
Shareable Camera Framework for Multiple 

Computer Vision Applications 
 

Hayun Lee, Gyeonghwan Hong, Dongkun Shin 

Department of Electrical and Computer Engineering, Sungkyunkwan University, Korea 

lhy920806@skku.edu, redc7328@skku.com, dongkun@skku.com 

 

 
Abstract— On IoT devices such as autonomous driving drones, 

computer vision jobs such as video recording, streaming and 

object detection use same camera frame. However, since these 

IoT devices are resource-constrained systems, they have two 

problems. First, these applications often do duplicated processing 

for the same camera raw frame. Second, scheduling between 

computer vision applications is difficult. In this paper, we 

propose a shareable camera framework that performs the tasks 

of computer vision applications. This framework converts the 

existing pipeline to a pipeline that does not have redundant 

processing based on the data flow whenever it receives a request 

from the applications. It also has a scheduling algorithm to 

guarantee quality-of-service of the applications in the resource-

constrained systems. With the proposed framework, the IoT 

application developers can easily develop reliable computer 

vision applications that share a single camera simultaneously. 

 

Keywords— Camera framework, component sharing, computer 

vision, IoT device, scheduling 

I. INTRODUCTION 

On IoT devices such as autonomous driving drones, 

computer vision tasks such as video recording, streaming and 

object detection use same camera frame. Deep neural 

networks (DNN) are generally used for computer vision tasks, 

which consume more significant computing resources such as 

CPU computation and memory than traditional computer 

vision tasks. In order to execute DNN for computer vision 

tasks, high-performance computing systems are required. 

There are many researches on computer vision tasks for IoT 

devices with leveraging cloud offloading [1], [2]. The 

researches try to find optimization point of allocating such 

tasks on IoT devices or cloud servers, considering trade-off 

among accuracy, speed, and power consumption. 

However, the cloud offloading approach has three problems. 

At first, excessive network traffic incurs significant 

networking cost. Second, since the wireless connection 

between IoT devices and cloud server is unstable, vision tasks 

are seldom available. Third, the unpredictable latency between 

IoT devices and cloud servers makes it hard to meet time 

constraint for time-critical vision tasks. 

Various computer vision tasks run on recent IoT devises. In 

the example, as shown in Figure 1, four computer vision 

applications running on autonomous driving drone 

simultaneously; recording, snapshot, object detection, lane 

tracing and streaming. Recording is an application that stores 

video recorded by its camera in the period of 5 minutes. 

Snapshot is an application that stores photo captured by the 

camera on other application‘s demand. Object detection is an 

application that detects bumps on the drone and triggers other 

operations if a bump is detected. It can execute the snapshot 

application or make obstacle avoidance commands. Lane 

tracing is an application that detects where the lane is and 

make tracing commands to follow the lane. At the same time, 

recording application transmits streaming video captured by 

the camera to the user‘s smartphones. 

Previous research work mainly optimizes each computer 

vision task such as recording, object detection, lane tracing, 

etc. However, there are few researches on optimizing the 

system executing the multiple computer vision tasks 

simultaneously. 

In order to run multiple computer vision applications on 

resource-constrained IoT devices, several optimization points 

should be considered to design the system. At first, resource 

usage of each application should be optimized. Since multiple 

computer vision applications often use same camera frame to 

do their jobs, the processing tasks of the applications can be 

duplicated. For example, compression jobs can be duplicated 

in recording applications and video streaming applications. 

Second, quality of service (QoS) (e.g., resolution, deadline, 

FPS) of each job should be maintained. For example, lane 

tracing and object detection are kinds of time-critical 

application, which result in fatal consequences if they fail to 

meet the deadlines. Third, since simultaneous access on 

camera device of multiple applications is usually unavailable, 

an additional software layer that multiple computer vision 

applications share the same camera frames is required. 

 

 

 
Figure 1.  A scenario of autonomous driving drone running computer vision 

applications simultaneously 
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In this paper, we propose a shareable camera framework 

that optimizes the simultaneous execution of multiple 

computer vision applications. This framework has the 

following three contributions. 

 This framework provides virtualization view in order 

that multiple computer vision applications share and use 

one camera device for their own purpose 

simultaneously. 

 This framework dynamically optimizes the computation 

resource and memory resource by removing duplicated 

processing of multiple computer vision applications. 

 This framework schedules the processing jobs of each 

computer vision applications to guarantee the QoS of 

the applications. 

The rest of the paper is organized as follows. Section 2 

discusses related work. Section 3 provides the background of 

this work. Section 4 describes the design of the proposed 

framework. Section 5 offers details of the proposed 

framework implementation. Section 6 evaluates the proposed 

framework, and Section 7 contains the conclusion. 

II. RELATED WORK 

Recent work in the mobile cloud computing has optimized 

the performance of mobile computer vision tasks by 

offloading to cloud servers. Yang et al.[1] proposed a 

framework for partitioning execution of feature extraction into 

mobile part and cloud part. MCDNN[2] schedules execution 

on mobile device and cloud to achieve maximum accuracy 

within resource bounds for deep neural networks using a 

model catalog. However, these researches require the 

assumption that the cloud always exists. We designed it to run 

only on devices in cloud-less systems. 

This work is inspired by Starfish[9]. Starfish caches results 

for vision library function calls and removes redundant 

computation and memory usage through memoization. 

However, Starfish focused on optimizing the performance of 

feature extraction such as [1] and [2] mentioned above. We 

designed not only feature extraction but also various computer 

vision applications such as recording, streaming and so on. In 

Starfish, buffer management and searching are required for 

memorization. However, our framework does not require 

searching because it uses a pre-configured pipeline for 

camera‘s streaming data. 

 

TABLE 1. COMPONENTS OF COMPUTER VISION APPLICATIONS 

Location Component Name 

Front Scaling (Sca) 

Middle 

Converting Color Space (Con) 

Encoding (Enc) 

Muxing (Mux) 

Packetizing (Pac) 

Back 

Storing File (Sto) 

Streaming (Str) 

Feature Extraction (Fea) 

III. BACKGROUND 

As shown in Table 1, computer vision applications are 

composed of a series of common components. Following 

descriptions are the roles of each computer vision component. 

 Scaling: component that changes the size of frame 

 Converting Color Space: component that changes the 

color space of frame (e.g., I420 → RGB) 

 Encoding: component that compresses the frame in 

various encoding methods (e.g., JPEG, H.264) 

 Muxing: component that fuses video frame and audio 

data into one container (e.g., AVI, MP4) 

 Packetizing: component that makes packet to be 

transmitted through network 

 Storing File: component that stores the result data into 

a file 

 Streaming: component that transmits a data stream to 

remote devices through IP protocol stacks such as TCP 

or UDP. 

 Feature Extraction: component that extracts features 

from frame (e.g., lane tracing, object detection) 

There are three locations that each computer vision task can 

be located; front, middle and back, as shown in Table 1. In 

this paper, the location of each component is fixed. For 

example, Scaling (Sca) component is always located in the 

front part and gets camera frame from the camera devices. On 

the other hand, making result is done by Storing File (Sto), 

Streaming (Str) or Feature Extraction (Fea). 

TABLE 2. COMPONENT ORGANIZATIONS OF COMPUTER VISION 

APPLICATIONS 

Computer Vision 

Applications 
Component Organizations 

Recording Sca – Con – Enc – Mux – Sto 

Snapshot Sca – Con – Enc – Sto 

Streaming Sca – Con – Enc – Pac – Str 

Feature Extraction Sca – Con – Fea 

 

Table 2 shows the examples of component organizations of 

computer vision applications. The applications use same 

camera frame as its input data. If the formats of input data and 

output data of the component are same, the components can be 

regarded as ones performing same operations. Therefore, 

sharing components that perform same operations results in 

same output data. 

For example, as shown in Figure 2, there are two 

applications. One is a recording application that stores 

recorded video in the form of 720p-H.264-AVI, and another is 

a streaming application that transfers streaming video in the 

form of 720p-H.264-TCP. If components of two applications 

are not shared, two series of components run separately, as 

shown in Figure 2-(a). In this case, the two application‘s 

components have components of same data type, between 

Scaling component and Encoding component. Therefore, the 

duplicated components can be shared, as shown in Figure 2-

(b). In this case, since components in the front part are shared, 

it consumes less computation cost and memory cost. 
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Recording (720p-H.264-AVI)

Sca Con Enc Mux Sto

Streaming (720p-H.264-TCP)

Res Con Enc Str

 
(a) Without component sharing 

 

Sca Con Enc

Mux Sto

Str

Recording (720p-H.264-AVI)

Streaming (720p-H.264-TCP)
 

(b) With component sharing 

Figure 2.  Example of two computer vision applications without and with 

component sharing 
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Figure 3.  The architecture of shareable camera framework 

IV. Design 

Figure 3 shows the overall architecture of the shareable 

camera framework proposed in this paper. Following sub-

chapters cover the detailed descriptions of its architecture. 

A. Proxy Daemon 

Shareable camera framework works as a proxy daemon that 

delegates the handling of request issued by computer vision 

applications. On launching the daemon, Manager initializes 

the pipeline composed of base components for all the cameras 

installed on the device. The base components mainly read 

camera frame from the camera devices. After that, 

Communicator waits for requests that will be issued by 

applications. When it receives a request, it delivers the 

contents of the request to the Manager. Since this framework 

delegates the processing tasks of each processing, multiple 

computer vision applications can share one camera and run 

simultaneously. 

B. API Library 

In order that the applications perform computer vision task, 

the applications should transmit the request to the framework 

through inter-process communication (IPC). This framework 

provides an application programming interface (API) library 

to communicate with the framework. This library transmits 

requests to the framework by some function calls. 

Applications can also transmit component‘s configurations 

(e.g., resolution, FPS, compression format) to the framework 

as arguments of the function calls. 

All the API function can be called in synchronous or 

asynchronous manner. In the case of synchronous call, the 

application waits for the task and receives return value. On the 

other hand, in the case of asynchronous call, applications just 

transmit the request to the framework and do not wait for the 

framework. Exceptively, Feature extraction APIs are always 

called in synchronous manner since it should retrieve shared 

memory information in synchronous manner. For Feature 

Extraction APIs, only pre-processing jobs are performed in the 

framework, feature extraction jobs are performed on 

application-side. 

C. Dynamic Component Sharing 

Framework Manager receives request issued by 

Communicator and transmits it to the Request Scheduler. 

Request Scheduler dynamically allocates components to the 

corresponding request of each camera pipeline and connects 

the components. At first, Request Scheduler checks whether 

components shareable with existing pipeline exist or not. If 

there are shareable components, the Request Scheduler does 

not allocate the shareable components and allocates the other 

components. Allocated components are connected to the last 

component of the series of shareable components. On the 

other hand, if there is not a shareable component, it allocates 

all the components that are required for the request and 

connect it to the base components. 

The pipeline example in Figure 3 shows that all the 

computer vision applications mentioned in table 2 are in 

execution and sharing the pipeline. We assume that the 

component configurations of each application are the same for 

component sharing. Then the recording, snapshot, and 

streaming can be shared to the Enc component. In addition, 

feature extraction can be shared to the Con component. 

Depending on the frame size of compression format 

required by the request, there can be few shareable 

components. If the device‘s computing resources are 

insufficient, it results in fatal consequences. In order to resolve 

the problem, computer vision application developers can write 

their applications to have as many shareable components as 

possible. In the systematic approach, it can be resolved by task 

scheduling with QoS configurations. 

D. Task Scheduling 

This framework has task scheduling algorithm to guarantee 

the QoS of computer vision applications. If the device is short 

of computing resources, the framework can adjust the 

configurations of the components to meet both resource limits 

and QoS of the applications. In this paper, we have defined the 

QoS of computer vision applications as a requirement of the 

applications that must be followed, such as resolution and 

deadline. This framework uses two following strategies for 

task scheduling algorithms. 

1)  Strategy 1: It shares more components while ensuring 

the QoS of requests except Recording. Since recording 
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application should store frames in the same format, Recording 

components are excluded from sharing target. 

2)  Strategy 2: It delays the frame completion time of 

Feature extraction component with ensuring the QoS of 

applications. 

V.  IMPLEMENTATION 

Shareable camera framework reads camera frame and 

performs various components. Each component is 

implemented with the plugins of GStreamer[3]. In this 

framework, a component is composed of one or more than one 

plugin of GStreamer. This framework leverages tee plugin of 

GStreamer to ramify the non-shared parts. 

This framework uses D-Bus[4] library for the IPC between 

the framework and applications. D-Bus provides stateful and 

reliable connections between the processes. 

In this paper, we used deep learning open source 

framework Caffe[5] for the feature extraction applications. In 

the evaluation, we used pre-trained SqueezeNet[6] model to 

evaluate this framework. 

API library is implemented as a form of C library. API 

library is composed of functions and configuration data 

structure on computer vision tasks. Other functions except 

feature extraction are implemented in both synchronous call 

and asynchronous call. In the case of feature extraction API, it 

returns the address and size of shared synchronously. 

VI. EXPERIMENTS 

We have implemented the shareable camera framework as 

mentioned in Section 5. As for IoT device, our target device is 

the Raspberry Pi 2 board[7], which includes a 900MHz quad-

core ARM Cortex-A7 CPU, and 1GB RAM. As for the 

camera device, Raspberry Pi Camera Module V2[8] is 

connected to the target device, which produces 1080p images 

at 30fps. The CPU utilization mentioned in the experiment is 

the average of each core utilization. ‗No sharing‘ means the 

original system that the component sharing is not applied, 

whereas ‗sharing‘ means the proposed system that the 

component sharing is applied. 

A. Impacts of Component Sharing 

Figure 4 shows the result of using and not using component 

sharing in the example of Figure 2. Component sharing almost 

halves CPU utilization compared to the original system, 

because Enc component occupies most of the CPU utilization. 

However, memory usage also does not decrease by half, 

because unshared components, tee plugin, and camera 

framework except pipeline occupy memory space in addition 

to the shared components. After this, the experiment is carried 

out by changing the number of applications. 

Figure 5 shows average CPU utilization and maximum 

memory usage according to the number of recording 

applications. ‗sharing (X)‘ means that the components are 

shared up to X component. For no sharing and ‗sharing 

(Sca/Con)‘, there is no result for six or more applications 

because there is a limit on the number of simultaneous 

accesses on H.264 encoders. However, the framework can 

solve the problem of a limited number of components such as 

‗sharing (Enc)‘ and ‗sharing (Mux)‘, because they use only 

one Enc component (e.g., H.264 encoder). 

‗No sharing‘ increases both CPU utilization and memory 

usage depending on the number of applications. However, 

when the newly allocated components are shared with Sca and 

Con components, the resource usage does not increase 

drastically compared to ‗no sharing‘. In contrast, when the 

newly allocated components are shared with Enc and Mux 

components, CPU utilization and memory usage are almost 

constant regardless of the number of applications. This means 

that framework can dramatically reduce computation and 

memory usage when applications are handling the same frame 

size. This idea is adopted by the strategy 1 of task scheduling. 

 

  
 

                        (a) CPU utilization                              (b) Memory usage 

Figure 4.  Performance evaluation for the example scenario of two computer 

vision applications as shown in Figure 2 

 
 

(a) CPU utilization 
 

 
 

(b) Memory usage 

Figure 5.  Resource usages of the framework running computer vision tasks 

for multiple recording applications 
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Figure 6.  Performance of the framework running computer vision tasks for 

multiple streaming applications 

 

Figure 5-(b) shows that the memory usage is constant when 

shared to the Enc component. This is because the new 

unshared components and tee plugins are small enough not to 

affect overall memory usage. Therefore, most of the memory 

space except the shared components in Figure 4 is occupied 

by the camera framework except pipieline. 

The performance of the camera framework running 

streaming is similar to one running recording. Figure 6 shows 

the streaming FPS on the client side according to the number 

of streaming applications. The streaming FPS is important 

because it is an indicator of the quality of output from the 

consumer‘s perspective. The streaming FPS is 14.25 when the 

number of application is one. Both of ‗no sharing‘ and 

‗sharing (Sca)‘ have increased by 16.07 and 15.78 

respectively when the number of applications was two, and 

have decreased since then. However, ‗sharing (Sca/Con)‘ has 

a higher FPS than ‗no sharing‘. Also, it shows that ‗sharing 

(Enc)‘ maintains almost constant FPS. 

In this experiment, ‗sharing (Enc)‘ does not always 

guarantee high streaming FPS compared to other policies. It 

shows better performance when performing two or three jobs 

than performing one job with H.264 encoder. In other words, 

this result implies that low CPU utilization and memory usage 

do not necessarily guarantee the user‘s QoS. 

B. Impacts of Task Scheduling 

To verify the effectiveness of task scheduling, we executed 

the applications with the scenario in Table 3. The applications 

are predefined by the user with initial configuration and QoS. 

Figure 7 and 8 shows the result of the experiment. Si means 

the initial state where component sharing is done. S1 means 

that strategy 1 is applied, and S1+2 means that the combination 

of both strategy 1 and strategy 2 are applied. 

In S1, QoS is satisfied even if frame size is set as 1080p for 

both snapshot and streaming because frame size is lager than 

480p. When the frame size of two tasks is changed to 1080p, 

Sca component scaling to 720p and Enc component encoding 

H.264 are removed. As two components are removed, CPU 

utilization is reduced by 12.3%, memory usage is reduced by 

30.3MB, and streaming FPS is increased by 1.8x. 

 

TABLE 3. COMPONENT CONFIGURATIONS IN TASK SCHEDULING 

EXPERIMENTS SCENARIO 

Computer Vision 

Applications 
Initial Configuration QoS 

Recording 1080p-H.264-AVI - 

Snapshot (per 1sec) 720p-JPEG 480p ~  

Streaming 720p-H.264-TCP 480p ~  

Feature Extraction 

(Image classification) 
480p ~ 3sec 

 

 

 

Figure 7.  Average CPU utilization of task scheduling scenario 

 

 
 (a) Memory usage          (b) Streaming FPS          (c) Inference time 

Figure 8.  Resource usage and performance of task scheduling scenario 

 

In S1+2, feature extraction (image classification) was 

scheduled to be executed every 3 seconds while satisfying 

QoS. We have noticed the CPU utilization of the framework 

and classification application. In the former case, there is a 

little difference in CPU utilization. On the other hand, in the 

latter case, the CPU utilization was reduced by 6.75 percent 

with delay in inference time from 1.8 to 2.9 seconds.  

Each strategy applied to S1 and S1+2 was effective in 

reducing computation and memory usage while ensuring QoS. 

Especially, strategy 2 is effective in reducing system-wide 

computation rather than reducing memory usage. 
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VII. CONCLUSION 

In this paper, we propose shareable camera framework that 

supports concurrent computer vision applications without 

sacrificing performance on resource-constrained systems such 

as IoT devices. It is accomplished by sharing components and 

scheduling them to ensure QoS of applications. Experimental 

results show that the proposed framework effectively reduces 

computation and memory usage. 

However, this work has three limitations. Firstly, users 

should decide which components are shared manually to 

achieve most effective resource usage. Secondly, current 

scheduling algorithm is not optimal. Finally, we did not deal 

with issues when performing in real workload. In the future, 

we will address these limitations. 
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