
Shareable Camera Framework for Multiple

Computer Vision Applications

Hayun Lee, Gyeonghwan Hong, Dongkun Shin

Department of Electrical and Computer Engineering, Sungkyunkwan University, Korea

lhy920806@skku.edu, redc7328@skku.com, dongkun@skku.com

Abstract— On IoT devices such as autonomous driving drones,

computer vision jobs such as video recording, streaming and

object detection use same camera frame. However, since these

IoT devices are resource-constrained systems, they have two

problems. First, these applications often do duplicated processing

for the same camera raw frame. Second, scheduling between

computer vision applications is difficult. In this paper, we

propose a shareable camera framework that performs the tasks

of computer vision applications. This framework converts the

existing pipeline to a pipeline that does not have redundant

processing based on the data flow whenever it receives a request

from the applications. It also has a scheduling algorithm to

guarantee quality-of-service of the applications in the resource-

constrained systems. With the proposed framework, the IoT

application developers can easily develop reliable computer

vision applications that share a single camera simultaneously.

Keywords— Camera framework, component sharing, computer

vision, IoT device, scheduling

I. INTRODUCTION

On IoT devices such as autonomous driving drones,

computer vision tasks such as video recording, streaming and

object detection use same camera frame. Deep neural

networks (DNN) are generally used for computer vision tasks,

which consume more significant computing resources such as

CPU computation and memory than traditional computer

vision tasks. In order to execute DNN for computer vision

tasks, high-performance computing systems are required.

There are many researches on computer vision tasks for IoT

devices with leveraging cloud offloading [1], [2]. The

researches try to find optimization point of allocating such

tasks on IoT devices or cloud servers, considering trade-off

among accuracy, speed, and power consumption.

However, the cloud offloading approach has three problems.

At first, excessive network traffic incurs significant

networking cost. Second, since the wireless connection

between IoT devices and cloud server is unstable, vision tasks

are seldom available. Third, the unpredictable latency between

IoT devices and cloud servers makes it hard to meet time

constraint for time-critical vision tasks.

Various computer vision tasks run on recent IoT devises. In

the example, as shown in Figure 1, four computer vision

applications running on autonomous driving drone

simultaneously; recording, snapshot, object detection, lane

tracing and streaming. Recording is an application that stores

video recorded by its camera in the period of 5 minutes.

Snapshot is an application that stores photo captured by the

camera on other application‘s demand. Object detection is an

application that detects bumps on the drone and triggers other

operations if a bump is detected. It can execute the snapshot

application or make obstacle avoidance commands. Lane

tracing is an application that detects where the lane is and

make tracing commands to follow the lane. At the same time,

recording application transmits streaming video captured by

the camera to the user‘s smartphones.

Previous research work mainly optimizes each computer

vision task such as recording, object detection, lane tracing,

etc. However, there are few researches on optimizing the

system executing the multiple computer vision tasks

simultaneously.

In order to run multiple computer vision applications on

resource-constrained IoT devices, several optimization points

should be considered to design the system. At first, resource

usage of each application should be optimized. Since multiple

computer vision applications often use same camera frame to

do their jobs, the processing tasks of the applications can be

duplicated. For example, compression jobs can be duplicated

in recording applications and video streaming applications.

Second, quality of service (QoS) (e.g., resolution, deadline,

FPS) of each job should be maintained. For example, lane

tracing and object detection are kinds of time-critical

application, which result in fatal consequences if they fail to

meet the deadlines. Third, since simultaneous access on

camera device of multiple applications is usually unavailable,

an additional software layer that multiple computer vision

applications share the same camera frames is required.

Figure 1. A scenario of autonomous driving drone running computer vision

applications simultaneously

669

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

In this paper, we propose a shareable camera framework

that optimizes the simultaneous execution of multiple

computer vision applications. This framework has the

following three contributions.

 This framework provides virtualization view in order

that multiple computer vision applications share and use

one camera device for their own purpose

simultaneously.

 This framework dynamically optimizes the computation

resource and memory resource by removing duplicated

processing of multiple computer vision applications.

 This framework schedules the processing jobs of each

computer vision applications to guarantee the QoS of

the applications.

The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 provides the background of

this work. Section 4 describes the design of the proposed

framework. Section 5 offers details of the proposed

framework implementation. Section 6 evaluates the proposed

framework, and Section 7 contains the conclusion.

II. RELATED WORK

Recent work in the mobile cloud computing has optimized

the performance of mobile computer vision tasks by

offloading to cloud servers. Yang et al.[1] proposed a

framework for partitioning execution of feature extraction into

mobile part and cloud part. MCDNN[2] schedules execution

on mobile device and cloud to achieve maximum accuracy

within resource bounds for deep neural networks using a

model catalog. However, these researches require the

assumption that the cloud always exists. We designed it to run

only on devices in cloud-less systems.

This work is inspired by Starfish[9]. Starfish caches results

for vision library function calls and removes redundant

computation and memory usage through memoization.

However, Starfish focused on optimizing the performance of

feature extraction such as [1] and [2] mentioned above. We

designed not only feature extraction but also various computer

vision applications such as recording, streaming and so on. In

Starfish, buffer management and searching are required for

memorization. However, our framework does not require

searching because it uses a pre-configured pipeline for

camera‘s streaming data.

TABLE 1. COMPONENTS OF COMPUTER VISION APPLICATIONS

Location Component Name

Front Scaling (Sca)

Middle

Converting Color Space (Con)

Encoding (Enc)

Muxing (Mux)

Packetizing (Pac)

Back

Storing File (Sto)

Streaming (Str)

Feature Extraction (Fea)

III. BACKGROUND

As shown in Table 1, computer vision applications are

composed of a series of common components. Following

descriptions are the roles of each computer vision component.

 Scaling: component that changes the size of frame

 Converting Color Space: component that changes the

color space of frame (e.g., I420 → RGB)

 Encoding: component that compresses the frame in

various encoding methods (e.g., JPEG, H.264)

 Muxing: component that fuses video frame and audio

data into one container (e.g., AVI, MP4)

 Packetizing: component that makes packet to be

transmitted through network

 Storing File: component that stores the result data into

a file

 Streaming: component that transmits a data stream to

remote devices through IP protocol stacks such as TCP

or UDP.

 Feature Extraction: component that extracts features

from frame (e.g., lane tracing, object detection)

There are three locations that each computer vision task can

be located; front, middle and back, as shown in Table 1. In

this paper, the location of each component is fixed. For

example, Scaling (Sca) component is always located in the

front part and gets camera frame from the camera devices. On

the other hand, making result is done by Storing File (Sto),

Streaming (Str) or Feature Extraction (Fea).

TABLE 2. COMPONENT ORGANIZATIONS OF COMPUTER VISION

APPLICATIONS

Computer Vision

Applications
Component Organizations

Recording Sca – Con – Enc – Mux – Sto

Snapshot Sca – Con – Enc – Sto

Streaming Sca – Con – Enc – Pac – Str

Feature Extraction Sca – Con – Fea

Table 2 shows the examples of component organizations of

computer vision applications. The applications use same

camera frame as its input data. If the formats of input data and

output data of the component are same, the components can be

regarded as ones performing same operations. Therefore,

sharing components that perform same operations results in

same output data.

For example, as shown in Figure 2, there are two

applications. One is a recording application that stores

recorded video in the form of 720p-H.264-AVI, and another is

a streaming application that transfers streaming video in the

form of 720p-H.264-TCP. If components of two applications

are not shared, two series of components run separately, as

shown in Figure 2-(a). In this case, the two application‘s

components have components of same data type, between

Scaling component and Encoding component. Therefore, the

duplicated components can be shared, as shown in Figure 2-

(b). In this case, since components in the front part are shared,

it consumes less computation cost and memory cost.

670

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

Recording (720p-H.264-AVI)

Sca Con Enc Mux Sto

Streaming (720p-H.264-TCP)

Res Con Enc Str

(a) Without component sharing

Sca Con Enc

Mux Sto

Str

Recording (720p-H.264-AVI)

Streaming (720p-H.264-TCP)

(b) With component sharing

Figure 2. Example of two computer vision applications without and with

component sharing

Manager

Camera 1

Pipeline

Camera 2

Pipeline

Camera M

Pipeline

Communicator

IPC

App 1 App 2 App N

Request

Scheduler

Camera 1 Pipeline (example)

Camera

1

req

Shared

Memory

API Library

Sto

Res Con

Mux

Fea

Enc

Sto

PacBase Str

Figure 3. The architecture of shareable camera framework

IV. Design

Figure 3 shows the overall architecture of the shareable

camera framework proposed in this paper. Following sub-

chapters cover the detailed descriptions of its architecture.

A. Proxy Daemon

Shareable camera framework works as a proxy daemon that

delegates the handling of request issued by computer vision

applications. On launching the daemon, Manager initializes

the pipeline composed of base components for all the cameras

installed on the device. The base components mainly read

camera frame from the camera devices. After that,

Communicator waits for requests that will be issued by

applications. When it receives a request, it delivers the

contents of the request to the Manager. Since this framework

delegates the processing tasks of each processing, multiple

computer vision applications can share one camera and run

simultaneously.

B. API Library

In order that the applications perform computer vision task,

the applications should transmit the request to the framework

through inter-process communication (IPC). This framework

provides an application programming interface (API) library

to communicate with the framework. This library transmits

requests to the framework by some function calls.

Applications can also transmit component‘s configurations

(e.g., resolution, FPS, compression format) to the framework

as arguments of the function calls.

All the API function can be called in synchronous or

asynchronous manner. In the case of synchronous call, the

application waits for the task and receives return value. On the

other hand, in the case of asynchronous call, applications just

transmit the request to the framework and do not wait for the

framework. Exceptively, Feature extraction APIs are always

called in synchronous manner since it should retrieve shared

memory information in synchronous manner. For Feature

Extraction APIs, only pre-processing jobs are performed in the

framework, feature extraction jobs are performed on

application-side.

C. Dynamic Component Sharing

Framework Manager receives request issued by

Communicator and transmits it to the Request Scheduler.

Request Scheduler dynamically allocates components to the

corresponding request of each camera pipeline and connects

the components. At first, Request Scheduler checks whether

components shareable with existing pipeline exist or not. If

there are shareable components, the Request Scheduler does

not allocate the shareable components and allocates the other

components. Allocated components are connected to the last

component of the series of shareable components. On the

other hand, if there is not a shareable component, it allocates

all the components that are required for the request and

connect it to the base components.

The pipeline example in Figure 3 shows that all the

computer vision applications mentioned in table 2 are in

execution and sharing the pipeline. We assume that the

component configurations of each application are the same for

component sharing. Then the recording, snapshot, and

streaming can be shared to the Enc component. In addition,

feature extraction can be shared to the Con component.

Depending on the frame size of compression format

required by the request, there can be few shareable

components. If the device‘s computing resources are

insufficient, it results in fatal consequences. In order to resolve

the problem, computer vision application developers can write

their applications to have as many shareable components as

possible. In the systematic approach, it can be resolved by task

scheduling with QoS configurations.

D. Task Scheduling

This framework has task scheduling algorithm to guarantee

the QoS of computer vision applications. If the device is short

of computing resources, the framework can adjust the

configurations of the components to meet both resource limits

and QoS of the applications. In this paper, we have defined the

QoS of computer vision applications as a requirement of the

applications that must be followed, such as resolution and

deadline. This framework uses two following strategies for

task scheduling algorithms.

1) Strategy 1: It shares more components while ensuring

the QoS of requests except Recording. Since recording

671

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

application should store frames in the same format, Recording

components are excluded from sharing target.

2) Strategy 2: It delays the frame completion time of

Feature extraction component with ensuring the QoS of

applications.

V. IMPLEMENTATION

Shareable camera framework reads camera frame and

performs various components. Each component is

implemented with the plugins of GStreamer[3]. In this

framework, a component is composed of one or more than one

plugin of GStreamer. This framework leverages tee plugin of

GStreamer to ramify the non-shared parts.

This framework uses D-Bus[4] library for the IPC between

the framework and applications. D-Bus provides stateful and

reliable connections between the processes.

In this paper, we used deep learning open source

framework Caffe[5] for the feature extraction applications. In

the evaluation, we used pre-trained SqueezeNet[6] model to

evaluate this framework.

API library is implemented as a form of C library. API

library is composed of functions and configuration data

structure on computer vision tasks. Other functions except

feature extraction are implemented in both synchronous call

and asynchronous call. In the case of feature extraction API, it

returns the address and size of shared synchronously.

VI. EXPERIMENTS

We have implemented the shareable camera framework as

mentioned in Section 5. As for IoT device, our target device is

the Raspberry Pi 2 board[7], which includes a 900MHz quad-

core ARM Cortex-A7 CPU, and 1GB RAM. As for the

camera device, Raspberry Pi Camera Module V2[8] is

connected to the target device, which produces 1080p images

at 30fps. The CPU utilization mentioned in the experiment is

the average of each core utilization. ‗No sharing‘ means the

original system that the component sharing is not applied,

whereas ‗sharing‘ means the proposed system that the

component sharing is applied.

A. Impacts of Component Sharing

Figure 4 shows the result of using and not using component

sharing in the example of Figure 2. Component sharing almost

halves CPU utilization compared to the original system,

because Enc component occupies most of the CPU utilization.

However, memory usage also does not decrease by half,

because unshared components, tee plugin, and camera

framework except pipeline occupy memory space in addition

to the shared components. After this, the experiment is carried

out by changing the number of applications.

Figure 5 shows average CPU utilization and maximum

memory usage according to the number of recording

applications. ‗sharing (X)‘ means that the components are

shared up to X component. For no sharing and ‗sharing

(Sca/Con)‘, there is no result for six or more applications

because there is a limit on the number of simultaneous

accesses on H.264 encoders. However, the framework can

solve the problem of a limited number of components such as

‗sharing (Enc)‘ and ‗sharing (Mux)‘, because they use only

one Enc component (e.g., H.264 encoder).

‗No sharing‘ increases both CPU utilization and memory

usage depending on the number of applications. However,

when the newly allocated components are shared with Sca and

Con components, the resource usage does not increase

drastically compared to ‗no sharing‘. In contrast, when the

newly allocated components are shared with Enc and Mux

components, CPU utilization and memory usage are almost

constant regardless of the number of applications. This means

that framework can dramatically reduce computation and

memory usage when applications are handling the same frame

size. This idea is adopted by the strategy 1 of task scheduling.

 (a) CPU utilization (b) Memory usage

Figure 4. Performance evaluation for the example scenario of two computer

vision applications as shown in Figure 2

(a) CPU utilization

(b) Memory usage

Figure 5. Resource usages of the framework running computer vision tasks

for multiple recording applications

672

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

Figure 6. Performance of the framework running computer vision tasks for

multiple streaming applications

Figure 5-(b) shows that the memory usage is constant when

shared to the Enc component. This is because the new

unshared components and tee plugins are small enough not to

affect overall memory usage. Therefore, most of the memory

space except the shared components in Figure 4 is occupied

by the camera framework except pipieline.

The performance of the camera framework running

streaming is similar to one running recording. Figure 6 shows

the streaming FPS on the client side according to the number

of streaming applications. The streaming FPS is important

because it is an indicator of the quality of output from the

consumer‘s perspective. The streaming FPS is 14.25 when the

number of application is one. Both of ‗no sharing‘ and

‗sharing (Sca)‘ have increased by 16.07 and 15.78

respectively when the number of applications was two, and

have decreased since then. However, ‗sharing (Sca/Con)‘ has

a higher FPS than ‗no sharing‘. Also, it shows that ‗sharing

(Enc)‘ maintains almost constant FPS.

In this experiment, ‗sharing (Enc)‘ does not always

guarantee high streaming FPS compared to other policies. It

shows better performance when performing two or three jobs

than performing one job with H.264 encoder. In other words,

this result implies that low CPU utilization and memory usage

do not necessarily guarantee the user‘s QoS.

B. Impacts of Task Scheduling

To verify the effectiveness of task scheduling, we executed

the applications with the scenario in Table 3. The applications

are predefined by the user with initial configuration and QoS.

Figure 7 and 8 shows the result of the experiment. Si means

the initial state where component sharing is done. S1 means

that strategy 1 is applied, and S1+2 means that the combination

of both strategy 1 and strategy 2 are applied.

In S1, QoS is satisfied even if frame size is set as 1080p for

both snapshot and streaming because frame size is lager than

480p. When the frame size of two tasks is changed to 1080p,

Sca component scaling to 720p and Enc component encoding

H.264 are removed. As two components are removed, CPU

utilization is reduced by 12.3%, memory usage is reduced by

30.3MB, and streaming FPS is increased by 1.8x.

TABLE 3. COMPONENT CONFIGURATIONS IN TASK SCHEDULING

EXPERIMENTS SCENARIO

Computer Vision

Applications
Initial Configuration QoS

Recording 1080p-H.264-AVI -

Snapshot (per 1sec) 720p-JPEG 480p ~

Streaming 720p-H.264-TCP 480p ~

Feature Extraction

(Image classification)
480p ~ 3sec

Figure 7. Average CPU utilization of task scheduling scenario

 (a) Memory usage (b) Streaming FPS (c) Inference time

Figure 8. Resource usage and performance of task scheduling scenario

In S1+2, feature extraction (image classification) was

scheduled to be executed every 3 seconds while satisfying

QoS. We have noticed the CPU utilization of the framework

and classification application. In the former case, there is a

little difference in CPU utilization. On the other hand, in the

latter case, the CPU utilization was reduced by 6.75 percent

with delay in inference time from 1.8 to 2.9 seconds.

Each strategy applied to S1 and S1+2 was effective in

reducing computation and memory usage while ensuring QoS.

Especially, strategy 2 is effective in reducing system-wide

computation rather than reducing memory usage.

673

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

VII. CONCLUSION

In this paper, we propose shareable camera framework that

supports concurrent computer vision applications without

sacrificing performance on resource-constrained systems such

as IoT devices. It is accomplished by sharing components and

scheduling them to ensure QoS of applications. Experimental

results show that the proposed framework effectively reduces

computation and memory usage.

However, this work has three limitations. Firstly, users

should decide which components are shared manually to

achieve most effective resource usage. Secondly, current

scheduling algorithm is not optimal. Finally, we did not deal

with issues when performing in real workload. In the future,

we will address these limitations.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of

Science and ICT), Korea, under the SW Starlab support

program(IITP-2017-0-00914) supervised by the IITP(Institute

for Information & communications Technology Promotion)

REFERENCES

[1] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, "A framework
for partitioning and execution of data stream applications in mobile

cloud computing," ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no.
4, pp. 23-32, Mar. 2013.

[2] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A.

Krishnamurthy, "Mcdnn: An approximation-based execution
framework for deep stream processing under resource constraints," in

Proc. MobiSys’16, 2016, pp. 123-136.

[3] (2017) GStreamer: open source multimedia framework. [Online].
Available: https://gstreamer.freedesktop.org/

[4] (2017) dbus. [Online]. Available: https://dbus.freedesktop.org/

[5] (2017) Caffe. [Online]. Available: https://github.com/BVLC/caffe
[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size." arXiv preprint arXiv:1602.07360,
2016.

[7] (2017) Raspberry Pi 2 Model B. [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
[8] (2017) Camera Module V2. [Online]. Available:

https://www.raspberrypi.org/products/camera-module-v2/

[9] R. LiKamWa, and L. Zhong, ―Starfish: Efficient concurrency support
for computer vision applications.‖ in Proc. MobiSys’15, 2015, pp. 213–

226.

Hayun Lee received the B.S. degree in Computer

Engineering from Sungkyunkwan University, Suwon,

Korea, in 2017. He is currently M.S. student in the
School of Information and Communication Engineering,

Sungkyunkwan University. His research interests

include IoT platform and edge machine learning.

Gyeonghwan Hong received the B.S. degree in

computer engineering from Sungkyunkwan University,

Korea in 2013. He is currently pursuing the Ph. D.
degree in Embedded Software Laboratory from

Sungkyunkwan University, Suwon, Korea. His research

interests include embedded software, mobile system
software, Internet of Things, web platform and edge

deep learning.

Dongkun Shin received the B.S. degree in computer

science and statistics, the M.S. degree in computer

science, and the Ph.D. degree in computer science and

engineering from Seoul National University, Korea, in

1994, 2000 and 2004, respectively. He is currently an

Assistant Professor in the School of Information and

Communication Engineering, Sungkyunkwan

University (SKKU). Before joining SKKU in 2007, he

was a senior engineer of Samsung Electronics Co.,

Korea. His research interests include embedded software, low-power systems,

computer architecture, multimedia and real-time systems.

674

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

