
Reducing Garbage Collection Overhead of
Log-Structured File Systems with GC Journaling

Hyunho Gwak, Yunji Kang, and Dongkun Shin
College of Information and Communication Engineering

Sungkyunkwan University
Suwon, Korea

gusghrhkr@skku.edu, oso41@skku.edu, dongkun@skku.edu

Abstract—The log-structured file system (LFS) writes all

modifications to storage sequentially with append-only logging
scheme. This characteristic of LFS is very advantageous to flash
storages since the flash memory does not permit in-place
overwrite. However, LFS has a high garbage collection (GC)
overhead. In particular, under the lazy metadata update scheme,
each GC process should invoke the high-cost checkpointing
which flushes all the dirty metadata and normal data to storage.
The long GC latency will degrade the response times of user
requests. In this paper, we propose a GC journaling technique,
which journals only the file system changes relevant to the GC
process without invoking the high cost checkpointings.

Keywords— log-structured file system; flash storage; garbage
collection; checkpointing

I. INTRODUCTION
Flash memory has been used widely in various consumer

devices such as mobile phones and smart TVs due to its high
performance, low power consumption, and shock resistance. In
particular, recent mobile devices use embedded multimedia
card (eMMC) and secure digital (SD) card, which use flash
memory as storage media. These devices include a special
firmware, called flash translation layer (FTL), which handles
all the idiosyncrasy of flash memory and provides the standard
block interface to the host. Since the flash memory does not
permit in-place overwrite, it shows poor performance at
random write requests.

 Since the log-structured file system (LFS) [1] generates
only the sequential write requests with the append-only logging
scheme, LFS is a suitable file system for flash storages. There
are several log-structured flash file systems such as YAFFS2
and UBIFS, which are targeting for pure NAND flash memory
chip. However, current log-structured file systems show no
good performance for flash memory storages. The first reason
is its wandering tree problem. When a write operation updates
a data block in LFS, its direct index block and indirect index
blocks should be also updated recursively since the location of
data block is changed. The second problem is the high garbage
collection (segment cleaning) cost of LFS. During the garbage
collection (GC) process, all the valid blocks in victim segments
should be moved to clean segments.

Recently, a new log-structured file system, called F2FS [2],
is proposed, which is designed for FTL-embedded flash
memory storage devices such as eMMC and SD card. In order
to avoid the wandering tree problem, F2FS uses the lazy

metadata update scheme, where the dirty metadata blocks are
not flushed immediately. They are flushed during the
checkpointing instead. The checkpointing generates a
consistent file system recovery point called checkpoint.
However, under the lazy metadata update scheme, the garbage
collection should invoke the checkpointing in order to record
the changes of block locations. After the checkpointing, the
cleaned segments can be reused by other write requests. Since
all the dirty data and metadata should be written at the storage
during the checkpointing, the latency of garbage collection will
be increased.

The long latency of garbage collection can affect the
response time of user request adversely. In this paper, we
propose a GC journaling (GCJ) technique that can be used
instead of checkpointing during the GC process. GCJ uses a
journal space where all the information about the blocks moved
by GC is recorded. With the journal, the file system
consistency can be guaranteed without checkpointing at system
crash. By removing the checkpointing during garbage
collection, the proposed GCJ scheme can significantly reduce
the garbage collection latency.

II. GARBAGE COLLECTION JOURNALING
Fig. 1 shows the process of garbage collection. The valid

blocks of B1, B2, and B3 in the victim segment S1 are copied
into the free segment S2 in order to make the victim segment
as a clean segment. Under the lazy metadata update scheme,
the changed in-memory metadata will not be flushed into the
storage immediately, and the in-storage file system metadata
will refer to the old locations of the moved blocks. If user
write requests overwrite the blocks in the victim block, the file
system consistency will be broken at system crash. Therefore,
the checkpointing should be performed after the garbage
collection in order to change the in-storage metadata.

The proposed GC journaling does not perform the
checkpointing. Instead, the GC journal blocks are written at
the storage. Each entry of journal block includes the original
and target block addresses of a valid block that is moved
during the garbage collection. For example, in Fig. 1, since B1
in the block address of 3072 is copied into the block with the
block address of 1536, the journal entry has the information.
The last entry of journal blocks has the current checkpoint
version number. The journal blocks are flushed into the
journal space of storage before the victim segment is changed

2015 IEEE International Symposium on Consumer Electronics (ISCE)

978-1-4673-7365-4/15/$31.00 ©2015 IEEE

into a clean segment. Since the GCJ scheme records the
changed block addresses of valid data, the reclaimed blocks
can be reused by other write requests without checkpointing. If
there is a system crash, the file system state can be recovered
with the GC journals.

The recovery procedure under GCJ is follows. First, the file
system is recovered to the last checkpoint. Second, the file
system metadata are changed based on the valid GC journals.
If a checkpointing is invoked, all the recorded GC journal
blocks are invalidated. Therefore, the remaining valid journal
blocks have been written after the last checkpoint. If a block
was copied by GC and it was overwritten after the last
checkpoint, the in-storage metadata will point to the old block
address. However, since the GC journal block has the new
block address value, the recovery operation can modify the
metadata by applying the file system changes by the garbage
collection.

One journal block is 4 KB, and it can contain 511 journal
entries. When a segment consists of 512 blocks and a garbage
collection cleans one victim segment, only one GC journal
block will be written during the segment cleaning. However,
the original checkpointing scheme should flush all the dirty
blocks. Therefore, the number of flushed blocks can be
reduced significantly by the GCJ scheme.

In order to avoid a long recovery time, the maximum
number of valid journal blocks is limited. If the number of
valid journal blocks exceeds a predefined limit, the GCJ
scheme invokes the checkpointing, which invalidates all the
journal blocks. In our implementation, the reserved journal
space can contain 512 journal blocks, and thus GCJ invokes
the checkpointing if the number of valid journal blocks is 512.

III. EXPERIMENTS
We evaluated the effects of GC journaling on two flash

storage devices, SSD and SD card. The 256 GB of SSD has
234 MB/s and 122 MB/s of sequential and random write
performances, respectively. The 16 GB of MicroSD has 10
MB/s and 3 MB/s of sequential and random write performances,
respectively. The proposed scheme is implemented at F2FS.
Generally, LFS uses the normal append logging. However,
F2FS uses the adaptive logging scheme which uses the normal
append logging and the threaded logging [3] selectively. The
total execution times of three benchmark programs are
measured under four different F2FS configurations: adaptive
logging (AL) without GCJ, AL with GCJ, normal logging (NL)

without GCJ, and NL with GCJ. At each experiment, the file
system is initialized. First, two thousands number of files are
created. Then, the file system utilization becomes 70%. Second,
the files are randomly updated in order to make holes in
segments until there is only 5% of clean segments. Then, all the
following write requests can invoke the garbage collections or
threaded loggings.

Fig. 2 shows the execution times of benchmark programs
under different schemes. The values are normalized by the
execution times under the AL scheme. AL invokes the garbage
collections infrequently, and generates random writes instead
by the threaded logging. Since SSD has similar performances
at random write and sequential write, the AL scheme shows
significantly better performance than the NL scheme does.
However, AL will show poor sequential read performance due
to the fragmented data blocks.

The GCJ reduces the execution times at the NL scheme
significantly, since GCJ reduces the cleaning latencies by
reducing the number of blocks flushed during the segment
cleaning. Considering several problems of the AL scheme, the
NL scheme with GCJ can replace the AL scheme. The
execution times at the AL scheme are slightly reduced by GCJ,
since the AL scheme hardly invokes the garbage collections.

Fig. 3 shows the total number of blocks flushed during the
garbage collections. The number of journal blocks at the GCJ
scheme is on average only 11% of the number of dirty
metadata blocks which are flushed by the checkpointings at the
original scheme. Therefore, GCJ can increase the lifetime of
flash storage which has a limited program and erase cycles.

REFERENCES
[1] M. Rosenblum and J. K. Ousterhout, “The design and implementation of

a log-structured file system,” ACM Transactions on Computer Systems
(TOCS), vol. 10.1, pp. 26-52, 1992.

[2] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system for
flash storage,” Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2015.

[3] Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Optimizations of LFS
with slack space recycling and lazy indirect block update,” ACM
Proceedings of the 3rd Annual Haifa Experimental Systems Conference,
2010.

B1 B2 B3 B1 B2 B3

3072

15363072
15373073
15383583

Checkpoint ver 4

File system

Storage

Meta area Main area

Journal block

Victim segment 1536 Free segment

1) Copy victim blocks
and fill journal entries

2) Write copied
blocks and wait

3) Write journal
block and wait

4) Set victim segment
as free segment

Journal
SSA
N

A
T

SIT
C

P
SB

Fig. 1. The process of segment cleaning with GC journaling.

Fig. 2. Normalized execution times under different F2FS configurations.

Fig. 3. The number of written blocks during segment cleaning (SSD).

2015 IEEE International Symposium on Consumer Electronics (ISCE)

978-1-4673-7365-4/15/$31.00 ©2015 IEEE

