Performance and Resource Analysis on the JavaScript
Runtime for IoT Devices

Dongig Sin and Dongkun Shin®™”

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
{dongig, dongkun}@skku.edu

Abstract. The light-weight JavaScript frameworks such as IoT.js, DukServer,
and Smart.js provide the asynchronous event-driven JavaScript runtime for low-
end IoT device. These frameworks are designed for memory-constrained systems
such as [oT devices. To evaluate the performance of these frameworks, existing
JavaScript benchmarks are not suitable considering that the use cases of IoT
device are mainly to execute a simple task generating sensor and network I/O
requests. In this paper, we propose several IoT workloads to evaluate the perform-
ance and memory overhead of IoT systems, and evaluate several light-weight
JavaScript frameworks. In addition, we evaluated the effectiveness of multi-core
system for JavaScript framework.

Keywords: JavaScript engine - Internet of Things - Low-memory - Server-side
JavaScript framework - Iot platform

1 Introduction

The JavaScript (JS) programming language is widely used for web programming as well
as general purpose computing. JavaScript has the advantages of easy programing and
high portability due to its interpreter-based execution model. Recently, various event-
driven JavaScript frameworks have been introduced such as Node.js, which is based on
Google V8 JavaScript engine and the libuv event I/O library [1]. To distinguish from
the JS engine of web browser, these event-driven JS frameworks are called server-side
JS framework since they can be used for implementing server computers.

The event-driven JavaScript environment is useful for implementing IoT systems
which should handle many sensor and network I/O events. However, Node.js is designed
for server computer system, and thus it is not optimized for resource usage. Therefore,
Node.js is not suitable for IoT devices which have low-end processors and limited
memory space in order to reduce product cost and power consumption. Accordingly,
various light-weight JavaScript engines requiring small footprint and runtime memory
have been proposed, such Duktape [2], JerryScript [3], and V7 [4].

In this paper, we propose several IoT workloads and evaluate the performance and
resource usage of various event-driven JavaScript runtimes.

© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part I, LNCS 9786, pp. 602-609, 2016.
DOI: 10.1007/978-3-319-42085-1_50

Performance and Resource Analysis on the JavaScript Runtime 603

2 Related Work

Recently, there have been several efforts trying to analyze performance of the server-
side JavaScript framework for server computer system. Ogasawara [5] conducted
context analysis of server-side JavaScript applications on the Node.js, and found that
little time is spent on dynamically compiled code. Zhu et al. [6] present an analysis of
the microarchitectural bottlenecks of scripting-language-based server-side event-driven
applications. In addition, much work has been done to analyze and to improve the
performance of JavaScript engine used in web browsers [7-10].

The prior works did not focus on the server-side JavaScript framework for
memory-constrained devices and the lightweight JavaScript engine. Our work studies
the lightweight server-side JavaScript framework and handles the workloads for the [oT
environment, not for the web browser.

3 Light-Weight JavaScript Engine

The JavaScript engines for web browsers generally use the just-in-time (JIT) compiler
technique for high performance. For instance, V8 engine [11] monitors the execution
frequencies of JavaScript functions compiled by the base compiler at runtime. If a func-
tion is frequently executed, it is compiled by the optimizing compiler, called Crankshaft,
through the techniques of hidden class and inline caching. However, these optimization
techniques are not suitable for low-end IoT devices since they require a large amount
of memory.

Therefore, several light-weight JavaScript engines are introduced, which support
only the minimal functions of JavaScript language following ECMA standard. Consid-
ering memory-hungry IoT devices, the size of heap memory should be limited and
aggressive garbage collection is necessary. As shown in Table 1, the binary file sizes of
light-weight JavaScript engines are up to 125 times less than that of V8 engine.

Table 1. Binary file size of JavaScript engine

V8 Duktape |JerryScript | V7
Size (KB) | 21504 | 192 172 1228

Figure 1 shows the performances and memory consumptions of several JavaScript
runtimes while executing SunSpider benchmark. V8 provides up to 300 times better
performance compared with the light-weight JS engines. However, the memory
consumption of V8 is significantly higher than those of light-weight JS engines. This is
because V8 allocates a large memory pool for high performance. On the contrary, the
performances of light-weight JS engines are significantly low since they do not adopt
the JIT optimizing compiler. However, they require only several mega-bytes of run-time
memory since the heap memory is limited and the aggressive garbage collection reclaims
unused object memory within a short time interval. The memory optimization techniques
further degrade the performance.

604 D. Sin and D. Shin

EDukTape @JerryScript 0OV7 BV8 ®DukTape BJerryScript OV7
@ 1000 3 10
£ E ~
= F
. g ¢
5 100 o
qa) = E %" 6
3L :
1 2
-2 4 1
3 10 5 £
= E J
g E = 2
B 4
S
z 1A 0 -
3d-cube base64 crypto-aes n-body 3d-cube base64 crypto-aes n-body
(a) Execution time (b) Memory usage

Fig. 1. Execution time and memory usage of SunSpider benchmark

However, the SunSpider benchmark is designed to measure the performance of JS
engine for high-end devices, and thus it includes computing and memory-intensive
applications such as 3D cube rotation or encoding/decoding [12]. These applications are
not suitable for measuring the performance of IoT device which handles only sensor
data and network I/O requests. Consequently, in order to evaluate the performance and
memory overhead of light-weight JS engine, we need IoT-specific workloads.

Based on JS engines, several event-driven JS frameworks are announced. Node.js is
a platform built on V8 JS engine for easily building network applications. Node.js uses
an event-driven, non-blocking I/O model that is useful for data-intensive applications.
It is possible to extend the functionality of Node.js via package module called NPM.
Many open source modules are available for NPM.

Although Node.js is versatile and it is based on high-performance V8 JS engine, it
is inadequate for resource-constraint [oT devices. In this paper, we focus on light-weight
JS frameworks for IoT devices. IoT.js has a similar architecture with Node.js [13].
However, it uses a light-weight JS engine called JerryScript. IoT.js also supports the
package module. However, only a small number of packages are available currently.
DukServer uses the Duktape JS engine. It supports C socket-based communication, with
which DukServer can communicate other native functions. Therefore, the external
native functions should be integrated with DukServer at build time. Currently, only the
HTTP-server application is included at DukServer. Smart.js, relying on V7 engine,
supports the binding to the network and hardware native API. In addition, the device
firmware can be called from JS applications for bare metal execution.

4 Experiments

4.1 Experiment Environments

The HTTP servers are implemented with Node.js, IoT.js, DukServer and Smart.js. The
hardware is ODROID-U3 which has 1.7 GHz Quad CPU and 2048 MB memory. We
evaluate the performance and memory overhead of JS framework while running several
IoT workloads. Four IoT service workloads are used as shown in Table 2. The workloads
are designed considering the common scenarios of IoT systems.

Performance and Resource Analysis on the JavaScript Runtime 605

Table 2. Workload specification

Name Business logic Feature

Query Send a specific sensor data Usual case
Collection Transmit collected sensor data after sorting Data-intensive
Compression Transmit collected sensor data after compressing | Computing-intensive
Logging Save sensor data to file I/O-intensive

4.2 Performance and Memory Usage of IoT Workload

For performance comparison, the request handling times of the HTTP server imple-
mented by JS framework are measured while client-side applications sends several
requests to the server. In every workload, the first request handling time of Node.js is
long compared with the following request handling times since the JS operations are not
optimized at the first execution.

4.2.1 Query Workload

In IoT system, the most general scenario is to transfer specific sensor data requested by
client. The Query workload reads sensor data and transfers them to client. Since the
workload has no computing-intensive job, Node.js cannot benefit from the optimizing
compiler of V8JS engine as shown in Fig. 2(a). It shows rather performance degradation
due to additional code execution for optimization. DukServer also shows longer request
handling times than other frameworks. While V7 and JerryScript engines use a memory
pool to assign a memory space for object, Duktape allocates the memory on-demand.
Therefore, there is a memory allocation overhead whenever an object is created, even
though the overall memory usage is lower than other schemes.

BNodejs BDukServer @IoTjs OSmartjs ENodeljs BDukServer BIoT js OSmartjs

__ 700 14

£ 600 4 12

2 500 4 % 10 1

2 400 | & g

| 3

£ 300 A 6 A

2 g

§ 200 A § 4 4

g 100 | I >

* 0 - | o 4

Query Collection ~ Logging Compression Query Collection Logging Compression
(a) Request handling time of IoT Workloads (b) Memory usage of IoT workloads

Fig. 2. Performance and memory usage of IoT workload

606 D. Sin and D. Shin

4.2.2 Collection Workload

If an IoT device collects data from multiple sensors and processes them, a large size of
memory space is required for the collected sensor data. The Collection workload
collects, sorts, and transfers two hundreds of sensor values. For the sorting operation,
many memory pages should be allocated. The performance of Collection workload is
greatly affected by memory management technique of JS framework. Duktape has a
high memory allocation overhead since it does not maintain memory pool, as shown in
Fig. 2(a). JS framework needs a memory reclamation technique. There are two kinds of
techniques used by current JS engines. The reference counting technique maintains the
reference count of each object, and de-allocates the memory space of unused objects if
the reference counts of them are zero. The second technique is garbage collection (GC)
which is triggered when there is memory pressure. Once the GC is triggered, the mark-
and-sweep operation is performed, which marks only referenced objects and then frees
unmarked objects. Duktape uses both of the techniques, and saves the frequently
accessed objects at hash table in order to reduce the search cost of garbage collection.
On the other hand, V7 uses only the garbage collection, and manages the objects in a
linear list, which causes a high search cost of garbage collection. Therefore, Smart.js
shows a long request handling time due to the garbage collection cost.

4.2.3 Logging Workload

The IoT device can store the collected sensor data at storage device via file systems. The
Logging workload stores two hundreds of sensor data at file system. Figure 2(a) shows
that the request handling time of 10T .js is longer than other frameworks. The native file
I/O operations are called by the JS applications via a native API binding technique. Since
the native API binding techniques provided by each framework is different, the file I/O
operations show different performances. The write API provided by IoT.js allocates a
buffer object in order to transform the target data to a common type. Therefore, IoT.js
shows poor performance in the file I/O intensive workload due to the overhead of buffer
allocation and data transformation. In this workload, DukServer is excluded since it does
not support the file system module.

4.2.4 Compression Workload

The sensor data collected by IoT device can be compressed for fast network transfer.
The Compression workload transfers a hundred of sensor values after compressing them
with the LZW algorithm. The light-weight JS frameworks show poor performances for
the computing-intensive workload compared with Node.js.

Although the light-weight JS frameworks show worse performances than Node.js in
most of the IoT workloads, the performance gap is less than several hundreds of milli-
seconds. However, the memory consumptions of light-weight JS frameworks are signif-
icantly lower than that of Node.js as shown in Fig. 2(b). Therefore, these frameworks
are suitable for low-end IoT devices.

Performance and Resource Analysis on the JavaScript Runtime 607

4.3 Performance on Multi-core Architecture

Recent embedded systems adopt multi-core processors for high performance. However,
the single thread-based JavaScript framework cannot benefit from multi-core systems
[6]. Moreover, multiple processor cores will cause high power consumption. Since the
power consumption is also important metric for IoT devices, the power efficiencies of
JS frameworks are observed.

For experiments, ODROID-XU3 is used, which has ARM Cortex A15 2.0 GHz Quad
CPU and A7 1.5 GHz Quad CPU, called big. LITTLE architecture. The high-perform-
ance big cores support the out-of-order execution and use a high CPU clock. The low-
performance LITTLE cores perform the in-order execution with a low CPU clock. We
measure the request handling time while running the Compression and Logging work-
loads as shown in Fig. 3.

mbig(4-core) mbig(1-core) mbig(4-core) mbig(1-core)

@ LITTLE(4-core) OLITTLE(1-core) BLITTLE(4-core) OLITTLE(1-core)
=11} — N
g = £ 2
£ £
72 151 7 2
2.8 5.8 15
g3 gy
EH 01 o
E = ki 2 1
= 05 =
4 0 | | z 04

NodeJS DukServer IoT.JS Smart.JS NodeJs 10T JS Smart.JS

(a) Compression (b) Logging
Fig. 3. Performance on multi-core system

For the Compression workload, the request handling times of light-weight JS frame-
works are significantly reduced on the high-performance cores. However, there are no
performance changes by the number of enabled cores since the JS frameworks use the
single-thread execution model. The performance improvement by high-performance
cores is insignificant at Node.js due to its optimizing compiler.

For the I/O-intensive Logging workload, the multi-core architecture improves the
performance at Node.js and IoT.js. These frameworks support the asynchronous write
API which uses I/O thread pool to prevent the main-thread to be blocked during the
I/O operation [14]. Therefore, multiple cores can execute the main thread and I/O threads
simultaneously. The multi-core processor improves the I/O performance of Node.js and
IoT.js up to 12 % compared with the single-core system. On the contrary, Smart.js
handles the I/O operations in the single main thread, and thus its performance is not
improved by multi-core processor.

Although the multi-core processor can improve the performance of JS frameworks
which use separated I/O threads, the performance improvement is not significant. More-
over, the multi-core processor can waste power without any performance improvement
on computing-intensive workloads. Therefore, the single-core system with high

608 D. Sin and D. Shin

performance will be more efficient than the multi-core system for IoT systems consid-
ering both performance and power.

5 Conclusion

This paper proposed several representative IoT workloads to evaluate the performance
and memory overhead of IoT devices. We analyzed the features of different light-weight
JavaScript frameworks with the IoT workloads. In addition, we evaluated the effect of
multi-core system for JavaScript framework. Our analysis results will be useful for
selecting or designing light-weight JavaScript framework and hardware systems for IoT
applications.

Acknowledgements. This work was supported by the Center for Integrated Smart Sensors
funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project.
(CISS-2011-0031863).

References

Node.js. https://nodejs.org

Duktape. http://www.duktape.org

JerryScript. https://samsung.github.io/jerryscript

V7. https://www.cesanta.com/developer/v7

Ogasawara, T.: Workload characterization of server-side javascript. In: Proceedings of IEEE

International Symposium on Workload Characterization (IISWC) 2014, pp. 13-21. IEEE

(2014)

6. Zhu, Y., Richins, D., Halpern, M., Reddi, V.J.: Microarchitectural implications of event-
driven server-side web applications. In: Proceedings of the 48th International Symposium on
Microarchitecture, pp. 762-774. ACM (2015)

7. Chadha, G., Mahlke, S., Narayanasamy, S.: Efetch: optimizing instruction fetch for event-
driven web applications. In: Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, pp. 75-86. ACM (2014)

8. Zhu, Y., Reddi, V.J.: WebCore: architectural support for mobile web browsing. In:
Proceedings of International Symposium on Computer Architecture, p. 552 (2014)

9. Anderson, O., Fortuna, E., Ceze, L., Eggers, S.: Checked load: architectural support for
JavaScript type-checking on mobile processors. In: Proceedings of 2011 IEEE 17th
International Symposium on High Performance Computer Architecture (HPCA), pp. 419—
430. IEEE (2011)

10. Halpern, M., Zhu, Y., Reddi, V.J.: Mobile CPU’s rise to power: quantifying the impact of
generational mobile CPU design trends on performance, energy, and user satisfaction. In:
Proceedings of 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 64-76. IEEE (2016)

11. V8. https://developers.google.com/v8/

12. Tiwari, D., Solihin, Y.: Architectural characterization and similarity analysis of sunspider

and Google’s V8 Javascript benchmarks. In: Proceedings of 2012 IEEE International

Symposium on Performance Analysis of Systems and Software ISPASS), pp. 221-232.IEEE

(2012)

Dk

https://nodejs.org
http://www.duktape.org
https://samsung.github.io/jerryscript
https://www.cesanta.com/developer/v7
https://developers.google.com/v8/

Performance and Resource Analysis on the JavaScript Runtime 609

13. Gavrin, E., Lee, S.J., Ayrapetyan, R., Shitov, A.: Ultra lightweight JavaScript engine for
internet of things. In: Companion Proceedings of the 2015 ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications: Software for Humanity,
pp. 19-20. ACM (2015)

14. Tilkov, S., Vinoski, S.: Node.js: using javascript to build high-performance network
programs. IEEE Internet Comput. 14(6), 80 (2010)

	Performance and Resource Analysis on the JavaScript Runtime for IoT Devices
	Abstract
	1 Introduction
	2 Related Work
	3 Light-Weight JavaScript Engine
	4 Experiments
	4.1 Experiment Environments
	4.2 Performance and Memory Usage of IoT Workload
	4.2.1 Query Workload
	4.2.2 Collection Workload
	4.2.3 Logging Workload
	4.2.4 Compression Workload

	4.3 Performance on Multi-core Architecture

	5 Conclusion
	Acknowledgements
	References

