

Abstract-- In recent years, a variety of IoT devices have been
introduced in market. However, most of the IoT devices are
designed to perform dedicated functions and cannot be
programmed by consumers. In this paper, we propose an open
IoT platform which enables users to implement various services
swiftly and easily via JavaScript API set. In particular, the
platform is designed for the companion IoT devices, which can be
accessed and controlled by mobile devices such as Android
smartphone. The proposed software platform for companion IoT
devices equips with the various state-of-the-art techniques in
application management system, sensor, camera, and network.

I. INTRODUCTION
Recently, many IoT (Internet-of-Things) services and

devices have been emerging. In order to implement IoT
services and devices quickly, an efficient and versatile IoT
software platform is required. Generally, each IoT device is
designed to perform dedicated functions and it is not
programmable. Therefore, a new device is required to use
new IoT services. However, many new IoT services are
introduced every day, and user wants to use multiple IoT
services. In particular, user even wants to implement his own
applications. Therefore, a programmable IoT software
platform is essential for the proliferation of IoT services.
Although there are several programmable software platforms
for mobile devices such as Android, iOS, and Tizen, they are
too heavy for resource-limited IoT devices and it is difficult to
customize them for IoT devices. In addition, high
programming skills are required to implement applications. In
this work, we introduce a novel programmable software
platform for IoT devices, called OPEL (Open Platform Event
Logger). Especially, since many IoT devices on the market are
based on companion model, the OPEL platform supports the
mode such that the application on OPEL platform can easily
cooperate with mobile devices such as Android-based
smartphones.

The OPEL software platform is designed considering the
following requirements. First, the IoT platform should be
programmable with an easy programming language. In
particular, the programming language should have high
productivity, portability, and extendibility to enlarge the IoT
ecosystem. A good candidate is JavaScript (JS) language.
Second, the platform should provide high-level APIs for easy
application development. The APIs need to provide several
functions including sensor and device management,
communication, etc. Third, the platform should support

 This research was supported by the MSIP, Korea, under the G-ITRC
support program (IITP-2016-R6812-16-0001) supervised by the IITP.

multiple IoT applications. User should be able to install
multiple applications with different functions, which can be
executed concurrently. Then, user can exploit multiple
services on single device. Lastly, the software platform should
enable the companion IoT device to communicate with its host
device (e.g. Android smartphone), and to be controllable via
its host device.

In order to satisfy these requirements, the OPEL platform is
designed to provide the following features. First, OPEL
includes the JS runtime framework called Node.js as many
IoT platforms such as IoT.js [1] and Mongoose IoT [2] have
adopted JS language. Second, in order to provide the high-
level JS device API, OPEL core framework (OCF) is provided,
which can provide several services to applications. The inter-
process communication (IPC) between JS API and OCF is
performed by Native Interface Layer (NIL). Third, for efficient
management on multiple JS applications, the life-cycle and
package management systems are performed by the App &
Sys framework (F/W). Lastly, the OPEL platform also
provides an Android application, called OpelManager, which
is used to control OPEL IoT device.

In addition to the fundamental features, the OPEL platform
enables a JS application to access several sensor devices. The
sensor framework provides the centralized control to
concurrent sensor acquisition requests. The Sensor F/W
supports sensor plug and play. The camera framework
supports the control on camera device. In particular, it enables
multiple camera applications can run concurrently at a
resource-constrained device by deploying a proxy daemon
process which manages the sharing of camera frame buffers
among concurrent applications [3].

IoT devices usually do not have user-interactive I/O devices
such as touch-screen, keyboard, etc. In order to overcome the

 Open Software Platform for Companion IoT Devices

Hyemin Lee, Dongig Sin, Eunsoo Park, Injung Hwang, Gyeonghwan Hong, and Dongkun Shin
Sungkyunkwan University, Suwon, Korea

{gudbooy, dongig, pes9488, sinban, redc7328, dongkun}@skku.edu

OPEL

Linux Kernel / Device Driver

OPEL Core Framework

Market / Cloud

JS Backend

Node.js Native Interface Layer API (JS)

App & Sys
Framework

Android

OpelManager App

Android FW

Application
Management

Application
JS Code

Application
JS Code

Application
JS Code

Application
JS Code

Camera
Streaming

Remote
Storage

Event
Logger

Comm FW Sensor FW Camera FW

Native Interface Layer (C++)Sensor
Viewer P2P

MQTT / HTTP

BT Manager

WFD Manager
Sensor

Manager
OpenCV

Camera
Manager

Fig. 1. OPEL Software Architecture

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE 391

limitation, the OPEL platform provides the OPEL platform
provides the Remote System Protocol (RSP) which enables
OPEL device to be controlled by Android mobile device via
Android UI and system APIs.

The communication framework can support dynamic
network protocol selection between Bluetooth (WPAN) and
Wi-Fi Direct (WLAN) based on user-context for energy-
efficient and high bandwidth communications.

II. DESIGN AND IMPLEMENTATION
Fig. 1. describes OPEL software platform architecture. The

Node.js is adopted for JS application runtime. OCF is a native
service daemon (out-of-process model) implemented in C/C++.
In order to support IPC between a JS App and OCF, we
exploit the Node.js Addon function which provides an
interface with native language-based dynamically-linked
shared objects. We implemented IPC protocol based on D-Bus
in the JS Add-on function. The following subsection describes
the detailed design of OCF.

A. Application & System Framework
 The App & Sys F/W provides two main functions: appl-
ication life-cycle management and communication with
Android mobile phone. The life-cycle management includes
the handling on installation, launching, and termination of
application. During application installation, a manifest file in
the application package is parsed by the App & Sys F/W,
which contains application information such as unique
application ID, JS installation path, and API access authority.
The information is recorded at the database of OPEL device. If
a JS application is executed, its process ID (PID) is stored in
process management table which keeps tracking the life-cycle
of the application. If user invokes a termination procedure, the
F/W sends a signal to the target process. Then, a
corresponding JS callback will be invoked. Another function
of App & Sys F/W is to support the remote system protocol
(RSP). Through the RSP, the UI and system APIs of host
mobile phone can be invoked remotely by the JS RSP APIs in
OPEL device. The RSP APIs are useful for the IoT products
without user-interactive I/O devices. For the remote UI
handling, JS programmer simply specifies the name of
Android UI objects and the corresponding values as JS
function parameters. Then, the App F/W makes UI object tree
and send it to host mobile phone, which parses it UI object
tree and draws the UI objects dynamically.

B. Sensor Framework
 Since sensor is a key component in IoT platforms, OPEL
supports a software-level plug-and-play of sensor drivers with
an abstraction interface layer for sensor operations. The
required sensor drivers are dynamically loaded by model-
driven JS API. There are three types of sensor acquisition JS
APIs: Synchronous, Asynchronous, and Periodic APIs. The
sensor F/W supports sensor request merging. When several
applications use different sensor sampling rates, the sensor
F/W merges them into one with the highest sampling rate in
order to eliminate the duplicated requests and reduce energy
consumption.

C. Camera Framework
 Most of the modern operating systems (e.g. Linux) allow
only one process to exclusively access the camera devices [3].
However, the camera F/W of OPEL supports the concurrent
execution of multiple camera applications. For example, video
recording, snapshot, vision application, and streaming service
can be executed concurrently with one camera device. A
proxy daemon for framebuffer allocates the camera frames to
shared memory buffer such that multiple applications can
share them.

D. Communication Framework
 The communication framework transfers the network

request between OPEL device and Android mobile phone.
Even when OPEL device is not directly connected to stable
internet network, the network requests for accessing cloud
service can be sent via the mobile phone. When the JS
application running at OPEL device calls the cloud APIs, the
requests are passed to a cloud server via mobile phone.
Currently, the MQTT protocol is used for connection with
cloud server. To provide energy-efficiency and high
bandwidth communication, the communication F/W selects
Bluetooth or Wi-Fi Direct dynamically as communication
module considering their bandwidths and energy
consumptions. For instance, when the size of a message
exceeds the predefined threshold, the communication is
switched from Bluetooth to Wi-Fi Direct.

III. USAGE SCENARIOS
 Many IoT services can be easily implemented with the
OPEL software platform. For instance, we can implement a
sensor viewer application with only 50 lines of JS code. A
smart gardener application, which can control lights and water
for plants based on the light and soil moisture sensor, can be
implemented with only 20 lines of JS code.

IV. EVALUATION
 We implemented an OPEL prototype device with
Raspberry-Pi2 board equipped with 900Mhz ARM Cortex-A7
Quad Core and 1GB SDRAM, and measured several
performance factors. The average Round Trip Time between
OPEL device and smartphone is only 728ms when a UI object
with 150KB JPEG image and 51B text is sent. If selective
connection is enabled, the time is reduced to a half. The
average FPS of four concurrent Full-HD (1080P) recording
applications is 28.17. The average latency of synchronous
sensor data acquisition is 1.8ms and the average latency of
periodic data acquisition is 1ms.

REFERENCE
[1] "IoT.js. A framework for Internet of Things," 2015, retrieved June 14,

2016 from https://github.com/Samsung/iotjs.
[2] "CESANTA. Mongoose IoT Platform," 2015, retrieved June 1, 2016

from https://www.cesanta.com/products/mongoose-iot.
[3] R. LiKamWa et al., "Starfish: Efficient concurrency support for

computer vision applications," Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services.
ACM, 2015

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE 392

