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ABSTRACT
Many researchers have studied and proposed various kinds of host-
level flash translation layer (FTL). Host-level FTL allows the host
system to handle the internal architecture of solid state drives
(SSDs), and thus tries to overcome the performance or the function-
ality failure of traditional SSDs which only handle the I/O requests
with the block I/O interface. However, existing studies only focused
on the functionalities of the host-level FTL while less researches
have been done on how the FTL should work on the operating sys-
tem (OS) rather than bare-metal firmware. From the observation,
we found that existing host-level FTL suffers from the performance
bottleneck caused by unscalable software design of FTL. Therefore,
we propose an optimizing scheme which efficiently processes the
I/O operations requested by multiple users and guarantees the scal-
ability of the storage stack. Our experimental results show that the
performance of our scheme improves the performance of software
stack in twice or more compared to the existing host-level FTL.
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1 INTRODUCTION
Recently, the flash storage devices such as SSD have been used
by various fields from mobile systems to server systems, and their
performance and capacity have also been significantly improved.
SSDs require a system software layer, called the flash translation
layer (FTL), to manage the NAND flash memory of the SSDs. FTL
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is responsible for address translation, garbage collection (GC), and
wear-leveling.

FTL has been implemented as internal firmware of the SSD
device, exposing SSDs as a block device to provide the same block
I/O interface to the host system. Therefore, the host system has
no information on the internal architecture of the SSDs, and thus
cannot exploit stack-wise optimization for the storage systems such
as data placement or I/O scheduling. This limitation eliminates the
possibilities for the predictable performance of I/O operations on
SSDs even though the performance of flash memory operations–
read, program, and erase–is predictable.

Recent studies have attempted to implement the FTL at the host
system rather than inside of the SSDs [3, 5]. The host-level FTL
manages the SSDs at the top of the storage interface. In this system,
the SSDs expose their internals such as the physical architecture
and the performance of the flash memory operations. Therefore,
the SSD device can share the management of the storage with
the host system such as address translation, GC and operation
scheduling while the devices still are responsible for the low-level
functionalities of the storage such as error correction code (ECC),
wear-leveling, and bad block management.

In large-scale server systems, multiple users simultaneously re-
quest a lot of I/O operations to the storage. Therefore, the recent
high-performance SSDs support NVMe interface [4] that can pro-
cess lots of I/O commands in parallel with maximum 64K hardware
queues. The I/O schedulers in the host systems also are advanced
to multi-queue architecture such as blk-mq [2] to speed up the
command processing of storage I/O. In addition, the SSDs have
multiple parallel units, providing the scalability upon I/O opera-
tions. However the FTL, which tends to be a bare-metal firmware
inside SSDs, is failed to scale up over multi-core system with OS.
The host-level FTLs are often implemented as a single-threaded
system daemon at the host system, thus the system with these FTL
shows bad scalability upon multiple I/O operations. We analyzed
the problems of the host-level FTL through the experiments using
lightnvm [3] on Linux kernel, and found that its performance is
degraded because it cannot process concurrent accesses of multiple
users in parallel.

In this paper, we propose a noble host-level FTL called multi-
Threaded FTL (MT-FTL) which services concurrent accesses of
multiple users in parallel and provides system scalability. The ex-
perimental results show that the MT-FTL improves the scalability
of existing host-level FTL.

2 BACKGROUND AND MOTIVATION
Recent storage interface supports multiple hardware queues to take
full advantage of the high IOPS of the SSDs. The NVMe interface [4]
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Figure 1: Comparison between firmware-level FTL and host-
level FTL.

provides up to 64K hardware queues contrasting to SATA interface
which provides a single queue. Using the NVMe interface, an user
exclusively inserts the I/O requests into the one or more queues,
which are dedicated to a core. At this time, the core executes the
context of the user. Thus, the SSDs can simultaneously receive
multiple I/O requests which are issued by multiple users at the
same time. In addition, blk-mq separates the storage I/O path per
each core, eliminating the bottlenecks caused by the contention
between multiple users running on multiple cores.

2.1 Firmware-level FTL vs. Host-level FTL
Figure 1 shows the I/O processing in the system adopting firmware-
level FTL and host-level FTL in the environment using blk-mq and
NVMe interface. In Figure 1(a), since the user inserts an I/O request
into the queue of the core which is running the context of the user
(blk-mq), multiple I/O requests can be simultaneously pushed into
the different cores without the contention to the same queue. These
I/O requests are forwarded to the SSDs through multiple hardware
queues of the NVMe interface in parallel. On the other hand, in
Figure 1(b), the I/O requests has to go through the host FTL, before
they are inserted into the per-core queue of blk-mq. Therefore,
the host FTL causes the bottleneck while multiple users access the
global data structure such as mapping table or buffers in the FTL.

2.2 LightNVM and pblk
LightNVM is the subsystem for Open-Channel SSD (OC-SSD) [3].
OC-SSD is the one of the new-class SSDs which expose their per-
formance and internal architecture, and share their responsibilities
to manage the storage space with the host FTL. LightNVM repre-
sents an abstraction of the partial functionalities of existing FTL
as a target and the target is implemented in the Linux Kernel. We
denote target as host FTL.

In LightNVM, the basic host FTL is pblk. pblk maintains page-
level mapping table for address translation, and performs the write
buffering. The write buffering is required because of the difference
between the size of the sector on the host side and the size of the
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Figure 2: The consuming of buffered data with single writer
thread.

physical page of NAND flash memory. pblk is also responsible to
garbage collection (GC), wear-leveling, and bad block management.
When users or write-back threads such as pdflush write their data,
or the valid sectors are copied during GC, pblk divides all the data
into 4KB entries and inserts them into a single buffer. At the time
enough data is gathered in the buffer, a single thread, called writer
thread, flushes the entries of the buffer into the storage.

2.3 Single-threaded Host-level FTL
In this paper, we investigate the problems of the current host FTL ar-
chitecture through the experiments in LightNVM. We also observe
the possibilities of the performance improvement.

2.3.1 Environment of Observational Experiment. The experiment
was conducted on the server based on Intel Xeon processor (2.40GHz,
16 cores). For this experiment, we implemented a SSD Emulator
based on LightNVM and allocated 4GB of DRAM memory for the
storage emulator. The SSD Emulator exposes DRAM memory as a
flash memory storage to LightNVM at the device driver, and uses
pblk in the upper layer. We used fio benchmark and the workload
consisted of random writes of 4KB unit. The write requests was
performed as direct I/O and the number of the user threads which
request the write operations varies 1 to 64. The number of the
entries, which the buffer of pblk holds up to, is set 128.

2.3.2 Experimental results. We have observed how the I/O re-
quests are accumulated in the single buffer managed by the single
writer thread with the increasing number of the user threads. Fig-
ure 2 shows the amount of the I/O requested accumulated in the
buffer as the I/O requests progress. In Figure 2(a), the number of
the entries processed at a time (WU, Write Unit) is 1. In Figure 2(b),
we increase WU to 8 in order to increase the consuming speed, at
which the writer thread services the accumulated data in the buffer.
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Figure 3: Performance of single threaded host-level FTL
with various number of write units.

As shown in the Figure 2(a), when the single user makes the
write requests, the producing speed, at which the I/O requests are
accumulated in the buffer, is slower than when the multiple users
make the write requests. In the other words, the producing speed
is accelerated with the increasing number of the user threads. Even
though the DRAMmemory can sufficiently support the correspond-
ing bandwidth, the bottlenecks occur in the buffer because of the
architecture of pblk, which handles the write requests with the
single buffer and the single writer thread. In the Figure 2(b), the
entries do accumulate not too much in the buffer, as the consuming
speed is faster than the producing speed of a single user thread.
However, the I/O requests are still accumulated in the buffer as the
number of the user threads increases even if the consuming speed
is accelerated.

WU and the number of the user threads affect the actual per-
formance. Figure 3 shows the bandwidth variation according to
WU and the number of the user threads. In the most cases, WU is
proportional to the I/O bandwidth regardless of the number of the
use threads. This is because the user threads have less time to wait
for the free space in the buffer because of the faster consuming
speed. However, the I/O bandwidth significantly decreases with
the more users even if WU increases. The cause of this degradation
can be found in the architecture of pblk, a single buffer and a single
writer thread. Even if multiple users request the write operations
at the same time, only one user thread having the lock of the buffer
can access at a time. Moreover, the I/O requests accumulated in the
buffer can be consumed by only one writer thread. The architecture
of pblk causes bottlenecks.

3 MULTI-THREADED HOST-LEVEL FTL
In this paper, we propose Multi-Threaded Host FTL(MT-FTL) to
provide the scalability of the system and handle the I/O operations
in parallel, which are requested by the multiple users at the same
time. Figure 4 shows the current host FTL and MT-FTL, respec-
tively. The current host FTL has a single-threaded architecture in
which the multiple users cannot access the buffer of the host FTL
in parallel. MT-FTL manages the per-core buffers and the per-core
writer threads as many as the number of the CPU cores. A user
thread inserts data to write into the buffer which is dedicated to the
CPU core which executes the user thread. Even if the multiple users
simultaneously send the write request, the bottleneck caused by the
single buffer of the existing host FTL can be eliminated because the
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Figure 5: The consuming of buffered data on single writer (a)
and multi writers (b-c).

user threads insert their request into the different buffers. In addi-
tion, since the number of the writer threads is equal to the number
of the CPU cores, the scalability of the system can be improved.

Figure 5 shows how data is accumulated in the buffer(s) of pblk
and MT-FTL when the 8 user threads write simultaneously. Only
some section of the whole experiment time is shown. In both pblk
and MT-FTL, WU is set to 1 and the total number of the buffer
entries is 1024. Each per-core buffer in MT-FTL has a total of 128
entries because we experiment with 8 CPU cores.

Comparing Figure 5(a) with (b) and (c), the buffer fills up faster
in the pblk and this phenomenon lasts until the 8 user threads no
longer request the write operations. In MT-FTL, each buffer does
not fill up, and the accumulated data shrinks faster than in pblk.

In pblk, multiple user threads access a single buffer at the same
time and insert the entries at a high speed. Since there is only one
writer thread servicing the buffer, the consuming speed is relatively
slower than the producing speed. After the buffer is full, the user
who wants to insert an entry into the buffer has to wait until there
is the free space in the buffer. On the other hand, MT-FTL has the
per-core buffers and the per-core writer threads. A user thread
inserts the entries into the buffer of the core which is executing the
user’s context. When the unique writer thread of that buffer wakes
up on the core, it services the entries of the buffer.

That is, when there are 8 cores and 8 user threads are writing
some data at the same time, the ratio of user thread, buffer, and
writer thread is 8:1:1 in pblk, and 1:1:1 in MT-FTL. Since the pro-
ducing speed to each buffer and the consuming speed does not
differ much in MT-FTL, there are usually free space in each buffers
as shown in Figure 5(b, c). Thus, the user threads do not have to
waste time waiting for the free space of the buffer. They also do
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not share the data structures related to the buffers with the user
threads running on different cores.

4 EXPERIMENT
We evaluate and compare the performance of pblk of LightNVM
and MT-FTL, and analyze the user and writer thread(s) behavior
per core.

4.1 Experimental Setup
The experiments are conducted on an Intel CoreTM I7-7700 proces-
sor (3.60GHz, 8 cores). We use our SSD Emulator and fio bench-
mark [1]. The workload consists of random writes of 4KB unit. The
write requests are performed as direct I/O, and the number of the
user threads varies 1 to 32. The total number of the buffer entries
is 1024. MT-FTL manages 8 buffers and 8 writer threads, and each
buffer has up to 128 entries.

4.2 Experimental results
Figure 6 shows the I/O bandwidth of pblk and MT-FTL according
to the number of the user threads. In pblk, the performance drops
sharply as the number of the user threads increases. As shown in
Figure 3, the performance degradation occurs even if the consum-
ing speed is accelerated by increasing WU. In contrast, MT-FTL
significantly improves the performance with the increasing number
of the user threads.

There are two main reasons for this result. The first is the dif-
ference of the method in which the users access the buffer. In pblk,
multiple user threads access a single buffer at the same time. On the
other hand, MT-FTL has the per-core buffers as many as the num-
ber of the cores. Therefore, the user threads running on different
cores exclusively access the buffer, which is dedicated to the cores.
The second is the difference in the consuming speed. In pblk, the
producing speed becomes faster with the increasing number of the
user threads, even if the consuming speed is almost constant. As
the difference of the speed of consuming and producing increases,
the free space remained in the buffer is quickly reduced. The user
threads spend time to wait until there is free space in the buffer. In
MT-FTL, since only one user thread inserts entries into the buffer
of one core executing the context of the user, there is no difference
between the producing and consuming speed even if the number of
the user threads increases. Therefore, each buffer usually has free
space, reducing the amount of time the users wait for free space in
the buffer.

This difference can be seen more clearly in Figure 7. In this exper-
iment, pblk is full when the experiment is over 0.004 seconds from
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Figure 7: The behavior of the single-threaded FTL e.g., pblk
(a) and the multi-threaded FTL (b).
the start. Figure 7 shows that the entries are produced/consumed
per core in pblk and MT-FTL from 0.004 seconds to 0.008 seconds,
respectively. In the Figure 7(a), the user threads cannot insert an en-
try continuously in pblk. Even though the writer thread continues
to consume the buffer entries on core #2, this phenomenon lasts.
This is because there is not enough space to insert new entry into
the buffer. In the Figure 7(b), the user threads continue to insert
more entries even after 0.004 seconds in MT-FTL, because there is
enough free space in each buffer to insert the entries.

5 CONCLUSION & FUTUREWORK
We observed that existing host-level FTL cannot efficiently handle
concurrent accesses of the multiple users. We optimize the archi-
tecture of the host-level FTL to support multiple I/O operations
requested by multiple users, and provide the scalability of the sys-
tem. The performance of host-level FTL is improved by mitigating
the competitive accesses of multiple users to the buffer in contrast
to existing host FTL.

Our experimental results show the performance is slightly lower
than that of existing host FTL when the number of the user threads
is one or two. To resolve this problem, we will design and apply
better multi-threaded architecture to improve the performance and
the scalability.
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