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a b s t r a c t 

Many visual tasks in modern personal devices such smartphones resort heavily to graphics process- 

ing units (GPUs) for their fluent user experiences. Because most GPUs for embedded systems are non- 

preemptive by nature, it is important to schedule GPU resources efficiently across multiple GPU tasks. 

We present a novel spatial resource sharing (SRS) technique for GPU tasks, called a budget-reservation 

spatial resource sharing (BR-SRS) scheduling, which limits the number of GPU processing cores for a job 

based on the priority of the job. Such a priority-driven resource assignment can prevent a high-priority 

foreground GPU task from being delayed by background GPU tasks. The BR-SRS scheduler is invoked only 

twice at the arrival and completion of jobs, and thus, the scheduling overhead is minimized as well. We 

evaluated the performance of our scheduling scheme in an Android-based smartphone, and found that 

the proposed technique significantly improved the performance of high-priority tasks in comparison to 

the previous temporal budget-based multi-task scheduling. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Recent smart devices such as smartphones, smart TVs, and

ablet PCs run many visual applications in parallel, which include

raphical games, video players, web browsers, and rich graphical

ser interfaces (GUIs). For instance, a user can launch multiple GPU

pplications on the home screen, such as live wallpaper, widgets,

nd popup browsers. Another example is when a user video-chats

ith colleagues, while playing a graphical game. 

GPUs embedded within recent system-on-chips strongly facil-

tate the execution of such visual tasks by exploiting multiple

ores in parallel [1,2] . For example, ARM Mail-400 GPU has one

eometry processor (GP) and four pixel processors (PPs) [3] . The

ealm of GPUs further expanded beyond the traditional area of

isual computing owing to unified shaders, which encompasses

ven computation-intensive workloads such as augmented reality,

eal-time object recognition, and deep learning [4–7] . For instance,

ali-T880 GPU is composed of 16 shader cores [8] . 

As the number of applications relying on GPUs grows rapidly,

n efficient multi-task scheduling of GPUs is becoming increasingly

mportant. Fluent user experiences across multiple visual tasks

equire the supports of priority-driven service, quality-of-service

QoS), and performance isolation. In particular, time-critical inter-
∗ Corresponding author. 
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ctive foreground processes should be prioritized over background

rocesses (e.g., live wallpapers). Nonetheless, the majority of cur-

ent GPUs schedule them still on the basis of the first-come-first-

ervice (FCFS) without considering priorities of GPU tasks. 

A priority-driven GPU scheduling algorithm was recently pro-

osed to mitigate the problem for desktop GPUs, which allocates

ifferent time budgets to GPU tasks based on their priorities [9] .

hile effective in general, such an approach does not perfectly fit

ith embedded GPUs for several reasons. First, the non-preemptive

ature of GPU tasks does not allow complete individual control of

he time utilization for each task. Second, its timer interrupt han-

ling additionally incurs non-negligible overhead in embedded sys-

ems. Third, their scheduling algorithm assumes that a single task

ntirely uses a GPU at a time, but this is not true in recent GPUs;

he currently available GPUs support a spatial multi-tasking to al-

ow for multiple GPU tasks to be executed in parallel at different

PU cores [3,8] , and there were many studies on the spatial multi-

asking of GPU [10–14] . These limitations motivated us to explore

 better way to schedule multiple GPU tasks. 

This paper presents a spatial resource sharing (SRS) technique

or non-preemptive sporadic GPU tasks, which schedules multi-

le GPU tasks at different GPU cores simultaneously. Our budget

eservation-based spatial resource sharing (BR-SRS) scheduler re-

erves a different number of processing cores for each task based

n its priority. Unlike the previous time-based multi-tasking, BR-

RS can effectively deal with the non-preemptive nature of GPU

obs. In particular, the BR-SRS scheduler is invoked only twice

http://dx.doi.org/10.1016/j.sysarc.2017.04.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.04.002&domain=pdf
mailto:dongkun@skku.edu
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18 Y. Kang et al. / Journal of Systems Architecture 76 (2017) 17–27 

GPU

Session Scheduler

Application Application Application

Session
0

a2
a1
a0

Session
1

b5
b4
b3
b2
b1
b0

Session
2

c4
c3
c2
c1
c0

...
S2
S0
S1

BR-SRS Scheduler

Processor Processor Processor Processor

Resource Manager

Jo
b
Q
ue
ue

Session
Queue

Job

Session Pointer

User Level

OS Level

Device
Driver

HW
Resource

check
budget

a3 b6 c5

b0Job

Fig. 1. The architecture of a GPU device driver. 
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at the job arrival and completion, and thus, the significant over-

head of timer interrupt handling present in the time-based multi-

tasking is avoided as well. In comparison to the previous spatial

multi-tasking techniques, the BR-SRS scheduling can provide in-

stant responsiveness to a user-interactive foreground graphics ap-

plication in personal mobile devices. We implemented the BR-SRS

scheduler with an Android-based smartphone device, and carried

out experiments to assess its performance against the previous

temporal budget-based multi-tasking algorithm. 

2. GPU processing model 

When a user implements graphical applications, a GPU library

is generally used to efficiently communicate with GPU devices. One

of the most common examples is OpenGL for Embedded Systems

(OpenGL-ES). Such a library interacts with GPUs and provides an

abstract interface, which allows a user to write a graphical appli-

cation without deeply figuring out the underlying architecture of

the GPU. Functions invoked by the GPU library generate a series of

commands, and enqueue them into the GPU job queue. Then, GPU

device driver sends the jobs to the GPU device to perform them in

a row. 

Since multiple applications can simultaneously use the GPU de-

vices, the device driver should schedule GPU jobs based on fair-

ness or priorities among applications. When a GPU job starts in the

GPU, it cannot be preempted, in general, until the job is completed;

recently, there have been several studies to tackle the preemptive

scheduling of GPU jobs, which will be reviewed in Section 3 . Since

a GPU is composed of multiple processing cores, one GPU job can

use multiple processing cores, or multiple jobs can be simultane-

ously scheduled at different cores in the GPU. 

Fig. 1 shows the overall architecture of a GPU device driver and

its job scheduling. The device driver contains sessions, a session

scheduler, and a resource manager. A session is a data structure

to manage the job queue of a user application. Each session is al-

located for each application, inheriting the priority of its applica-

tion. The session scheduler selects the session to be scheduled and

sends a GPU job from the session to the GPU device, when there

are available GPU resources. The session scheduler considers the

priorities of different sessions, and thus, a low-priority session can

be scheduled only when there are no jobs in higher-priority ses-

sions. However, within a single application, the jobs need to be

sent in the order they were enqueued, and therefore, the scheduler
ispatches the oldest job from the job queue without reordering.

he resource manager controls the state of each processing core. If

 job is completed by the GPU or a new job is inserted into a job

ueue, the session scheduler dispatches a new job from a session

ueue. The GPU has multiple homogeneous processing cores, and

everal GPU jobs can be processed by multiple processing cores in

arallel. 

In this paper, our BR-SRS scheduler focuses on how to improve

PU job scheduling in the session scheduler. It manages the re-

ource budgets of GPU tasks. The initial budget values are assigned

ased on the priorities of GPU tasks. A GPU task is not allowed to

se more resources than its resource budget. The BR-SRS scheduler

ill then examine the next GPU task in the session queue. 

Generally, only one foreground GPU application interacts with

he user at a time in a smarthpone whereas there can be many

ackground GPU applications. The performance of a foreground ap-

lication should not be delayed by background applications. There-

ore, we can divide GPU applications into two groups, i.e., high-

riority group and low-priority group. If a GPU application runs in

oreground, it is categorized into the high-priority group. However,

f another foreground application is launched and the previous ap-

lication is changed to a background application, the background

pplication is moved into the low-priority group. The Android’s

raphics architecture uses the SurfaceFlinger to draw graphic win-

ows at display unit, which accepts buffers of graphical data from

ultiple applications, makes a composite of them, and sends it to

he display [15] . The SurfaceFlinger is a separate process isolated

rom user applications, and it also uses the GPU. Because the Sur-

aceFlinger is responsible for making the final frame buffer image

o be displayed, it also should be categorized as a high-priority

ask in addition to the foreground application. 

. Related work 

.1. Temporal budget reservation 

TimeGraph [9] is a priority-driven GPU job scheduler that uses

he temporal budget reservation (TBR) technique. The TBR sched-

ler assigns different time budgets to GPU tasks with different pri-

rities. Each task can utilize GPU resources only when its time

udget and resources are available. The time budget is replenished

eriodically. The TBR scheduler uses two resource reservation poli-

ies: posterior enforcement (PE) and a priori enforcement (AE).

hile the PE policy enforces GPU resource usage once a GPU task

s completed, the AE policy predictively enforces GPU resource us-

ge before a GPU task is submitted based on the predicted task

xecution time. 

In order to manage the temporal budget, the TBR scheduler de-

ands the timer interrupt service, which results in interrupt han-

ling and context switching overheads. Moreover, the TBR with PE

olicy cannot prevent the overrun of low-priority tasks due to the

on-preemptive nature of GPU processing. Therefore, the process-

ng of a higher-priority task may be delayed by a lower-priority

ask if the lower-priority task arrives before the higher-priority

ask and holds all the GPU resources. 

The TBR with AE policy can alleviate such a problem by pre-

icting the execution times of GPU tasks based on profiling. It pre-

ents a GPU task from being scheduled if the remaining temporal

udget is smaller than the expected execution time. Since the GPU

ask generates dynamically variable workloads of GPU jobs, it is

ot sufficient to predict the execution time based only on the task

dentification. Therefore, the AE technique predicts the execution

ime using the command sequences of GPU jobs. Such a predic-

ion technique requires a considerable amount of CPU and memory

verhead, and thus, is not applicable to mobile devices. In addition,
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ecause it is difficult to precisely predict the execution time, TBR

annot completely avoid overrun situations. 

Our budget reservation scheduler also uses a prediction tech-

ique on the resource demands of GPU tasks. Whereas the TBR

ith AE policy must predict the execution times of all tasks to pre-

ent the overruns of the tasks, our approach requires to predict the

PU resources of only primary tasks. If there are overruns of low-

riority tasks due to the miss-prediction on resource demands, the

igh-priority tasks can be delayed in the TBR scheme. Therefore,

he TBR scheme must consider a large margin when predicting the

esource demand of each task, and must allocate more time bud-

et to each task than required. However, our technique needs to

onsider only the margins for primary tasks. In addition, as will be

xplained in Section 4.2 , our BR-SRS scheme provides an option of

ver-allocation for high-priority tasks to allocate more resources to

hem if there are available resources in GPU. By reserving sufficient

esources of primary tasks, they can utilize the reserved GPU cores

rrespective of the dynamic workloads of low-priority background

asks. 

.2. Spatial multi-tasking in GPU 

There are two types of multi-task scheduling techniques for sin-

le processor, preemptive scheduling ( Fig. 2 (a)) and cooperative

cheduling ( Fig. 2 (b)). The cooperative scheduling allows a task to

se a resource only when the currently running task voluntarily

eleases the resource, whereas the preemptive scheduling allows

 higher-priority task to preempt lower-priority tasks. The task

cheduler in the preemptive scheduling examines the priorities of

ll the runnable tasks at each time tick. However, since there is no

imer interrupt handling mechanism in GPUs, the GPU scheduler

sually uses the cooperative scheduling. 

In multi-processor or multi-core systems, multiple independent

asks can be simultaneously scheduled for different processors or

ores ( Fig. 2 (c)); this technique is called the spatial resource sharing

SRS), which controls computing resources among competing tasks,

ather than their processing times. Therefore, multiple tasks can

e executed simultaneously at different processing cores. Adriaens

t al. [10] showed that SRS can make a speed-up in the GPU up to

.19 times against the cooperative multi-tasking. 

While SRS is adopted by most CPU scheduling techniques, it is

ptional in GPU scheduling. To enable SRS, the GPU device driver

ust be able to manage the state of each processing core in a GPU

evice. For example, TimeGraph assumes that SRS is not supported

y the target GPU; therefore, only one GPU job can be executed at

 time in the GPU. However, as recent GPUs start to adopt SRS, our

ork assumes that SRS is allowed for the target GPU. 

There have been many researches on the spatial multi-tasking

n GPU [10–14] . They relied on a simple heuristics on resource al-

ocation, such as the even-split policy, or a priority and QoS-driven

esource sharing algorithm. However, the previous researches are

ocused on general-purpose GPUs (GPGPUs). The GPGPU workloads

re generally bandwidth-sensitive rather than latency-sensitive.

he goals of the previous techniques are to maximize the GPU uti-
ization, minimize the power consumption of GPU, or satisfy the

verage bandwidth requirement of each application. They partition

PU cores for multiple pending GPU jobs considering the band-

idth requirement and priority of each job. No GPU resources are

eserved for high-priority tasks. Therefore, a latency-sensitive GPU

equest cannot be serviced immediately if all the GPU cores are

llocated for other tasks. In user-interactive personal devices, it is

ore important to improve the responsiveness of latency-sensitive

pplications rather than the fair-sharing of GPU resources. Our BR-

RS scheduler uses a resource reservation policy to provide instant

esponsiveness to a foreground graphics application. Our previous

ork [16] first proposed the resource reservation-based SRS algo-

ithm for embedded GPUs. In the present work, several enhanced

RS scheduling techniques are proposed, and they are compared

ith previous techniques. 

.3. Preemptive GPU scheduling 

GPUs run asynchronously against the host, and their jobs are

ot under strict control from the host. GPU jobs typically trigger

ery heavy kernels and memory transactions, and their scheduling

ften relies on the hardware scheduler for load balancing. Hence,

he scheduling of GPU jobs has been non-preemptive in general.

ecently, there have been several approaches to tackle the preemp-

ive scheduling of GPU jobs, particularly for GPGPUs. 

The key idea of the preemptive GPU scheduling is to decom-

ose kernels and memory transactions so that the custom sched-

ler could find preemption points within short intervals. Long-

unning kernels are decomposed to sub-kernels [12,17–20] . Also,

arge data for memory transactions are decomposed to small

hunks [17,19,21] . The majority of the works on preemptive GPGPU

cheduling required user-level as well as drive-level supports. 

Recently, the preemption becomes to be supported in the levels

f hardware and proprietary drivers. For example, NVIDIA’s newest

ascal architecture supports pixel-level preemption, which saves

ff context information to resume when preemption is requested 

22] . Such a hardware-level preemption support greatly facilitates

esponsive computing/rendering of time-critical GPU workloads, 

ut it is mostly designed for desktop computing platforms, not

vailable for mobile platforms yet. 

Despite the great work for the preemptive GPU scheduling, the

pproaches cannot be easily applied to mobile GPUs. While most

revious studies focused on GPGPU rather than visual rendering,

ost of the foreground jobs are visual tasks in mobile devices.

nlike the computing-style kernels, visual rendering typically fol-

ows the pipeline architecture, which is not easily decomposable

or both shaders and memory transactions. At present, the preemp-

ion for the pipelined rendering is supported only for the latest

esktop GPUs (e.g., NVIDIA Pascal Architecture). Also, even when

arge kernels are decomposed to smaller sub-kernels, immediate

reemption is not guaranteed, because preemption points are still

oo sparse in comparison to typical CPU workloads. In contrast, our

ork reserves GPU cores for high priority jobs, and thus, is better

or instant running of high priority tasks. 
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4. Budget reservation-based spatial resource sharing 

4.1. Overview 

The normal SRS technique uses the FCFS policy, which can al-

locate all idle GPU cores to any arriving task irrespective of its

priority. We call such a scheduling technique FCFS-SRS. The non-

preemptive scheduling of GPU jobs may delay a high-priority task

under the FCFS-SRS scheme if all the GPU resources are allo-

cated for low-priority tasks. Our BR-SRS scheduling uses a resource

reservation technique, where a pre-specified number of processing

cores are reserved for the high-priority task group and the others

are used for the low-priority task group. The resource budget for

high-priority task group is determined statically by profiling the

workload of high-priority tasks. As commented in Section 3.1 , the

determined resource budget will be larger than the profiled data

to cope with miss-predictions. The number of GPU resources for

background tasks is determined at runtime by excluding the re-

source budget of the higher-priority tasks from the available re-

sources. Since a lower-priority GPU job cannot use the reserved

resources of higher-priority jobs, a high-priority task is never de-

layed by lower-priority tasks. 

Fig. 3 compares the FCFS-SRS and BR-SRS techniques. When the

jobs of low-priority task, L , arrives before the jobs of high-priority

task, H , the jobs of L 0 − L 3 occupy all the processing cores in the

FCFS-SRS. (Generally, multiple pixel processor (PP) jobs are gen-

erated almost simultaneously during a graphic processing. This is

because one GP processing job generates multiple related PP jobs.)

Therefore, when the jobs of H 0 − H 3 arrive, there are no available

resources and the high-priority task jobs must wait the comple-

tions of L 0 − L 3 without meeting their deadlines. In BR-SRS, be-

cause two of four processing cores are reserved for the jobs of

high-priority task, the low-priority jobs can use only two process-

ing cores. The jobs of high-priority task can therefore be scheduled

immediately or with only small delays, and meet their deadlines. 

The BR-SRS scheduler is invoked only twice at the events of

job arrival and completion, while the TBR scheduler requires timer

interrupts. Although the BR-SRS also depends on the interrupts

from GPU to be informed of job completion, the TBR requires pe-

riodic timer interrupts for budget replenishment in addition to the

GPU interrupts for the notification of job completion. Therefore,

the TBR requires additional interrupts, and thus incurs more over-

heads. The BR-SRS scheduler examines the first GPU job in the ses-

sion queue. If there are available resources other than those re-

served for higher-priority tasks, the job can be scheduled imme-

diately. Otherwise, the low-priority jobs must wait in the session

queue. The budget for each task is reduced at the start of its GPU

job and is replenished at the completion of its GPU job. 

Both the BR-SRS and TBR schedulers assign different budgets

to tasks with different-priorities. While TBR uses temporal bud-

gets, BR-SRS uses spatial budgets. Even when there are available

resources, TBR does not assign the resources to a task if the task

has no remaining time budget. If the remaining time budget is less
han zero (or less than the predicted execution time in the AE

cheme), TBR registers a timer interrupt that will be fired at the

ext replenishment time of the task. However, BR-SRS can imme-

iately schedule a waiting GPU job when any resource is released

y the completion of another job. Therefore, BR-SRS can execute

PU jobs with lower latencies and increase GPU utilization. 

Fig. 4 shows the job schedules and budget changes of the TBR-

E and BR-SRS schedulers. A high-priority task, H , and a low-

riority task, L , are scheduled. In Fig. 4 (a), each of two tasks is

ssigned 50% of the time budget and thus can use 2.5 s within

 s of time interval. It is assumed that the AE version of TBR will

redict the execution time of L to be 2.5 s. Therefore, the low-

riority task in the TBR scheduler can use all four processing cores

f the remaining time budget is not less than 2.5 s. As a result, the

igh-priority jobs of H 0 − H 3 are significantly delayed by the jobs

f L 0 − L 3 . In addition, when L 0 − L 3 are completed in the TBR

cheduling, the time budget is less than zero, since the task ex-

cution time exceeds the assigned budget. Therefore, the next GPU

obs, L 4 − L 7 , cannot be immediately scheduled at the next period

nd must wait until the budget is fully replenished; the next jobs,

 8 − L 11 , are also delayed. The period of timer interrupts in the

BR scheme affects the timer interrupt overhead and the proces-

or utilization. Although a long period can reduce the total timer

nterrupt overhead, there can be many idle intervals before the pe-

iodic budget replenishments. On the other hand, a short period

an improve GPU utilization but will increase the total interrupt

verhead. 

In Fig. 4 (b), however, two processing cores in the BR-SRS sched-

ler are reserved for the high-priority task, H . Therefore, low-

riority task, L , can use only at maximum two processing cores.

he BR-SRS scheduler provides shorter latencies for the high-

riority task, H , than the TBR scheduler does. In addition, the low-

riority task, L , also has shorter latencies in the BR-SRS scheduler

ompared to the TBR scheduler, because the low-priority jobs can

e executed immediately in the presence of available resources. 

The BR-SRS scheduler can be integrated with power manage-

ent techniques. When there are only low-priority tasks, several

PU processing cores will be idle as a result of the reservation pol-

cy of BR-SRS. For low power consumption, idle devices can enter a

ow-power mode. However, the wake-up delay from the low-power

ode should be considered when the resource budget is assigned.

.2. Resource over-allocation and under-allocation for high-priority 

asks 

In the BR-SRS scheme, even the high-priority tasks cannot use

ore resources than their reserved budgets. Considering that the

igh-priority tasks defined in our work are user-interactive fore-

round applications, if we permit the BR-SRS scheduler to assign

ore resources to higher-priority tasks than their static budgets

t runtime, the responsiveness of high-priority GPU jobs will be

mproved significantly. We call this technique over-allocation . Un-

er the over-allocation technique, a high-priority task is allowed to

se more resources than its initial budget if there are available re-

ources. Therefore, if all the GPU cores have already been allocated

or higher-priority tasks, low-priority tasks may not be scheduled.

onsequently, the over-allocation technique can improve the per-

ormance of only the highest-priority tasks with the finite process-

ng cores of the GPU, and the performance of low-priority tasks

ay be degraded. However, the scheduling goal is to improve the

erformance of high-priority tasks even though the performances

f low-priority tasks are sacrificed. This is a reasonable approach,

ecause the performance of a user-interactive foreground job is

ore important than other background jobs. To prevent starvation

f background tasks, the scheduler monitors the performance of

ackground GPU tasks by measuring the frame rate of them. If the
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erformance is less than the threshold θbg , the over-allocation is

isabled. The value of θbg can be configured considering the re-

ponsiveness requirements of foreground and background tasks. 

Fig. 5 shows an example of resource over-allocation for two dif-

erent priorities of GPU tasks, H and L . The higher-priority task, H ,

s allocated with the minimum budgets of two processing cores.

hen four low-priority jobs, L 0 − L 3 , arrive at a time of 10, task

 can use only two processing cores even though there are four

vailable cores. When four jobs of H arrive at a time of 14, task H

an use only two reserved processing cores. When all the jobs of L

re completed at a time of 20, task H can occupy two processing

ores additionally if the over-allocation is allowed. As a result, all

he processing cores are occupied by the high-priority task during

he time interval of 20–28. When the low-priority jobs arrive at a

ime of 24, they cannot be scheduled immediately because there

re no available resources. 

On the other hand, if the GPU requests of high-priority tasks

re generated infrequently in the original BR-SRS scheme, the GPU

tilization can be wasted due to the reserved GPU cores for high-

riority tasks. To improve GPU utilization without degrading the

erformance of foreground GPU tasks, an adaptive under-allocation

echnique can be used, which decreases the number of GPU cores

eserved for the high-priority task group if the GPU workload of

igh-priority tasks is less than the threshold θ fg . If the workload

f high-priority tasks becomes larger than the threshold value, the
riginal budget of the high-priority tasks is restored. In a real us-

ge scenario of smartphone, user interaction with a foreground

PU application generally switches between burst mode and idle

ode. The under-allocation technique will reduce the reserved

udget of high-priority tasks only at the idle mode. Therefore, the

alue of θ fg should be configured to detect the idle mode. The

nder-allocation scheme will be effective to increase GPU utiliza-

ion without a significant performance degradation of foreground

pplications. 

. Experiment 

.1. Setup and benchmarks 

We evaluated the performance of BR-SRS on a real Android-

ased smartphone equipped with an embedded GPU, ARM Mali-

00MP (267 MHz), which is composed of one geometry pro-

essor (GP) and four pixel processors (PPs). The system is also

quipped with Samsung Exynos 4210 (ARM Cortex-A9 Dual Core)

PU, and 1GB LPDDR2 DRAM. The Android version is 4.0.4. The BR-

RS scheduler was implemented within the GPU device driver in

inux 3.0.15. The FCFS-SRS and TBR schedulers were also imple-

ented for comparison. The evaluated schedulers were used only

or PPs, because there is only one GP in the target GPU. To pro-

le of the processing of GPU requests, a few profiling codes were

nserted in the GPU device driver. 

As evaluation scenarios, the popup browser [23] was chosen

s a foreground task, while several GPU benchmark programs are

xecuted as background tasks. Five different background applica-

ions were used, each of which has a different GPU workload.

he Nenamark1 [24] is a benchmark of OpenGL ES 2.0, using pro-

rammable shaders for graphical effects such as reflections, dy-

amic shadows, parametric surfaces, particles and different light

odels to push the GPU to its limits. The KFS [25] is a simple

penGL benchmark, which renders three different scenes (KFS-

: Bamboo, KFS-W: Wavescape, KFS-G: Galactic Core) with differ-
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Table 1 

Workload characteristics. 

Benchmark FPS Average latency (usec) Workload 

GP PP GP + PP Type 

Nenamark1 59.8 2930 2955 5885 Low 

KFS-B 31.2 15,462 4900 20,362 GP-intensive 

KFS-W 48.2 339 4900 5239 PP-intensive 

Basemark 34.9 6132 17,397 23,529 PP-intensive 

Monjori 30.0 131 24,186 24,317 PP-intensive 

Popup Browser 59.7 259 1096 1355 Low 

0.0
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Nenamark KFS-B KFS-W Basemark Monjori Popup
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Fig. 6. Average PP utilizations of benchmark programs. 
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ent properties specifically designed to stress vertex throughput, fill

rate, and draw calls. The basemark (Basemark ES 2.0 Taiji Free)

[26] is a gaming and graphics performance measurement utility,

which is a consumer-version of the mobile industry’s standard

graphics benchmarking product. The monjori [27] is a GLES 2.0

shader demo, which measures the raw fragment shader perfor-

mance for a full screen resolution. It makes heavy use of the frag-

ment shader. The popup browser generates GPU requests when

there are user inputs for web page rendering. We used the An-

droid’s MonkeyRunner [28] in order to make user inputs automat-

ically based on a predefined input scenario. 

Table 1 shows the characteristics of each GPU application, in-

cluding the frames per seconds (FPS), the average latency of one

frame processing, and the workload type. The FPS value is mea-

sured while running only the target application. A lower FPS repre-

sents a higher GPU workload. The nenamark1 and popup browser

are low-complexity workloads. Whereas KFS-W, basemark, and

monjori are PP-intensive workloads, KFS-B is GP-intensive. Fig. 6

shows the PP utilization of each benchmark application. Since the

target GPU has four PPs, the maximum PP utilization is 4. For all

benchmarks, SurfaceFlinger occupies 0.5–1 of PP utilization. 

The implemented BR-SRS scheduler manages the numbers of

reserved and allocated PPs for two groups, high-priority group and

low-priority group, and maintains the number of allocated PPs for

each group so that it is not larger than the reserved budget. The

high-priority group includes the popup browser and SurfaceFlinger.

When the scheduler dispatches a job from the session queue, if

the corresponding group has already been allocated the maximum

budget, the scheduler skips the session without dispatching any

jobs. 

While the target GPU supports SRS (each PP can be allocated for

a different GPU job), the original TBR scheduler assumes that all

the PPs should be allocated for a single process at a time [9] . We

implemented an SRS version of the TBR scheduler (i.e., TBR-SRS)

in this work for comparison, which enables multiple GPU jobs to

be executed at different GPU cores simultaneously. The original AE

version of TBR predicts the execution time of a GPU job with the

history table that records the GPU job execution times indexed by
he sequence of GPU commands. However, it is impossible to ac-

ess the GPU commands in the device driver of the target embed-

ed GPU. Therefore, the execution time of a GPU job is predicted

ased only on the past execution times of GPU jobs generated by

he same task in the modified TBR-SRS scheduler. The prediction

ccuracy of TBR-SRS is similar to that of the original TBR in the

xperiments. The replenishment period of TBR-SRS was set to be

0 ms. 

.2. Performance comparison under different GPU schedulers 

First, the performances of different GPU schedulers were com-

ared. A foreground task (popup browser) and a background task

ere executed simultaneously, where the two tasks are competing

or the GPU. Based on the results in Fig. 6 , the PP budget for the

igh-priority group (popup browser and SurfaceFlinger) was set to

wo, and the remaining two PPs were allocated for the background

asks. Four scheduling algorithms were compared: FCFS-SRS, TBR

ith PE policy, TBR with AE policy, and BR-SRS. The single mode

epresents the performance of each application when it is executed

lone without any other GPU tasks. The TBR schedulers are the

odified SRS versions. Since the TBR allocates time budgets, both

he high-priority and low-priority groups were assigned 50% of the

otal time budget, i.e., 10 ms for each group. Five experiments were

erformed for each configuration, and the average and standard

eviation are shown in the following graphs. 

As shown in Fig. 7 (a), in most of the cases, the performance

f the popup browser under the BR-SRS scheduler is similar to

he performance in the single mode. One exception is when the

ackground task is KFS-B. Because the background task generates

igh-cost GP jobs, the GP becomes a bottleneck. However, the pro-

osed BR-SRS scheduler is applied only for the PPs. Therefore, the

oreground task does not achieve the maximum performance. For

he background task of nenamark1, all the schedulers showed the

aximum performance because the background task has a low

orkload. However, for other background applications, the FCFS

nd TBR schedulers show significant performance degradation of

he foreground task. From these experiments, it can be concluded

hat the priority-based budget reservation of the BR-SRS scheduler

s effective in isolating the performance of foreground tasks from

he workload of background tasks. 

The BR-SRS scheduler improves the performance of the back-

round task also in comparison with the TBR, as shown in Fig. 7 (b).

his is because the background tasks can be serviced if there are

vailable GPUs in the BR-SRS while they must wait until the bud-

et is replenished in the TBR scheduler. From the results in Fig. 8 ,

e can see the different PP utilizations of different schedulers

hile running the popup browser and the basemark application.

he FCFS scheduler shows the highest PP utilization because it

oes not make PPs to be idle if there are pending jobs. However,

he FCFS can degrade the performance of foreground task. The TBR

cheduler degraded significantly the PP utilization due to its bud-

et management technique. In particular, the PP utilization of back-

round application was reduced compared with other schedulers.

he BR-SRS shows a high total PP utilization without degrading the

P utilization of a foreground application. Therefore, the BR-SRS

an provide better performances for background tasks. 

Fig. 9 compares the average waiting times of the high-priority

PU jobs in its session queue when using different schedulers, be-

ause the performance improvement of foreground tasks at BR-SRS

as shown in Fig. 7 (a)) results from the reduction on waiting time

f the GPU jobs. The basemark were executed as a background ap-

lication. The waiting time of the high-priority task is longer when

wo tasks are competing for a GPU resource, compared with the

ase when only the high-priority task is executed (single mode).

n particular, the FCFS scheduler increases significantly the waiting
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Fig. 7. Comparison of GPU scheduling algorithms. 

Fig. 8. PP utilizations of GPU scheduling algorithms. 
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Fig. 9. The average waiting times at different schedulers. 
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ime of the high-priority task because the background application

an be scheduled to use all the PPs. Although the TBR schedulers

xhibit shorter waiting times than the FCFS scheduler, the wait-

ng times of these schedulers are longer than that of the BR-SRS

cheduler. In the TBR scheduler, due to the non-preemptive GPU

cheduling, a low-priority task can result in the delay of a higher-

riority task if the low-priority task arrives earlier than the high-

riority task. However, a higher-priority task can be scheduled im-

ediately with the reserved GPU resources in the BR-SRS scheme. 
.3. Scheduling overhead 

Fig. 10 compares the context switching and system time over-

eads of the BR-SRS and TBR schedulers. The system time overhead

eans the ratio of the time consumed by kernel over the total

ime. A large number of context switches will increase the system

ime overhead because the kernel handles the context switch op-

rations. A high-priority task (popup browser) and a low-priority

ask (Basemark or KFS-W) were executed simultaneously in the

wo schedulers. The values were measured by the vmstat utility of
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Fig. 10. Overhead comparison betwen the BR-SRS and TBR schedulers. 

Fig. 11. Effect of over-allocation in BR-SRS. 

 

 

 

 

 

 

 

u  

a  

T  

t  

a  

3  

a  

t  

i

 

p  

t  
Linux. The BR-SRS exhibits fewer context switches than the TBR

scheduler as shown in Fig. 10 (a). The higher context switching

overhead of TBR scheduler results from the timer interrupt han-

dling which is required to implement the time-based scheduling.

The higher context switching overhead of TBR scheduler makes a

larger system time overhead as shown in Fig. 10 (b). 

5.4. Effect of over-allocation and under-allocation in BR-SRS 

scheduler 

As the last experiment, the effects of the over-allocation and

under-allocation schemes were evaluated. The same task sets were
sed in the experiment. For the over-allocation, θbg is configure

s 10 FPS considering the FPS values of benchmark workloads in

able 1 . Therefore, if there are pending GPU jobs of background

asks and the total frame rates of them is less than 10, the over-

llocation is disabled. For the under-allocation, θ fg is configured as

0 FPS because the SurfaceFlinger consumes about 30 FPS without

ny foreground GPU applications. If the frame rate of foreground

asks including SurfaceFlinger is less than 30 FPS, the current state

s an idle mode. Therefore, the under-allocation is enabled. 

Fig. 11 (a) shows the performance change of the foreground ap-

lication by the over-allocation scheme. Even when more than

wo PPs are allocated for high-priority tasks by the over-allocation
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Fig. 12. Effect of under-allocation in BR-SRS. 
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echnique, there is no significant changes on the performance of

oreground application. This is because the target foreground ap-

lication (i.e., popup browser) does not require more than two PPs

or full performance as shown in Fig. 6 . 

However, the over-allocation scheme decreases the performance

f background tasks slightly as shown in Fig. 11 (b). Therefore, the

ver-allocation should be applied carefully. A proper case for over-

llocation is when the workload of foreground application fluctu-

tes significantly. For the case, even though BR-SRS reserves the

PU resource of high-priority tasks based on the average workload,

he over-allocation technique can allocate more PPs for foreground

pplication, and thus, the intermittent performance delay can be

voided. 
Fig. 13. Change of PP utilization by
Fig. 12 shows the performance change by the under-allocation

echnique. In this experiment, we used a different usage scenario

f the foreground application. The burst mode and idle mode exe-

utions are repeated alternatively by giving burst touch inputs in-

ermittently. With the under-allocation technique, the background

pplication can use up to four PPs when the foreground applica-

ion is in the idle mode. The under-allocation technique improved

he performance of background application by 8.7%. However,

here is no significant performance degradation on the foreground

pplication. 

Fig. 13 shows the changes of PP utilization during the experi-

ents. In Fig. 13 (a), the PP utilizations of SurfaceFlinger and popup

rowser decrease when there is no user input (e.g., at the time

f 19 s). Irrespective of the dynamic changes on the foreground

orkloads, the PP utilization of the background task (i.e., base-

ark) has little changes in the original BR-SRS scheme because

he background task cannot use more than its budget. In contrast,

he PP utilization of the background application changes depending

n the workload of foreground tasks in the under-allocation tech-

ique, as shown in Fig. 13 (b). At the time of 19 s, the PP utiliza-

ions of SurfaceFlinger and popup browser decrease because there

s no user input. Then, the under-allocation technique reduces the

umber of PPs reserved for the foreground tasks. As a result, the

asemark task can use more than two PPs and the PP utilization

ncreases. The increased PP utilization results in the performance

mprovement of background task as shown in Fig. 12 . 
 under-allocation in BR-SRS. 
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6. Conclusion 

GPUs are indispensable to many visual applications in modern

mobile devices. We presented a novel spatial multi-tasking tech-

nique for embedded GPUs considering the non-preemptive fea-

ture of GPU tasks. Unlike the previous temporal budget reserva-

tion techniques, our spatial budget reservation policy improved the

performance of high-priority GPU tasks by reserving the GPU pro-

cessing cores, while reducing the scheduling overhead as well. As

a future work, we plan to devise a spatial and temporal scheduling

technique, which can manage both the spatial and temporal bud-

gets. 
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