publication Dec. 12, 2013 Sheet 18 of 20

Fig. 17

Receive program command and
program address

US 2013/0332690 A1

——1710

l

Count the number of program command

——1720

The count value reaches
threshold value?

Generate program interrupt and
send address received last

——1740

l

Reset count value

——1750

End

Patent Application Publication Dec. 12, 2013 Sheet 19 of 20 US 2013/0332690 A1

Fig. 18

Detect the smallest and largest number of
programs of memory chunks on lowest level

——1810

1820

Difference between
the smallest and largest number of
programs reaches threshold
value?

Change data and allocation between memory
chunks having the smallest and largest ——1830
number of programs each other

End

Patent Application Publication Dec. 12, 2013 Sheet 20 of 20 US 2013/0332690 A1

[¢b)
| -
>
[
[®)
>
L N—
=)
[0 >
G) | —
Nl o
) — QE)
=) x =
g E <
hﬂ &) =
o
=

Level

US 2013/0332690 Al

MEMORY SYSTEMS AND MEMORY
MANAGING METHODS OF MANAGING
MEMORY IN A UNIT OF MEMORY CHUNK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] A claim for priority under35 U.S.C. §119is made to
Korean Patent Application No. 10-2012-0062811 filed Jun.
12,2012, in the Korean Intellectual Property Office, the entire
contents of which are hereby incorporated by reference.

BACKGROUND

[0002] The inventive concepts described herein relate to
semiconductor memory devices, and more particularly, relate
to memory managing methods capable of managing a
memory in a unit of memory chunk.

[0003] An operating system driven at a memory system
may manage a memory using a memory manager. The
memory manager may include a buddy memory allocator, a
slab memory allocator, and so on.

[0004] A typical memory manager may operate based on a
dynamic random access memory (DRAM). The DRAM may
be characterized in that it is slightly worn by programming
and erasing. Thus, the typical memory manager may not
manage a memory in view of a wear-level of the memory.
[0005] In recent years, a storage class RAM (hereinafter,
referred to as SCRAM) may have been researched with a view
to replacing the DRAM. The SCRAM may include nonvola-
tile memories such as a ferroelectric RAM (FRAM), a mag-
netic RAM (MRAM), a phase-change RAM (PRAM), a
resistive RAM (RRAM), and so on.

SUMMARY

[0006] Someembodiments of the present inventive concept
are directed to methods of managing a memory including
multiple memory chunks according to a chunk tree structure.
Such methods may include managing program frequencies of
the memory chunks of the memory according to a program of
the memory, managing allocation information of ones of the
memory chunks in the chunk tree structure, and allocating the
memory chunks based on the program frequencies and the
allocation information.

[0007] In some embodiments, managing the program fre-
quencies of the memory chunks includes receiving a program
interrupt and a program address from a memory controller
that controls the memory and increasing a program frequency
of the lowest memory chunk corresponding to the program
address. Some embodiments provide that the program inter-
rupt and the program address are received when a program
frequency of the memory reaches a threshold value and that
the program address corresponds to a program executed when
the program frequency reaches the threshold value.

[0008] Insome embodiments, the memory chunks include
a parent memory chunk and multiple child memory chunks
that are included in the parent memory chunk. Managing the
program frequencies of the memory chunks may include
setting a program frequency of the parent memory chunk to a
sum of program frequencies of the child memory chunks.
Some embodiments provide that managing the program fre-
quencies of the memory chunks includes setting a program
frequency of the parent memory chunk to a sum of program
frequencies of a non-allocated one of the child memory
chunks. In some embodiments, managing the program fre-

Dec. 12,2013

quencies of the memory chunks includes setting a program
frequency of the parent memory chunk to double the program
frequency of a non-allocated one of the child memory chunks.
[0009] Some embodiments provide that managing the pro-
gram frequencies of the memory chunks includes detecting a
smallest program frequency and a largest program frequency
of program frequencies of the memory chunks at a lowest
level of the chunk tree structure, determining whether a dif-
ference between the smallest program frequency and the larg-
est program frequency reaches a threshold value, if the dif-
ference between the smallest program frequency and the
largest program frequency reaches the threshold value,
exchanging data and allocation between memory chunks hav-
ing the smallest program frequency and the largest program
frequency.

[0010] In some embodiments, managing allocation infor-
mation of ones of the memory chunks in the chunk tree
structure includes detecting allocation of at least one memory
chunk of the memory chunks and setting a first allocation bit
associated with the allocated memory chunk to indicate allo-
cation. In some embodiments, the first allocation bit of each
of'the memory chunks indicates whether an associated one of
the memory chunks is allocated. Some embodiments provide
that managing allocation information includes setting a sec-
ond allocation bit of the allocated memory chunk. The second
allocation bit may indicate whether all memory chunks at
each of lower levels relative to the associated memory chunk
are allocated.

[0011] Some embodiments further include setting at least
one first allocation bit of an upper memory chunk to alloca-
tion when the at least one of first allocation bits associated
with the upper memory chunks of the allocated memory
chunk indicates non-allocation. In some embodiments, when
all memory chunks at one level of the chunk tree structure are
allocated, second allocation bits are set indicating the level
including the memory chunks allocated to indicate allocation
at upper memory chunks relative to the level. Each of the
second allocation bits may indicate whether all memory
chunks at each of lower levels associated with a correspond-
ing memory chunk are allocated.

[0012] Some embodiments include receiving a memory
allocation request, accessing allocation bits associated with a
root memory chunk, located at a highest level, from among
the memory chunks, searching a target level, including an
unallocated memory chunk having a size equal to or larger
than a size corresponding to the memory allocation request,
from among levels of the chunk tree structure based on the
allocation bits, and allocating a memory chunk at the target
level according to the chunk tree structure and the program
frequencies.

[0013] In some embodiments, allocating the memory
chunk at the target level according to the chunk tree structure
and the program frequencies includes allocating the unallo-
cated memory chunk when an unallocated memory chunk
exists at the target level, and when two or more unallocated
memory chunks exist at the target level, sequentially selecting
achild memory chunk, having an allocation bit indicating that
an unallocated memory chunk exists at the target level and
that includes a small program frequency relative to other
memory chunks at the same level until reaching the target
level from the root memory chunk and allocating a memory
chunk selected at the target level.

[0014] Example embodiments ofthe inventive concept pro-
vide a method of managing a memory by a unit of memory

US 2013/0332690 Al

chunk, comprising managing a plurality of memory chunks
according to a chunk tree structure; managing program fre-
quencies of the plurality of memory chunks of the memory
according to a program of the memory; and allocating the
plurality of memory chunks based on the program frequen-
cies and the chunk tree structure.

[0015] In example embodiments, the managing program
frequencies of the plurality of memory chunks of the memory
according to a program of the memory comprises receiving a
program interrupt and a program address; and increasing a
program frequency of the lowest memory chunk correspond-
ing to the program address.

[0016] Inexample embodiments,the program interruptand
the program address are received from a controller of the
memory.

[0017] Inexample embodiments,the program interruptand
the program address are received when a program frequency
of the memory reaches a threshold value and the program
address corresponds to a program executed when the program
frequency reaches the threshold value.

[0018] In example embodiments, the managing program
frequencies of the plurality of memory chunks of the memory
according to a program of the memory further comprises
setting a program frequency of a patent memory chunk, in
which all child memory chunks are allocated, from among the
plurality of memory chunks to a sum of program frequencies
of the child memory chunks.

[0019] In example embodiments, the managing program
frequencies of the plurality of memory chunks of the memory
according to a program of the memory further comprises
setting a program frequency of a patent memory chunk, in
which all child memory chunks are not allocated, from among
the plurality of memory chunks to a sum of program frequen-
cies of the child memory chunks.

[0020] In example embodiments, the managing program
frequencies of the plurality of memory chunks of the memory
according to a program of the memory further comprises
setting a program frequency of a patent memory chunk, in
which a child memory chunk is allocated and a child memory
chunk is not allocated, from among the plurality of memory
chunks to the double of the program frequency of the child
memory chunk not allocated.

[0021] In example embodiments, the managing program
frequencies of the plurality of memory chunks of the memory
according to a program of the memory comprises detecting
the smallest program frequency and the largest program fre-
quency of program frequencies of memory chunks at the
lowest level of the chunk tree structure; determining whether
a difference between the smallest program frequency and the
largest program frequency reaches a threshold value; and if
the difference between the smallest program frequency and
the largest program frequency reaches the threshold value,
exchanging data and allocation between memory chunks hav-
ing the smallest program frequency and the largest program
frequency.

[0022] In example embodiments, the managing a plurality
of memory chunks according to a chunk tree structure com-
prises detecting allocation of at least one memory chunk of
the plurality of memory chunks; and setting a first allocation
bit associated with the allocated memory chunk to indicate
allocation. A first allocation bit of each of the plurality of
memory chunks indicates whether an associated memory
chunk is allocated.

Dec. 12,2013

[0023] In example embodiments, the managing a plurality
of memory chunks according to a chunk tree structure further
comprises setting second allocation bits of the allocated
memory chunk, and each of second allocation bits of the
plurality of memory chunks indicates whether all memory
chunks at each of lower levels associated with a correspond-
ing memory chunk are allocated.

[0024] In example embodiments, the managing a plurality
of memory chunks according to a chunk tree structure further
comprises setting at least one first allocation bit of an upper
memory chunk to allocation when the at least one of first
allocation bits associated with the upper memory chunks of
the allocated memory chunk indicates non-allocation.

[0025] In example embodiments, the managing a plurality
of memory chunks according to a chunk tree structure further
comprises when all memory chunks at one of levels of the
chunk tree structure are allocated, setting second allocation
bits indicating the level including the memory chunks allo-
cated to indicate allocation at upper memory chunks of the
level, and each of second allocation bits of the plurality of
memory chunks indicates whether all memory chunks at each
of lower levels associated with a corresponding memory
chunk are allocated.

[0026] In example embodiments, the managing a plurality
of memory chunks according to a chunk tree structure com-
prises receiving a memory allocation request; accessing allo-
cation bits associated with a root memory chunk, located at
the highest level, from among the plurality of memory
chunks; searching a target level, including an unallocated
memory chunk having a size equal to or larger than a size
corresponding to the memory allocation request, from among
levels of the chunk tree structure based on the allocation bits;
and allocating a memory chunk at the target level according to
the chunk tree structure and the program frequencies.

[0027] In example embodiments, the allocating a memory
chunk at the target level according to the chunk tree structure
and the program frequencies comprises allocating the unal-
located memory chunk when an unallocated memory chunk
exists at the target level; and when two or more unallocated
memory chunks exist at the target level, sequentially selecting
achild memory chunk, having an allocation bit indicating that
an unallocated memory chunk exists at the target level and
having a relatively small program frequency, from among
child memory chunks until reaching the target level from the
root memory chunk and allocating a memory chunk selected
at the target level.

[0028] Example embodiments of the inventive concept also
provide a memory system comprising a memory; a controller
configured to control the memory; and a processor configured
to manage the memory according to a chunk tree structure,
wherein the controller is configured to generate a program
interrupt whenever a program of the memory is performed by
a threshold value; and wherein the processor is configured to
manage program frequencies of'a plurality of memory chunks
of'the memory based on the program interrupt and to allocate
the plurality of memory chunks based on the chunk tree
structure and the program frequencies.

[0029] It is noted that aspects of the inventive concept
described with respect to one embodiment, may be incorpo-
rated in a different embodiment although not specifically
described relative thereto. That is, all embodiments and/or
features of any embodiment can be combined in any way

US 2013/0332690 Al

and/or combination. These and other objects and/or aspects of
the present inventive concept are explained in detail in the
specification set forth below.

BRIEF DESCRIPTION OF THE FIGURES

[0030] The above and other objects and features will
become apparent from the following description with refer-
ence to the following figures, wherein like reference numerals
refer to like parts throughout the various figures unless oth-
erwise specified.

[0031] FIG.1 is a block diagram schematically illustrating
a memory system according to some embodiments of the
inventive concept.

[0032] FIG. 2 is a diagram schematically illustrating the
software architecture of a memory system 100 in FIG. 1.
[0033] FIGS. 3A to 3D are graphs illustrating memory
programs generated according to an execution of an applica-
tion when an SCRAM is managed by a typical memory man-
ager.

[0034] FIG. 4 is a flow chart illustrating a memory manag-
ing method according to some embodiments of the inventive
concept.

[0035] FIG.5is a diagram illustrating a memory managing
method of a memory manager according to some embodi-
ments of the present inventive concept.

[0036] FIG. 6 is a flow chart illustrating a memory manag-
ing method of some embodiments of the inventive concept in
which memory chunks are managed according to a chunk tree
memory.

[0037] FIG. 7 is a flow chart illustrating a method of man-
aging program frequencies of memory chunks according to a
program frequency managing method of embodiments of the
inventive concept.

[0038] FIG. 8 is a diagram illustrating an example in which
memory chunks are managed according to a memory chunk
managing method in FIG. 6 and a program frequency man-
aging method in FIG. 7.

[0039] FIG. 9 is a flow chart indicating a memory chunk
allocating method according to some embodiments of the
inventive concept.

[0040] FIG. 10 is a detailed flow chart indicating a method
of allocating a memory chunk of a target level in FIG. 9.
[0041] FIGS. 11 to 16 are diagrams illustrating an example
in which memory chunks are allocated and released accord-
ing to a chunk tree managing method in FIG. 6, a program
frequency managing method in FIG. 7, and a memory chunk
allocating method in FIG. 10.

[0042] FIG.17is aflow chart illustrating an embodiment of
a method in which a controller in FIG. 1 transfers a program
interrupt and a program address.

[0043] FIG.18isaflow chartillustrating an embodiment in
which wear levels of allocated memory chunks are managed.
[0044] FIG. 19 is a diagram illustrating an example in
which a wear level is managed according to a managing
method in FIG. 18.

DETAILED DESCRIPTION

[0045] Embodiments will be described in detail with refer-
ence to the accompanying drawings. The inventive concept,
however, may be embodied in various different forms, and
should not be construed as being limited only to the illustrated
embodiments. Rather, these embodiments are provided as
examples so that this disclosure will be thorough and com-

Dec. 12,2013

plete, and will fully convey the concept of the inventive con-
cept to those skilled in the art. Accordingly, known processes,
elements, and techniques are not described with respect to
some of the embodiments of the inventive concept. Unless
otherwise noted, like reference numerals denote like elements
throughout the attached drawings and written description,
and thus descriptions will not be repeated. In the drawings,
the sizes and relative sizes of layers and regions may be
exaggerated for clarity.

[0046] Itwill be understood that, although the terms “first”,
“second”, “third”, etc., may be used herein to describe various
elements, components, regions, layers and/or sections, these
elements, components, regions, layers and/or sections should
not be limited by these terms. These terms are only used to
distinguish one element, component, region, layer or section
from another region, layer or section. Thus, a first element,
component, region, layer or section discussed below could be
termed a second element, component, region, layer or section
without departing from the teachings of the inventive con-

cept.

[0047] Spatially relative terms, such as “beneath”,
“below”, “lower”, “under”, “above”, “upper” and the like,
may be used herein for ease of description to describe one
element or feature’s relationship to another element(s) or
feature(s) as illustrated in the figures. It will be understood
that the spatially relative terms are intended to encompass
different orientations of the device in use or operation in
addition to the orientation depicted in the figures. For
example, if the device in the figures is turned over, elements
described as “below” or “beneath” or “under” other elements
or features would then be oriented “above” the other elements
or features. Thus, the exemplary terms “below” and “under”
can encompass both an orientation of above and below. The
device may be otherwise oriented (rotated 90 degrees or at
other orientations) and the spatially relative descriptors used
herein interpreted accordingly. In addition, it will also be
understood that when a layer is referred to as being “between”
two layers, it can be the only layer between the two layers, or
one or more intervening layers may also be present.

[0048] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the inventive concept. As used herein, the
singular forms “a”, “an” and “the” are intended to include the
plural forms as well, unless the context clearly indicates oth-
erwise. It will be further understood that the terms “com-
prises” and/or “comprising,” when used in this specification,
specify the presence of stated features, integers, steps, opera-
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof. As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.
Also, the term “exemplary” is intended to refer to an example

or illustration.
[0049] It will be understood that when an element or layer
is referred to as being “on”, “connected to”, “coupled to”, or
“adjacent to” another element or layer, it can be directly on,
connected, coupled, or adjacent to the other element or layer,
or intervening elements or layers may be present. In contrast,
when an element is referred to as being “directly on,”
“directly connected to”, “directly coupled to”, or “immedi-
ately adjacent to” another element or layer, there are no inter-
vening elements or layers present.

US 2013/0332690 Al

[0050] Unless otherwise defined, all terms (including tech-
nical and scientific terms) used herein have the same meaning
as commonly understood by one of ordinary skill in the art to
which this inventive concept belongs. It will be further under-
stood that terms, such as those defined in commonly used
dictionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art
and/or the present specification and will not be interpreted in
an idealized or overly formal sense unless expressly so
defined herein.

[0051] Memory chunks of a chunk tree structure will be
described with reference to a root memory chunk, a parent
memory chunk, a child memory chunk, a higher memory
chunk, and a lower memory chunk. The root memory chunk
may indicate a memory chunk located at the uppermost level
of the chunk tree structure. The parent memory chunk may
indicate a memory chunk which is located at a level just above
a memory chunk being described and has correlation with
each other. The child memory chunk may indicate a memory
chunk which is located at a level just below a memory chunk
being described and has correlation with each other. The
higher memory chunk may indicate a memory chunk which is
located at a level above a memory chunk being described and
has correlation with each other. The higher memory chunk
may include the parent memory chunk and a grandparent
memory chunk. The lower memory chunk may indicate a
memory chunk which is located at a level below a memory
chunk being described and has correlation with each other.
The lower memory chunk may include the child memory
chunk and a grandson memory chunk. Memory chunks hav-
ing correlation may indicate memory chunks belonging to the
same branch of branches diverged from the root memory
chunk.

[0052] FIG.1 is a block diagram schematically illustrating
a memory system according to some embodiments of the
inventive concept. Referring to FIG. 1, a memory system 100
may include a main processor 110, an auxiliary processor
120, a controller 130, a storage class RAM (SCRAM) 140, a
nonvolatile main storage 150, a modem 160, a user interface
170, and a system bus 180.

[0053] The main processor 110 may be configured to con-
trol an overall operation of the memory system 100. The main
processor 110 may include a general-purpose processor and/
or an application processor, among others.

[0054] The auxiliary processor 120 may assist computation
of'the main processor 110. The auxiliary processor 120 may
include a graphic processing unit (GPU) or an image signal
processor (ISP). The auxiliary processor 120 may include a
general-purpose processor or an application processor which
constitutes a dual core or more core processor system with the
main processor 110.

[0055] The controller 130 may control the SCRAM 140 in
response to a command and an address transferred via the
system bus 180. The command and address can be received
from the main processor 110, the auxiliary processor 120, or
at least one of other constituent elements. The controller 130
may control a read operation, a write operation, an erase
operation, and/or a background operation of the SCRAM140.
The controller 130 may write data transferred via the system
bus 180 at the SCRAM 140, and may output data transferred
from the SCRAM 140 to the system bus 180.

[0056] The controller 130 may include a counter CNT. The
counter CNT may count a frequency of write commands
transferred via the system bus 180. If a count value reaches a

Dec. 12,2013

threshold value, the controller 130 may generate program
interrupt. The controller 130 may output program address
(that may be transferred when a count value reaches a thresh-
old value) to the system bus 180 together with the program
interrupt.

[0057] The SCRAM 140 may be a working memory of the
memory system 100. The SCRAM 140 may include nonvola-
tile memories such as a ferroelectric RAM (FRAM), a mag-
netic RAM (MRAM), a phase-change RAM (PRAM), and/or
a resistive RAM (RRAM), among others. The SCRAM 140
may have such a characteristic that it is worn according to
execution of a program operation.

[0058] The nonvolatile main storage 150 may be a main
storage of the memory system 100. The nonvolatile main
storage 150 may include a HDD or a nonvolatile storage such
as a NAND flash memory.

[0059] The modem 160 may communicate with an external
device by wireless or wire. The modem 160 may communi-
cate on the basis of at least one of a variety of communication
methods such as Ethernet, WiFi, Long Term Evolution (LTE),
Near Field Communication (NFC), and/or Bluetooth, among
others.

[0060] The user interface 170 may exchange signals with a
user. The user interface 170 may include user input interfaces
such as a keyboard, a mouse, a camera, a microphone, a
button, a touch pad, a touch screen, and so on and user output
interfaces such as a monitor, a liquid crystal display, a beam
projector, a speaker, a monitor, and so on.

[0061] The system bus 180 may provide a channel among
constituent elements of the memory system 100.

[0062] A part of the constituent elements of the memory
system 100 may be implemented by a system-on chip (SoC).
[0063] FIG. 2 is a diagram schematically illustrating the
software architecture of a memory system 100 in FIG. 1.
Referring to FIGS. 1 and 2, the software architecture may
include an application 210, an operating system 220, a
memory manager 230, and a memory 240.

[0064] The memory 240 may be an SCRAM 140.

[0065] The memory manager 230 may be configured to
manage the memory 240. The memory manager 230 may
manage the memory 240 by a unit of memory chunk. The
memory manager 230 may separate the memory 240 into a
plurality of memory chunks, and may form a chunk tree
structure based on the plurality of memory chunks. The
memory manager 230 may allocate and release chunks of'the
memory 240 based on the chunk tree structure.

[0066] The memory manager 230 may include a wear lev-
eling unit 231. The wear-leveling unit 231 may be configured
to manage wear-levels of the plurality of memory chunks,
respectively. The memory manager 230 may allocate and
release memory chunks based on wear levels managed by the
wear leveling unit 231 and the chunk tree structure.

[0067] The operating system 220 may control an overall
operation of the memory system 100. The operating system
220 may control constituent elements of the memory system
100, and may provide a condition in which the application
210 is driven. The operating system 220 may request the
memory manager 230 to allocate and release the memory
240.

[0068] The application 210 may include a variety of soft-
ware which is driven at a condition provided by the operating
system 220. For example, the application 210 may include a
word processor, a database, a spread sheet, an office, a game,
and/or a multimedia reproduction program, among others.

US 2013/0332690 Al

[0069] The memory manager 230, the operating system
220, and the application 210 may be driven by the main
processor 110 and/or by the main processor 110 and an aux-
iliary processor 120.

[0070] FIGS. 3A to 3D are graphs illustrating memory
programs generated according to an execution of an applica-
tion when an SCRAM is managed by a typical memory man-
ager. In FIGS. 3A to 3D, a horizontal axis may indicate a
memory address, and a vertical axis may indicate a program
frequency.

[0071] FIG. 3A shows memory accesses generated when
Firefox as one of the web search engines is executed. FIG. 3B
shows memory accesses generated when a Linux kernel build
is executed. FI1G. 3C shows memory accesses generated when
a sort is executed. FIG. 3D shows memory accesses generated
when vi, a test editor, is executed.

[0072] Referring to FIGS. 1, 2, and 3A to 3D, when a
memory is managed by atypical memory manager, a program
frequency may differentiate according to addresses of the
memory. In a memory system in which a DRAM is replaced
with an SCRAM 140, a difference between program frequen-
cies may cause a difference between wear levels. This may
mean that a life of the SCRAM 140 is shortened. Accordingly,
a life of the memory system 100 may be shortened and the
reliability thereof may be lowered.

[0073] The memory system 100 and the memory manager
230 may be configured to manage wear-leveling and to allo-
cate memory chunks based on the wear-leveling. Thus, it is
possible to provide the memory system 100 having improved
life and reliability.

[0074] FIG. 4 is a flow chart illustrating a memory manag-
ing method according to an embodiment of the inventive
concept. Referring to FIGS. 2 and 4, in operation 410,
memory chunks may be managed according to the chunk tree
structure. A memory manager 230 may manage a memory
240 based on the chunk memory structure.

[0075] In operation 420, the number of programs of the
memory chunks may be managed according to a program of
the memory 240. As a program of the memory 240 is gener-
ated, the memory manager 230 may manage program fre-
quencies of chunks of the memory 240, respectively.

[0076] In operation 430, memory chunks may be allocated
according to the program frequencies and the chunk tree
structure. The memory manager 230 may allocate the
memory chunks based on the program frequencies of the
memory chunks and the chunk tree structure.

[0077] FIG.5is a diagram illustrating a memory managing
method of a memory manager. Referring to FIGS. 2, 4, and 5,
a memory manager 230 may manage memory chunks based
on a chunk tree structure, and may manage program frequen-
cies of memory chunks.

[0078] A memory 240 may include first to eighth areas M1
to M8. The memory manager 230 may manage the first to
eighth areas M1 to M8 of the memory 240 based on a chunk
tree structure, and may manage program frequencies of the
first to eighth areas M1 to M8, respectively.

[0079] The chunk tree structure may be formed of a plural-
ity of levels. A memory chunk C30 corresponding to a third
level being the highest level may be a root memory chunk.
The root memory chunk C30 may correspond to the first to
eighth areas M1 to M8 of the memory 240. For example, if the
memory manager 230 allocates the root memory chunk C30

Dec. 12,2013

to an operating system 220 or an application 210, all of the
first to eighth areas M1 to M8 of the memory 240 may be
allocated.

[0080] Thememory manager 230 may manage information
associated with the root memory chunk C30. For example, the
memory manager 230 may manage information associated
with a program frequency NP and allocation information SI
of the root memory chunk C30. The program frequency NP
may indicate a wear level of the root memory chunk C30. The
allocation information SI may indicate whether the root
memory chunk C30 is at an allocated state or not and lower
memory chunks of the root memory chunk C30 is at an
allocated state.

[0081] Memory chunks C20 and C21 at a second level may
be child memory chunks of the root memory chunk C30. The
root memory chunk C30 may be a parent memory chunk of
the memory chunks C20 and C21 at the second level.

[0082] The memory chunk C20 may correspond to the first
to third areas M1 to M4 of the memory 240, and the memory
chunk C21 may correspond to the fifth to eighth areas M5 to
M8 of the memory 240. For example, the first to fourth areas
M1 to M4 may be allocated when the memory chunk C20 is
allocated, and the fifth to eighth areas M5 to M8 may be
allocated when the memory chunk C21 is allocated.

[0083] The memory manager 230 may manage a program
frequency NP and allocation information SI associated with
each of the memory chunks C20 and C21.

[0084] Memory chunks C10, C11, C12, and C13 at a first
level may be child memory chunks of the memory chunks
C20 and C21 at the second level. The memory chunk C20
may be a parent memory chunk of the memory chunks C10
and C11, and the memory chunk C21 may be a parent
memory chunk of the memory chunks C12 and C13.

[0085] The memory chunk C10 may correspond to the first
and second areas M1 and M2 of the memory 240, the memory
chunk C11 may correspond to the third and fourth areas M3
and M4 of the memory 240, the memory chunk C12 may
correspond to the fifth and sixth areas M5 and M6 of the
memory 240, and the memory chunk C13 may correspond to
the seventh and eighth areas M7 and M8 of the memory 240.
[0086] The memory manager 230 may manage a program
frequency NP and allocation information SI associated with
each of the memory chunks C10 to C13.

[0087] Memory chunks C00 and C0O7 at a 0% level may be
child memory chunks of the memory chunks C10 to C13 at
the first level. The memory chunk C10 may be a parent
memory chunk of the memory chunks C00 and C01, the
memory chunk C11 may be a parent memory chunk of the
memory chunks C02 and C03, the memory chunk C12 may
be a parent memory chunk of the memory chunks C04 and
C05, and the memory chunk C13 may be a parent memory
chunk of the memory chunks C06 and C07.

[0088] The memory chunks C00 to C07 may correspond to
the first to eighth areas M1 to M8 of the memory 240, respec-
tively.

[0089] The memory manager 230 may manage a program
frequency NP and allocation information SI associated with
each of the memory chunks C00 to C07.

[0090] FIG. 6 is a flow chart illustrating a memory manag-
ing method of the inventive concept in which memory chunks
are managed according to a chunk tree memory. Referring to
FIGS. 2, 5, and 6, in operation 610, allocation of a memory
chunk may be detected. For example, a memory manager 230
may detect whether a memory chunk is allocated to an oper-

US 2013/0332690 Al

ating system 220 or an application 210. The memory manager
230 may allocate the memory chunk. Operation 610 may be
performed as a follow-up operation on the allocation of the
memory chunk.

[0091] Inoperation 620, the memory manager 230 may set
a first allocation bit of the allocated memory chunk so as to
indicate allocation. The first allocation bit may be a part of
allocation information SI, and may indicate allocation or
non-allocation of a related memory chunk. If the first alloca-
tion bit is set to allocation, the memory manager 230 may be
in use because the related memory chunk is allocated.
[0092] Inoperation 630, the memory manager 230 may set
second allocation bits of the allocated memory chunk so as to
indicate allocation. The second allocation bits may be a part
of' the allocation information, and may indicate allocation or
non-allocation of lower memory chunks of the related
memory chunk. If the second allocation bits are set to alloca-
tion, memory chunks pointed by the second allocation bits
may be allocated. That is, the memory chunks pointed by the
second allocation bits may be in use. The memory manager
230 may set the second allocation bits of the allocated
memory chunk to allocation so as to indicate that memory
chunks at all lower levels are allocated.

[0093] Inoperation 640, when at least one of first allocation
bits of higher memory chunks ofthe allocated memory chunk
indicates non-allocation, the memory manager 230 may set
the at least first allocation bit so as to indicate allocation. That
is, when one of lower memory chunks is set to allocation, a
first allocation bit of allocation information SI of a higher
memory chunk may be set to allocation.

[0094] Inoperation 650, if all memory chunks ofa level are
allocated, second allocation bits indicating a corresponding
level in memory chunks of higher levels may be set to allo-
cation under the control of the memory manager 230. For
example, if all memory chunks, belonging to the same level,
from among lower memory chunks are allocated, a second
allocation bit of a higher memory chunk indicating a corre-
sponding level may be set to allocation. In other words, if at
least one of lower memory chunks at the same level is at a
non-allocation state, a second allocation bit of a higher
memory chunk indicating a corresponding level may be set to
non-allocation.

[0095] FIG. 7 is a flow chart illustrating a method of man-
aging program frequencies of memory chunks according to a
program frequency managing method of the inventive con-
cept.

[0096] Referring to FIGS. 1, 2, 5, and 7, in operation 710,
program interrupt and a program address may be received. A
memory manager 230 executed by a processor 110 or 120
may receive the program interrupt and the program address
from a controller 130 of an SCRAM 140. The controller 130
may generate the program interrupt at a program of the
SCRAM 140 or when a program of the SCRAM 140 is
generated as much as a threshold value. The controller 130
may send the program address causing a generation of the
program interrupt together with the program interrupt.
[0097] In operation 720, the memory manager 230 may
increase a program frequency of a memory chunk at the
lowest level corresponding to the program address. For
example, the memory manager 230 may increase a program
frequency NP of a memory chunk at a 0” level corresponding
to the program address.

[0098] In operation 730, if all child memory chunks of a
parent memory chunk are allocated, the memory manager

Dec. 12,2013

230 may set a program frequency NP of the parent memory
chunk to a sum of program frequencies NP of the child
memory chunks.

[0099] Inoperation 740, if all child memory chunks of the
parent memory chunk are at a non-allocation state, the
memory manager 230 may set a program frequency NP of the
parent memory chunk to a sum of program frequencies NP of
the child memory chunks.

[0100] Inoperation 750, if one child memory chunk of the
parent memory chunk is allocated and another thereof'is at a
non-allocation state, the memory manager 230 may set a
program frequency NP of the parent memory chunk to a
double of a program frequency NP of'the child memory chunk
not allocated.

[0101] FIG. 8 is a diagram illustrating an example in which
memory chunks are managed according to a memory chunk
managing method in FIG. 6 and a program frequency man-
aging method in FIG. 7. Referring to FIGS. 6 to 8, memory
chunks C00, C01, and C05 may be allocated, and memory
chunks C02, C03, C04, C06, and C07 may be released.
[0102] Allocation information SI of the memory chunks
C00, C01, and C05 may include a value (e.g., 1) indicating
allocation. Allocation information SI of the memory chunks
C02, C03, C04, C06, and C07 may include a value (e.g., 0)
indicating non-allocation. Since the memory chunks C00 to
C07 don’t have lower memory chunks, each of the memory
chunks C00 to C07 may have a first allocation bit indicating
whether it is allocated or not. On the other hand, each of the
memory chunks C00 to C07 may not have a second allocation
bit indicating whether lower memory chunks are allocated or
not.

[0103] Program frequencies NP of the memory chunks C00
to C07 may be 1, 2, 4, 3,8, 2, 5, and 10, respectively.
[0104] All child memory chunks C00 and CO01 of the
memory chunk C10 may be allocated. According to operation
640, a first allocation bit of allocation information SI of the
memory chunk C10 (i.e., a first bit of the allocation informa-
tion SI) may have a value (e.g., 1) indicating allocation.
According to operation 650, a second allocation bit of the
allocation information SI of the memory chunk C10 (i.e., a
second bit of the allocation information SI) may have a value
(e.g., 1) indicating allocation. Since the memory chunk C10
has a lower level, the second allocation bit of the memory
chunk C10 may be formed of a bit corresponding to a 0% level.
According to operation 730, a program frequency NP of the
memory chunk C10 may be 3 being a sum of program fre-
quencies of the memory chunks C00 and C01.

[0105] All child memory chunks C02 and C03 of the
memory chunk C11 may be released. This case may not
correspond to operation 640. At this time, a first allocation bit
of allocation information SI of the memory chunk C11 (i.e., a
first bit of the allocation information SI) may have a value
(e.g., 0) indicating non-allocation. Also, the above-described
case may not correspond to operation 650. At this time, a
second allocation bit of the allocation information SI of the
memory chunk C11 (i.e., a second bit of the allocation infor-
mation SI) may have a value (e.g., 0) indicating non-alloca-
tion. According to operation 740, a program frequency NP of
the memory chunk C11 may be 7 being a sum of program
frequencies of the memory chunks C02 and C03.

[0106] In the memory chunk C12, a child memory chunk
C04 may be released and a child memory chunk C05 may be
allocated. According to operation 640, a first allocation bit of
allocation information SI of the memory chunk C12 (i.e., a

US 2013/0332690 Al

first bit of the allocation information SI) may have a value
(e.g., 1) indicating allocation. Also, the above-described case
may not correspond to operation 650. At this time, a second
allocation bit of the allocation information SI of the memory
chunk C12 (i.e., a second bit of the allocation information SI)
may have a value (e.g., 0) indicating non-allocation. Accord-
ing to operation 750, a program frequency NP of the memory
chunk C12 may be 16 being the double of the program fre-
quency of the child memory chunk C04.

[0107] All child memory chunks C06 and CO07 of the
memory chunk C13 may be released. This case may not
correspond to operation 640. At this time, a first allocation bit
of allocation information SI of the memory chunk C13 (i.e., a
first bit of the allocation information SI) may have a value
(e.g., 0) indicating non-allocation. Also, the above-described
case may not correspond to operation 650. At this time, a
second allocation bit of the allocation information SI of the
memory chunk C13 (i.e., a second bit of the allocation infor-
mation SI) may have a value (e.g., 0) indicating non-alloca-
tion. According to operation 740, a program frequency NP of
the memory chunk C11 may be 15 being a sum of program
frequencies of the memory chunks C06 and C07.

[0108] Memory chunks C10, C00, and C01 of lower
memory chunks of the memory chunk C20 may be allocated.
According to operation 640, a first allocation bit of allocation
information ST of the memory chunk C20 (i.e., a first bit of the
allocation information SI) may have a value (e.g., 1) indicat-
ing allocation. A level, in which all memory chunks are allo-
cated, from among lower levels of the memory chunks C20
may not exist. In this case, a second allocation bit indicating
a first level (i.e., a second bit of the allocation information SI)
and a second allocation bit indicating a 0% level (i.e., a third
bit of the allocation information SI) may have a value (e.g., 0)
indicating non-allocation. According to operation 750, a pro-
gram frequency NP of the memory chunk C20 may be 14
being the double of the program frequency NP of one C11, not
allocated, from among the child memory chunks C10 and
C11.

[0109] Memory chunks C12 and C05 of lower memory
chunks of the memory chunk C21 may be allocated. Accord-
ing to operation 640, a first allocation bit of allocation infor-
mation SI of the memory chunk C21 (i.e., a first bit of the
allocation information SI) may have a value (e.g., 1) indicat-
ing allocation. A level in which all memory chunks are allo-
cated from among lower levels of the memory chunks C20
may not exist. Since this case not correspond to operation
650, a second allocation bit indicating a first level (i.e., a
second bit of the allocation information SI) and a second
allocation bit indicating a 0” level (i.e., a third bit of the
allocation information SI) may have a value (e.g., 0) indicat-
ing non-allocation. According to operation 750, a program
frequency NP of the memory chunk C21 may be 30 being the
double of the program frequency NP of one C13, not allo-
cated, from among the child memory chunks C12 and C13.

[0110] A first allocation bit of a root memory chunk C30
(i.e., a first bit of allocation information SI) may have a value
(e.g., 1) indicating allocation. Since all lower memory chunks
(20 and C21 at a second level are allocated, a second alloca-
tion bit indicating the second level (i.e., a second bit of the
allocation information SI) may have a value (e.g., 1) indicat-
ing allocation. Second allocation bits indicating a first level
and a 07 level (i.e., third and fourth bits of the allocation
information SI) may have values (e.g., 0) indicating non-
allocation, respectively.

Dec. 12,2013

[0111] FIG. 9 is a flow chart indicating a memory chunk
allocating method according to an embodiment of the inven-
tive concept. Referring to FIGS. 2 and 9, in operation 910, a
memory manager 230 may receive a memory allocation
request from an operating system 220.

[0112] In operation 920, the memory manager 230 may
access allocation information SI of a root memory chunk.
[0113] In operation 930, the memory manager 230 may
search a target level, including an unallocated memory chunk
having a size equal to or larger than a size corresponding to
the memory allocation request, based on the allocation infor-
mation SI of the root memory chunk.

[0114] In operation 940, the memory manager 230 may
allocate a memory chunk of the target level according to a
chunk tree structure and program frequencies NP of memory
chunks.

[0115] FIG. 10 is a detailed flow chart indicating a method
of allocating a memory chunk of a target level in FIG. 9.
Referring to FIGS. 2 and 10, in operation 1010, a memory
manager 230 may access a root memory chunk.

[0116] In operation 1020, the memory manager 230 may
determine whether a level to which the accessed memory
chunk belongs is a target level. If so, in operation 1025, the
accessed memory chunk may be selected, and the method
proceeds to operation 1090. If not, the method proceeds to
operation 1030.

[0117] In operation 1030, the memory manager 230 may
access child memory chunks of the accessed memory chunk.
[0118] In operation 1040, the memory manager 230 may
detect child memory chunks, having a memory chunk not
allocated to the target level, from among accessed child
memory chunks.

[0119] In operation 1050, the memory manager 230 may
determine whether two or more child memory chunks are
detected. If not, in operation 1055, the detected child memory
chunk may be selected, and the method proceeds to operation
1080. If so, the method proceeds to operation 1060.

[0120] In operation 1060, the memory manager 230 may
compare program frequencies NP of the detected child
memory chunks.

[0121] In operation 1070, the memory manager 230 may
select a child memory chunk having the lowest program fre-
quency NP.

[0122] In operation 1080, the memory manager 230 may
determine whether the selected memory chunk belongs to the
target level. If not, the method proceeds to operation 1030. If
so, the method proceeds to operation 1090, in which the
memory manager 230 allocates the selected memory chunk.
[0123] FIGS. 11 to 16 are diagrams illustrating an example
in which memory chunks are allocated and released accord-
ing to a chunk tree managing method in FIG. 6, a program
frequency managing method in FIG. 7, and a memory chunk
allocating method in FIG. 10. Referring to FIG. 11, since all
memory chunks C00 to C06, C10 to C13, C20, C21, and C30
are released, they may have program frequencies NP as illus-
trated in FIG. 11.

[0124] In FIG. 12, there is illustrated a process in which
memory chunks in FIG. 11 are allocated according to a
memory allocation request. In example embodiments, a
memory allocation request may request a memory chunk
having a size corresponding to memory chunks C00 to C07 at
a 0™ level.

[0125] Referringto FIGS. 2 and 11, a memory manager 230
may access allocation information SI of a root memory chunk

US 2013/0332690 Al

C30. A fourth bit of the allocation information SI of the root
memory chunk C30 may be a second allocation bit indicating
whether memory chunks at a 0% level are allocated or not. The
second allocation bit may indicate that a memory chunk,
having a release state, from among the memory chunks at the
0" level exists. Thus, the 07 level may be selected as the target
level.

[0126] The root memory chunk C30 may be accessed (@)

[0127] Since the root memory chunk C30 does not belong
to the target level, the memory manager 230 may access child
memory chunks C20 and C21 of the root memory chunk C30.
A program frequency NP of the memory chunk C20 may be
10, and a program frequency NP of the memory chunk C21
may be 26. Thus, the memory manager 230 may select the
memory chunk C20 (@)

[0128] Since the selected memory chunk C20 does not
belong to the target level, the memory manager 230 may
access child memory chunks C10 and C11 of the selected
memory chunk C20. A program frequency NP of the memory
chunk C10 may be 3, and a program frequency NP of the
memory chunk C11 may be 7. Thus, the memory manager
230 may select the memory chunk C10 (@)

[0129] Since the selected memory chunk C10 does not
belong to the target level, the memory manager 230 may
access child memory chunks C00 and C01 of the selected
memory chunk C10. A program frequency NP of the memory
chunk C00 may be 1, and a program frequency NP of the
memory chunk C01 may be 2. Thus, the memory manager
230 may select the memory chunk C00 (@)

[0130] Since the selected memory chunk C00 belongs to
the target level, the memory manager 230 may allocate the
selected memory chunk C00. As the memory chunk C00 is
allocated, a first area M1 of a memory 240 corresponding to
the memory chunk C00 may be allocated.

[0131] An allocation result of the memory chunk C00 may
be illustrated in FIG. 12. A first allocation bit of allocation
information SI of the allocated memory chunk C00 (i.e., a
first bit of the allocation information SI) may be set to a value
(e.g., 1) indicating allocation. First allocation bits of upper
memory chunks C10, C20, and C30 of the allocated memory
chunk C00 (i.e., a first bit of the allocation information SI)
may be set to a value (e.g., 1) indicating allocation. If the
memory chunk C00 is allocated, a part of storage capacities of
the upper memory chunks C10, C20, and C30 may be used.
For example, the upper memory chunks C10, C20, and C30 of
the allocated memory chunk C00 may not be allocated in
itself. Thus, the first allocation bits of the upper memory
chunks C10, C20, and C30 may be set to a value (e.g., 1)
indicating allocation.

[0132] A program frequency NP of the memory chunk C10
may be set to 4 being the double of the program frequency NP
of the child memory chunk CO01 released. A program fre-
quency NP of the memory chunk C20 may be set to 14 being
the double of the program frequency NP of the child memory
chunk C11 released. A program frequency NP of the root
memory chunk C30 may be set to 52 being the double of the
program frequency NP of the child memory chunk C21
released.

[0133] Later,a memory allocation request corresponding to
memory chunks C00 to C07 at a 0% level may be again
received. The memory manager 230 may determine whether
a memory chunk, being at a release state, from among the
memory chunks C00 to C07 at the 0% level exists, based on

Dec. 12,2013

allocation information SI ofthe root memory chunk C30. The
memory manager 230 may set the 07 level to the target level.
[0134] Referring to athird bit of the allocation information
SI, memory chunks C20 and C21 may have memory chunks
having a release state at the 07 level, respectively. Since a
program frequency NP of the memory chunk C20 is lower
than that of the memory chunk C21, the memory chunk C20
may be selected (@)

[0135] Referring to a second bit of the allocation informa-
tion SI, memory chunks C10 and C11 may have memory
chunks having a release state at the 0” level, respectively. The
memory chunk C10 having a relatively low program fre-
quency NP may be selected (@)

[0136] The memory chunk C00 may be at an allocation
state, and the memory chunk C01 may be at a non-allocation
state. Thus, the memory chunk C01 may be allocated (@) In
this case, a second area M2 of the memory may be allocated.
[0137] An allocation result of the memory chunk C01 may
be illustrated in FIG. 13. A first allocation bit of allocation
information SI of the allocated memory chunk C01 (i.e., a
first bit of the allocation information SI) may be set to 1
indicating allocation. Since all lower memory chunks C00
and CO1 at the 07 level being a lower level of the memory
chunk C10 are allocated, a second allocation bit (i.e., a second
bit of the allocation information SI), indicating the 07 level of
the allocation, of the allocation information SI of the memory
chunk C10 may be set to 1 indicating allocation. A program
frequency NP ofthe memory chunk C10 may be set to 3 being
a sum of program frequencies of the memory chunks C00 and
Co1.

[0138] Later,amemory allocation request corresponding to
the memory chunks C00 to C07 at the 0” level may be again
received. The memory manager 230 may set the 07 level to
the target level based on the allocation information SI of the
root memory chunk C30.

[0139] One C20 of the memory chunks C20 and C21 may
be selected according to a program frequency NP (@)

[0140] Referring to a second allocation bit of the allocation
information SI (i.e., a second bit of the allocation information
SI) indicating the 0 level, the memory chunk C10 may not
have a memory chunk having a release state at the 07 level.
Thus, the memory chunk C11 may be selected (@)

[0141] A memory chunk C03 of the memory chunks C02
and C03 may be allocated according to a program frequency
(@) Inthis case, a fourth area M4 of the memory 240 may be
allocated.

[0142] An allocation result of the memory chunk C03 may
be illustrated in FIG. 14. A first allocation bit of the allocation
information SI of the allocated memory chunk C03 (i.e, a
first bit of the allocation information SI) may be set to 1
indicating allocation. A first allocation bit of the allocation
information SI (i.e., a first bit of the allocation information SI)
of'an upper memory chunk C11 of the memory chunk 03 may
be set to 1 indicating allocation. Since all lower memory
chunks C10 and C11 at the first level being a lower level are
allocated, a second allocation bit (i.e., a second bit) of the
allocation information SI of the memory chunk C20 may be
set to 1 indicating allocation. A program frequency NP of the
memory chunk C11 may be set to 8 being the double of the
program frequency NP of a child memory chunk C02
released. A program frequency NP of the memory chunk C20
may be set to 11 being a sum of program frequencies NP of
child memory chunks C10 and C11.

US 2013/0332690 Al

[0143] Afterwards, a memory allocation request corre-
sponding to the memory chunks C20 and C21 at the second
level may be again received. The memory manager 230 may
set the second level to the target level based on allocation
information SI of the root memory chunk C30.

[0144] Since a first allocation bit (i.e., a first bit) of the
allocation information SI of the memory chunk C20 indicates
allocation, the memory chunk C21 may be allocated (@) In
this case, fifth to eighth areas M5 to M8 of the memory 240
may be allocated.

[0145] An allocation result of the memory chunk C03 may
be illustrated in FIG. 15. A first allocation bit of the allocation
information SI of the allocated memory chunk C21 may be set
to 1 indicating allocation. Second allocation bits (i.e., second
and third bits) of the allocation information SI ofthe allocated
memory chunk C21 may be set to 1 indicating allocation
(operation 630). That is, the allocation information SI of the
allocated memory chunk C21 may be set to indicate that
lower memory chunks C12, C13, C04, C05, C06, and C07 of
the allocated memory chunk C21 are not allocated.

[0146] Since all of the memory chunks C20 and C21 at the
second and third levels are allocated, a second allocation bit
(i.e., a second bit) of the allocation information SI of the root
memory chunk C30 indicating the second level and a third
allocation bit (i.e., a third bit) of the allocation information SI
of'the root memory chunk C30 indicating the third level may
be set to 1 indicating allocation.

[0147] A program frequency NP of the memory chunk C30
may be set to 37 being a sum of program frequencies of child
memory chunks C20 and C21.

[0148] Afterwards, a release request on the allocated
memory chunks may be received. For example, a release
request on the memory chunk C03 may be received. As the
memory chunk CO03 is released, the fourth area M4 of the
memory 240 may be released. A released result of the
memory chunk C03 may be illustrated in FIG. 16.

[0149] A firstallocation bit (i.e., a first bit) of the allocation
information SI of the released memory chunk C03 may be set
to 0 indicating non-allocation. A second allocation bit (i.e., a
second bit) of the allocation information SI of the memory
chunk C20 indicating the first level may be set to 0 indicating
non-allocation.

[0150] A program frequency NP of the memory chunk C11
may be set to 7 being a sum of program frequencies NP of
child memory chunks C02 and C03. A program frequency NP
of'the memory chunk C20 may be set to 14 being the double
of the program frequency of a child memory chunk C11
released.

[0151] As described with reference of FIGS. 11 to 16, pro-
gram frequencies NP and allocation information SI of
memory chunks may be dynamically managed according to
allocation and release of the memory chunks. Program fre-
quencies NP of memory chunks C00to C07 atthe lowest level
may increase according to a program interrupt and a program
address. Program frequencies NP of memory chunks at an
upper level may be managed according to program frequen-
cies NP of memory chunks at a lower level and whether the
memory chunks at the lower level are allocated or not.
[0152] In the memory chunks C00 to C07 at the lowest
level, allocation information SI may include a first allocation
bit, and may be adjusted according to whether they them-
selves are allocated. A first allocation bit of allocation infor-
mation SI ofa parent memory chunk may be adjusted whether
it itself is allocated and whether a lower memory chunk is

Dec. 12,2013

allocated. Second allocation bits of the allocation information
SIof'the parent memory chunk may be set to logical conjunc-
tion (AND) of allocation information SI of child memory
chunks.

[0153] FIG.17is a flow chart illustrating an embodiment of
a method in which a controller in FIG. 1 transfers a program
interrupt and a program address. Referring to FIGS. 1 and 17,
a controller may receive a program command and a program
address (operation 1710).

[0154] In operation 1720, the controller 130 may count a
program command frequency using a counter CNT.

[0155] Inoperation 1730, the controller 130 may determine
whether a count value reaches a threshold value. If the count
value reaches the threshold value, in operation 1740, the
controller 130 may generate a program interrupt to transfer a
program address.

[0156] In operation 1750, the controller 130 may reset the
count value.
[0157] Whenaprogram of an SCRAM 140 is performed by

a frequency corresponding to the threshold value, the control-
ler 130 may transfer a program address corresponding to a
program command reaching the threshold value and the pro-
gram interrupt. That is, the controller 130 may sample a
program address of the SCRAM 140 based on the threshold
value, and may increase program frequencies of memory
chunks C00 to C07 at the lowest level according to the
sampled program address. If wear levels of the memory
chunks C00 to C07 at the lowest level are performed, com-
plexity of managing of wear levels may be reduced.

[0158] FIG. 18is aflow chartillustrating an embodiment in
which wear levels of allocated memory chunks are managed.
Referring to FIGS. 2 and 18, in operation 1810, a memory
manager 230 may detect memory chunks at the lowest level
having the smallest program frequency and the largest pro-
gram frequency.

[0159] In operation 1820, the memory manager 230 may
determine whether a difference between the smallest program
frequency and the largest program frequency reaches a
threshold value. If so, in operation 1830, the memory man-
ager 230 may change data and allocation between memory
chunks having the smallest program frequency and the largest
program frequency each other.

[0160] FIG. 19 is a diagram illustrating an example in
which a wear level is managed according to a managing
method in FIG. 18. Referring to FIGS. 18 and 19, a memory
chunk C00 at the lowest level may have the smallest program
frequency, and a memory chunk C07 may have the largest
program frequency. It is assumed that a difference between
the smallest program frequency and the largest program fre-
quency reaches a threshold value.

[0161] A memory manager 230 may exchange data of the
memory chunk C00 and data of the memory chunk C07. The
memory manager 230 may exchange allocation of the
memory chunks C00 and C07 to each other.

[0162] Data stored in the memory chunk C00 may be cop-
ied to the memory chunk C07, and data stored in the memory
chunk C07 may be copied to the memory chunk C00. The
memory chunk C00 corresponding to a first area M1 of a
memory 240 may be exchanged with a child memory chunk
C07' of a memory chunk C13. The memory chunk C07 cor-
responding to an eighth area M8 of the memory 240 may be
exchanged with a child memory chunk C00' of a memory
chunk C10.

US 2013/0332690 Al

[0163] With embodiments of the inventive concept,
although a program may be continuously generated with a
specific memory chunk being occupied, it is possible to pre-
vent the specific memory chunk from being continuously
worn.

[0164] As described above, a memory may be allocated in
view of a memory chunk tree structure and program frequen-
cies of memory chunks. Thus, it is possible to improve the
reliability and life of an SCRAM-based memory system.
[0165] While the inventive concept has been described with
reference to exemplary embodiments, it will be apparent to
those skilled in the art that various changes and modifications
may be made without departing from the spirit and scope of
the present invention. Therefore, it should be understood that
the above embodiments are not limiting, but illustrative.

What is claimed is:

1. A method of managing a memory including a plurality of
memory chunks according to a chunk tree structure, compris-
ing:

managing program frequencies of the plurality of memory

chunks of the memory according to a program of the
memory;

managing allocation information of ones of the plurality of

memory chunks in the chunk tree structure; and
allocating the plurality of memory chunks based on the
program frequencies and the allocation information.

2. The method of claim 1, wherein managing the program
frequencies of the plurality of memory chunks comprises:

receiving a program interrupt and a program address from

a memory controller that controls the memory; and
increasing a program frequency of the lowest memory
chunk corresponding to the program address.

3. The method of claim 2, wherein the program interrupt
and the program address are received when a program fre-
quency of the memory reaches a threshold value, and

wherein the program address corresponds to a program

executed when the program frequency of the memory
reaches the threshold value.

4. The method of claim 2,

wherein the plurality of memory chunks includes a parent

memory chunk and a plurality of child memory chunks,
and

wherein managing the program frequencies of the plurality

of memory chunks further comprises:

setting a program frequency of the parent memory chunk to

a sum of program frequencies of the child memory
chunks.

5. The method of claim 2,

wherein the plurality of memory chunks includes a parent

memory chunk and a plurality of child memory, and
wherein managing the program frequencies of the plurality
of memory chunks further comprises:

setting a program frequency of the parent memory chunk to

a sum of program frequencies of a non-allocated one of
the plurality of child memory chunks.

6. The method of claim 2,

wherein the plurality of memory chunks includes a parent

memory chunk and a plurality of child memory chunks,
wherein managing the program frequencies of the plurality
of memory chunks further comprises:

setting a program frequency of the parent memory chunk to

double the program frequency of a non-allocated one of
the plurality of child memory chunks.

Dec. 12,2013

7. The method of claim 2, wherein managing the program
frequencies of the plurality of memory chunks comprises:

detecting a smallest program frequency and a largest pro-

gram frequency of program frequencies of the plurality
of memory chunks at a lowest level of the chunk tree
structure;

determining whether a difference between the smallest

program frequency and the largest program frequency
reaches a threshold value; and

if the difference between the smallest program frequency

and the largest program frequency reaches the threshold
value, exchanging data and allocation between memory
chunks having the smallest program frequency and the
largest program frequency.

8. The method of claim 1, wherein managing allocation
information of ones of the plurality of memory chunks in the
chunk tree structure comprises:

detecting allocation of at least one memory chunk of the

plurality of memory chunks; and

setting a first allocation bit associated with the allocated

memory chunk to indicate allocation,

wherein the first allocation bit of each of the plurality of

memory chunks indicates whether an associated one of
the plurality of memory chunks is allocated.

9. The method of claim 8, wherein managing allocation
information of ones of the plurality of memory chunks in the
chunk tree structure further comprises:

setting a second allocation bit of the allocated memory

chunk,

wherein the second allocation bit of the associated one of

the plurality of memory chunks indicates whether all
memory chunks at each of lower levels relative to the
associated memory chunk are allocated.

10. The method of claim 8, wherein managing allocation
information of ones of the plurality of memory chunks in the
chunk tree structure further comprises:

setting at least one first allocation bit of an upper memory

chunk to allocation when the at least one of first alloca-
tion bits associated with the upper memory chunks ofthe
allocated memory chunk indicates non-allocation.

11. The method of claim 9, wherein managing allocation
information of ones of the plurality of memory chunks in the
chunk tree structure further comprises:

when all memory chunks at one level of the chunk tree

structure are allocated, setting second allocation bits
indicating the level including the memory chunks allo-
cated to indicate allocation at upper memory chunks
relative to the level, and

wherein each of second allocation bits of the plurality of

memory chunks indicates whether all memory chunks at
each of lower levels associated with a corresponding
memory chunk are allocated.

12. The method of claim 1, further comprising:

receiving a memory allocation request;

accessing allocation bits associated with a root memory

chunk, located at a highest level, from among the plu-
rality of memory chunks;

searching a target level, including an unallocated memory

chunk having a size equal to or larger than a size corre-
sponding to the memory allocation request, from among
levels of the chunk tree structure based on the allocation
bits; and

allocating a memory chunk at the target level according to

the chunk tree structure and the program frequencies.

US 2013/0332690 Al

13. The method of claim 12, wherein the allocating the
memory chunk at the target level according to the chunk tree
structure and the program frequencies comprises:
allocating the unallocated memory chunk when an unallo-
cated memory chunk exists at the target level; and

when two or more unallocated memory chunks exist at the
target level, sequentially selecting a child memory
chunk, having an allocation bit indicating that an unal-
located memory chunk exists at the target level and that
includes a small program frequency relative to other
memory chunks at the same level until reaching the
target level from the root memory chunk and allocating
a memory chunk selected at the target level.
14. A memory system comprising:
amemory;
a controller configured to control the memory; and
aprocessor configured to manage the memory according to
a chunk tree structure,

wherein the controller is configured to generate a program
interrupt whenever a program of the memory is per-
formed by a threshold value; and

wherein the processor is configured to manage program

frequencies of a plurality of memory chunks of the
memory based on the program interrupt and to allocate
the plurality of memory chunks based on the chunk tree
structure and the program frequencies.

15. A method of managing a memory by a unit of memory
chunk, comprising:

managing a plurality of memory chunks according to a

chunk tree structure;

managing program frequencies of the plurality of memory

chunks of the memory according to a program of the
memory; and

allocating the plurality of memory chunks based on the

program frequencies and the chunk tree structure.

16. The method of claim 15, wherein managing the pro-
gram frequencies of the plurality of memory chunks of the
memory according to a program of the memory further com-
prises:

setting a program frequency of a parent memory chunk, in

which all child memory chunks are allocated, from
among the plurality of memory chunks to a sum of
program frequencies of the child memory chunks.

Dec. 12,2013

17. The method of claim 15, wherein managing the pro-
gram frequencies of the plurality of memory chunks of the
memory according to a program of the memory further com-
prises:
setting a program frequency of a parent memory chunk, in
which a first child memory chunk is allocated and a
second child memory chunk is not allocated, from
among the plurality of memory chunks to the double of
the program frequency of the second child memory
chunk not allocated.
18. The method of claim 15, wherein managing the pro-
gram frequencies of the plurality of memory chunks of the
memory according to a program of the memory comprises:
detecting the smallest program frequency and the largest
program frequency of program frequencies of memory
chunks at the lowest level of the chunk tree structure;

determining whether a difference between the smallest
program frequency and the largest program frequency
reaches a threshold value; and

if the difference between the smallest program frequency

and the largest program frequency reaches the threshold
value, exchanging data and allocation between memory
chunks having the smallest program frequency and the
largest program frequency.

19. The method of claim 15, wherein managing the plural-
ity of memory chunks according to a chunk tree structure
comprises:

detecting allocation of at least one memory chunk of the

plurality of memory chunks; and

setting a first allocation bit associated with the allocated

memory chunk to indicate allocation,

wherein a first allocation bit of each of the plurality of

memory chunks indicates whether an associated
memory chunk is allocated.

20. The method of claim 19, wherein managing the plural-
ity of memory chunks according to a chunk tree structure
further comprises:

setting second allocation bits of the allocated memory

chunk, and

wherein each of second allocation bits of the plurality of

memory chunks indicates whether all memory chunks at
each of lower levels associated with a corresponding
memory chunk are allocated.

#* #* #* #* #*

