
222 IEEE Transactions on Consumer Electronics, Vol. 61, No. 2, May 2015

Contributed Paper
Manuscript received 04/01/15
Current version published 06/29/15
Electronic version published 06/29/15. 0098 3063/15/$20.00 © 2015 IEEE

Improving File System Performance
and Reliability of Car Digital Video Recorders

Younghun Kim, Dongkun Shin, Member, IEEE

Abstract — Car digital video recorders (DVRs) store real-

time audio/video data at flash memory storage device. Car
DVR should handle a large amount of high quality multimedia
data with high reliability. However, current file systems are
vulnerable to sudden-power-offs and flash memory errors.
This paper proposes flash-aware cluster allocation techniques
and a flash-aware journaling technique. The flash-aware
cluster allocation techniques can reduce the probability of file
system corruptions and file fragmentations. The flash-aware
journaling technique can ensure the file system consistency
without significant overheads. Experiments on a simulator
and a real system showed that the proposed techniques can
prevent file fragmentations and file system corruptions, and
they can improve the write performance and lifetime of SD
card significantly1.

Index Terms — FAT file system, Car digital video recorder,
Cluster allocation, Flash-aware journaling.

I. INTRODUCTION

Car digital video recorder (DVR), which is also called car
black box or dashboard camera, records real-time audio/video
data at every moment of drive. It can also record audio/video
data at every accidental or suspicious event of a parked car.
Generally, the captured multimedia data are saved in a secure
digital (SD) card, which uses NAND flash memory as storage
media. The SD card is formatted with the PC-compatible FAT
file system. The car DVR should provide a high reliability on
recording the captured data since it can be used for evidence
in legal action and the car DVR is exposed to system failures
such as sudden-power-off (SPO). However, the current file
systems used in car DVRs are not designed considering the
required high reliability.

First, the current FAT file system of car DVR system
updates metadata frequently. The FAT file system metadata
includes the file allocation table (FAT) and the directory entry
(DE) [1]. The FAT file system manages the storage space in
the unit of cluster, which is the basic unit for space allocation.
The FAT consists of an array of entries, each of which
represents the allocation status of the corresponding cluster.
The FAT entry also has the cluster chain information for

1This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (2013R1A1A2A10013598).

Younghun Kim and Dongkun Shin are with the College of Information and
Communication Engineering, Sungkyunkwan University, Suwon, Korea (e-
mail: ehdeoddl, dongkun@skku.edu).

created files. The FAT is modified when any cluster is
allocated or freed. The DE has the file information such as file
name, file size, first cluster number, date/time, etc. The DEs
are modified when files are created, appended, or deleted.
Since the car DVR makes a new file at every predefined time
intervals and ceaselessly records the driving data, the metadata
are frequently updated. If the metadata are corrupted by SPO
or flash memory errors, the recorded data cannot be accessed.
The frequent metadata updates increase the probability of file
system corruptions.

In particular, there is a mismatch between the size of FAT
entry and the size of flash memory page. Whereas an FAT
entry is 4 byte, the flash memory page is generally 4 KB or 8
KB. Since the flash memory can be programmed by the unit
of page, the whole flash page should be reprogrammed even
though the file system wants to modify only a 4-byte FAT
entry [2]. In addition, the minimum data transfer unit between
file system and storage device is essentially a 512-byte of
sector. Since flash memory does not permit in-place update, a
read-modify-write (RMW) operation is required to update
only a partial page, that is, the old flash page is first read into
the host buffer, several sectors are modified in the buffer, and
the modified page data are written at a new flash page. The
embedded firmware of SD card, called flash translation layer
(FTL), performs the RMW operations. The RMW will
increase the latency of FAT update operation. In addition, SD
card has a limited program/erase (P/E) cycles. The small write
requests requiring the RMW operations will exhaust rapidly
the P/E cycles of SD card. Some flash memory devices permit
the partial page programming, and thus they can reduce the
number of RMW operations for updating FAT. However,
when there is an SPO or flash page program error, the partial
page programming can corrupt other FAT entries that are
previously written at the target flash page [3].

The second problem is the file fragmentation. Car DVR
generates several different types of data and places them in
different folders. The data can be categorized based on when
they are generated. For example, the continuously recorded
video/audio files during driving are placed into the “driving”
folder. The vehicle accidents and driving events triggered by
the internal gyroscope are placed into the “driving event”
folder. The videos triggered by the motion detection and
collision detection during parking are stored into the “parking
motion” and “parking collision” folders, respectively. Each
directory has its limited space and is recycled automatically
when the directory space becomes full. The oldest files are
overwritten first. Therefore, the files in different directories

Y. Kim and D. Shin: Improving File System Performance and Reliability of Car Digital Video Recorders 223

have different lifetimes and file sizes. Whereas these
directories are separated logically, the data of a file can be
written at any cluster in the file system irrespective of the file
type. Generally, the FAT file system allocates the first free
cluster. Since the lifetimes of recorded files are different, free
clusters are fragmented and a newly created file will be
written into several fragmented clusters.

The file fragmentation incurs random write operations at
SD card. Since flash memory storage show worse
performance for random writes compared with sequential
writes, the file fragmentation will degrade the file system
write performance, and can invoke frame drops at the worst
case [4], [5]. In addition, since the random write requests
invoke significant write amplification within flash memory
device, the lifetime of SD card will be shortened by the
fragmented write requests. Unfortunately, any
defragmentation technique cannot be a solution. Since the car
DVRs should ceaselessly write the captured data at SD card, it
has no idle time for defragmentation job.

Kim and Shin [6] proposed a partitioning technique which
can solve the fragmentation problem. However, the technique
cannot guarantee the file system consistency at system failures.
In this paper, the partitioning technique is extended and a new
journaling technique is proposed for high performance and
high reliable car DVR systems. First, the partitioned cluster
allocation (PCA) technique divides the storage space into
multiple regions and allocates the clusters of same-type of
files from the same region in order to prevent file
fragmentation. Second, the page-aligned pre-allocation
(PAPA) technique pre-allocates the clusters of created files to
prevent flash memory pages allocated for FAT from being
overwritten multiple times. By the pre-allocation, the number
of metadata updates is also reduced, and thus the file system is
unlikely to be exposed to the failure critical situations. Third,
the flash-aware journaling (FAJ) ensures the file system
consistency by logging the metadata changes at the journal
area. The FAJ is designed to consider the characteristic of
flash memory, and it has a minimal overhead for managing the
journal. Experiments are performed at a car DVR simulator
and a real car DVR system. By the proposed techniques, the
file fragmentations are almost removed and the metadata
updates are significantly reduced.

The remainder of the paper is organized as follows. Section
2 introduces related works. Section 3 explains the proposed
techniques in details. Section 4 shows the experimental
results. Finally, Section 5 concludes the paper

II. RELATED WORKS

Several optimization techniques have been proposed to
increase the performance of FAT file systems. The all cluster
pre-allocation (ACPA) [7] technique allocates all the clusters
for a created file at once. Therefore, it can remove the updates
on FAT during the append operations of the file. Since the
exact file size is unknown at the file creation, ACPA pre-
allocates all the free clusters in the system for the created file,
and de-allocates unused clusters at file close. Therefore, many
FAT entries are allocated and de-allocated repeatedly, and
many write operations will be sent to the flash memory to

update the FAT. Moreover, ACPA does not consider the
partial page programming issue and cannot handle the file
fragmentation problem.

The flash-aware extension-based cluster allocation (FECA)
[8] is an anti-fragmentation technique. FECA divides the
storage space into multiple cluster groups, where the size of a
cluster group is same to the size of flash memory block.
FECA allocates free clusters from different cluster groups
depending on the file size. Therefore, large files and small
files are not mixed within a same cluster group. Since
different sizes of files generally have different lifetimes,
FECA can mitigate the file system fragmentations. However,
when the file system utilization is high, the fragmentations are
inevitable. A large file can be fragmented into several
separated cluster groups, and it will be mixed with small files.

The specification of FAT file system does not include the
journaling scheme for improving file system consistency.
Therefore, a system crash can corrupt the file system
consistency. Kim and Yu [9] proposed a journaling technique
for FAT file system, called HFAT. It allocates the journal
areas dynamically in order to distribute the frequent write
accesses on journal. The total size of journal area also can be
resized dynamically. However, the distributed journal areas
will aggravate the file fragmentation problem. Moreover,
HFAT requires a large storage space overhead for journal area.

Alei et al. [10] proposed the metadata delayed sequential
write technique, which collects a certain amount of metadata
updates and records them at one time. The delayed sequential
write technique can reduce the number of metadata updates
without breaking the file system consistency. However, under
the delayed write technique, the latest unwritten data will be
lost at SPO. In addition, the technique cannot guarantee the
file system consistency at sudden system crashes.

There are also FTL-level optimization techniques for
improving the performance of flash memory storage devices.
Ryu [11] proposed the filtering FTL technique (FFTL), which
filters metadata updates and manages them separately from
normal data writes. FFTL reduces the block erase count and
improves the write performance of metadata update. However,
it can reduce neither the number of metadata updates nor the
probability of file system corruptions. Kim et al. [12]
proposed the page padding technique in order to provide a
constant write performance even for the fragmented case. It
changes a fragmented write pattern to a sequential write
pattern by padding existing data in FTL level. However, the
page padding technique can be useful only when the
fragmented clusters are located closely.

Therefore, the previous techniques can handle only a subset
of the FAT file system problems, and they did not consider the
workloads of car DVR systems.

III. OPTIMIZATION TECHNIQUES

A. Partitioned Cluster Allocation
When free clusters in FAT file system are fragmented, a

newly created file will be allocated with the fragmented
clusters. The fragmented free clusters are generated due to the
different lifetimes and sizes of car DVR files. When two
different types of files are allocated with adjacent clusters, the

224 IEEE Transactions on Consumer Electronics, Vol. 61, No. 2, May 2015

fragmented free clusters are generated if only one of them is
deleted and its clusters are de-allocated.

The file fragmentation problem may be solved by a
defragmentation technique, which moves the data in fragmented
clusters into the contiguous clusters. However, the
defragmentation technique cannot be applied to the car DVR
systems since it invokes a runtime overhead. In order to move
the data at fragmented clusters, additional read and write
operations should be sent to SD card. Since the car DVRs should
ceaselessly write the captured data at SD card, the additional
operations will result in frame drops due to the limited I/O
bandwidth of the storage. In addition, the lifetime of SD card will
be shortened. Therefore, the car DVR systems need an anti-
fragmentation technique rather than defragmentation.

The proposed partitioned cluster allocation (PCA)
technique is an anti-fragmentation technique, which can
prevent file fragmentations by dividing the storage space into
several regions and storing only a same type of files at each
region. The approach of PCA is different with the legacy
logical or physical storage partitioning techniques. The logical
partition, which is managed by file systems, cannot solve the
file fragmentation problem since different partitions share the
physical clusters. On the other hand, the physical partition can
separate the clusters of different partitions. However, each
partition should be mounted with a separated file system. In
addition, each partition size cannot be changed dynamically.
Moreover, some operating systems do not permit multiple
partitions on one removable storage device.

Although the proposed partitioned cluster allocation uses a
special cluster allocation technique in order to remove the file
fragmentations, it still provides the compatibility with the
current FAT file system. Fig. 1 shows the cluster allocations
under the PCA technique. The storage space is divided into
several regions, each of which is specified with the start
cluster number, the end cluster number, the last allocated
cluster number, the region size, and the target file type. The
start and end cluster numbers determine the size and location
of a region. Based on the predefined space portion of each
region and the total storage size, the start and end cluster
numbers of each region are calculated by file system during
the file system mount process. The information of each region
is saved at a special configuration file that is created by the car
DVR application. The file system maintains the region
information in main memory during runtime.

Each region can be used for only single type of files.
Therefore, different types of files will not be mixed. The file
type can be identified from the directory information of the
file. When the cluster allocation requests for a file is sent to
the file system, PCA allocates free clusters from the region of
the file type. The free clusters can be allocated from its region
in a circular manner. Since the car DVR system generates a
new multimedia file at every time intervals, only recently
created files are stored at SD card, and the old files in the
target directory are deleted when the directory space becomes
full. Therefore, each region can be managed in the round-

robin fashion. Therefore, the next cluster of the last allocated
cluster will always be a free cluster. Starting from the location,
the PCA allocates contiguous clusters for a new file without
fragmentations. Therefore, PCA can remove the free cluster
searching overhead. In Fig. 1, for example, when a file with
type 1 is created, contiguous free clusters can be found within
a constant time without scanning the target region from the
cluster number 1 to the cluster number 12.

Fig. 1. Cluster allocations in the partitioned cluster allocation technique.

PCA does not change the storage format of FAT file system.
Therefore, the files generated under the PCA technique can be
accessed by other systems such as host PC. PCA technique can
increase the lifetime of SD card as well as the write performance
by reducing the number of write requests on the storage.

B. Page-aligned Pre-allocation

Generally, car DVR system buffers captured data in main
memory and it flushes them into the storage periodically. As
shown in Fig. 2(a), each buffer flush operation updates the
metadata such as FAT and DE of the target file since new
clusters are allocated and the file size is modified. Therefore,
the FAT and DEs are frequently updated.

Fig. 2. Write operations while recording a captured data.

The proposed page-aligned pre-allocation (PAPA)
technique requires only one or two times of metadata updates
regardless of the number of data flushes, as shown in Fig. 2(b).
In car DVR systems, the maximum file size of each type of
files can be known based on the system configurations such as

Y. Kim and D. Shin: Improving File System Performance and Reliability of Car Digital Video Recorders 225

the recording time and the file format. Therefore, when a file
is created, PAPA pre-allocates the clusters of the file based on
the maximum file size, and the corresponding FAT entries are
modified. The directory entry of the target file is also fixed at
the file creation time since the file size is determined. Then,
no metadata is updated during the file append operations.
Since the file sizes of a same type of files are not different
significantly, the difference between the maximum file size
and the real file size is not too large. PAPA uses a special file
to store the maximum file sizes of different types of files.
When the file is closed, the metadata can be updated with the
number of used clusters among the pre-allocated clusters. In
order to reduce the number of metadata updates, the metadata
are modified only when the number of unused clusters is
larger than a predefined threshold value.

Fig. 3 shows the detailed cluster allocation process of
PAPA. Each entry in the FAT is 4 bytes at the FAT32 file
system, and it represents the allocation status of the
corresponding cluster and the cluster chain. For example, if n-
th FAT entry has the value of m in the FAT, the cluster with
cluster number n is allocated for a file and the cluster with
cluster number m is the next allocated cluster. For the last
entry of a file, a special predefined value such as
0x0FFFFFFF is written to denote the end-of-file (EOF). The
FAT area is allocated at the address space separated from the
normal data clusters. The FAT will be stored at multiple
contiguous logical pages. In the example of Fig. 3, the FAT is
stored at four logical pages with the logical page numbers
(LPNs) from 0 to 3.

Cached FAT

flush two pages

FAT

FAT

create cluster chains for File1

Free cluster

End of file

pre-allocate chunks for next file

FAT

flush one page

create cluster chains for File 2
pre-allocate chunks for next file

1. Initial

2. File1 FAT allocation completed

3. File2 FAT allocation completed

Storage Memory

Cluster chain of file 1 : [1, 14]

LPN 0
LPN 1
LPN 2
LPN 3

LPN 0
LPN 1
LPN 2
LPN 3

LPN 0
LPN 1
LPN 2
LPN 3

Allocated cluster

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39

10

20

30
40

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

10

20

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

10

20

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

10

20

21 22 23 24 25 26 27 28 29 30

Cluster chain of file 2 : [15, -] [15, 28]

Cluster chain of next file : [29, -]

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39

10

20

30
40

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39

10

20

30
40

Fig. 3. Cluster allocation process of PAPA.

The PAPA modifies the FAT entries in the unit of flash
memory page. Assume that the number of clusters to be pre-
allocated for ‘File 1’ is 14 and one flash memory page can
store ten FAT entries. For the file creation request, two flash
memory pages with LPN 0 and LPN 1 should be modified by
the pre-allocation technique. After closing ‘File 1’, if ‘File 2’
is created, the clusters starting from the cluster number 15 will
be allocated for the file under the PCA technique, and the
flash page with LPN 1 should be modified again. That is, if

the number of FAT entries to be modified by the pre-
allocation is unaligned to the flash page size, the logical page
that stores the FAT entry for the start cluster should be
modified again at each file creation. Such a modification of
logical page at file creation will invoke the read-modify-write
(RMW) operations or the error-prone sub-page programming
within the flash storage.

To resolve the problem, the proposed PAPA technique pre-
allocates the clusters such that the FAT is modified in the unit
of flash memory page. When PAPA creates the cluster chain
for ‘File 1’, it fills the target page with the cluster chain for the
next file in advance, and two pages are written at the storage.
When ‘File 2’ is created, it can use the pre-allocated clusters
without modifying the flash page with LPN 1. If ‘File 2’
requires more clusters, PAPA expands the cluster chain of
‘File 2’ by writing the next page, which can also have the
FAT entries for pre-allocated clusters of another next file.
Compared with the previous pre-allocation techniques that
pre-allocate the clusters of only the created file, the pre-
allocation scheme of PAPA performs the pre-allocation
beyond file boundary. Therefore, it can reduce not only the
number of FAT updates but also the number of flash page
overwrites. Generally, the FTLs of low-end flash memory
devices such as SD card use a block-level address translation
scheme such as BAST [13] and FAST [14] in order to reduce
the size of mapping table. In the block-level translation
schemes, the update operations on a same logical page invoke
a high garbage collection overhead. Therefore, the proposed
PAPA technique can improve the write performance of SD
card.

Since PAPA pre-allocates the clusters of not-yet-created
files, it should know the pre-allocation information when it
allocates the clusters for a new file. The start cluster number
and the number of clusters of the next file are maintained in
the in-memory file system structure. However, the information
will be lost if the system is rebooted without saving it at the
storage. Then, PAPA should rebuild the information by
scanning the FAT entries. Fig. 4 shows how PAPA finds the
clusters pre-allocated for the next file. For each page allocated
for FAT, the first FAT entry is examined whether it is
allocated or free. If the first entry is allocated, the next page is
examined. When a free entry is found from the page with LPN
n, the page with LPN n-1 is the last modified page. Then, the
page is scanned from the last entry to the backward direction
until an EOF entry is found. In Fig. 4, the page with LPN 4 is
the last updated page, and the FAT entry with cluster number
36 has the EOF. Therefore, the clusters with cluster numbers
from 37 to 40 are the pre-allocated clusters of the next file. If
a new file requires more number of clusters, PAPA pre-
allocates the following clusters modifying the next page
allocated for the FAT.

After the pre-allocation, PAPA updates the DE of the
created file. The field of file size in DE should be modified
according to the number of pre-allocated clusters in order to
provide the file system consistency. PAPA ignores all the DE
update requests by append operations until the target file is
closed. The ignored DE update requests include the

226 IEEE Transactions on Consumer Electronics, Vol. 61, No. 2, May 2015

information such as the last access time and file size. The last
access time of file can be ignored since the file creation time is
sufficient for user. The file size is pre-updated at the file
creation time to allow full accesses for the whole file.
Therefore, user can access the captured multimedia data
without any problem even at SPOs.

If there are many unused pre-allocated clusters when a file is
closed, PAPA de-allocates the unused clusters and changes the
file size. Generally, if there is an event during driving, the car
DVR closes the currently recording normal file in the “driving”
folder, and creates a new file at the “driving event” folder. Then,
the normal file will leave many unused clusters. In such a case,
PAPA allocates the unused clusters for the next file.

Fig. 4. Searching the start cluster number of unused cluster chain.

C. Flash-Aware Journaling

Although the proposed PCA and PAPA techniques can
provide a high performance and high reliable file system by
minimizing the number of write requests on storage and the
number of metadata updates, these techniques cannot prevent
the file system corruptions completely. If there is a system
failure during metadata update operations, the file system
consistency can be broken and some files can be lost. In order
to solve this problem, a journaling technique should be
adopted, which records the metadata changes at the journal
area before the original metadata are updated. Then, using
redo or undo operations, the file system can be recovered.

Several journaling techniques have been proposed for the
FAT file system. The previous techniques maintain duplicated
FATs for journaling. Only after the FAT in the journal area is
updated, the original FAT can be updated. If there is a system
failure while the original FAT is updated, it can be recovered
with the duplicated FAT in the journal area. However, the
duplicated FAT approach increases the overhead during file
creation. Considering that general car DVR systems are
designed only for simple video recording and the SD card
provides a limited I/O bandwidth, the duplicated FAT
approach will be unacceptable to car DVR systems. In
addition, the scheme will exhaust the lifetime of SD card with
the duplicated write operations.

The directory entries are also important metadata of the
FAT file system. The previous journaling techniques write the
DE update logs in the journal area. However, the techniques
did not consider the characteristics of NAND flash memory.
Whereas the size of a DE is 32 bytes, the page size of NAND
flash memory is 4 KB or 8 KB. Therefore, a NAND flash
memory page can store up to 256 DEs. Even though only one
DE is modified, the whole page should be programmed. While
a page that has several DEs is programmed, if there is a

program error, all the DEs in the page can be corrupted.
Therefore, the journaling scheme should back up other
unmodified DEs in the target page as well as the modified
DEs.

Considering the limitations of the previous journaling
techniques, this paper proposes a flash-aware journaling
(FAJ) scheme. The FAJ scheme writes the page-level
modification logs of FAT and DEs in the journal area. Since it
does not maintain the duplicated FAT, the write traffic on the
journal area can be minimized. In addition, using the page-
level logging, the file system consistency is guaranteed even if
there is a program failure.

Fig. 5 shows the overall journal structure of FAJ. The
reserved area of FAT file system is used to store the journal
data. The reserved area is hidden to user and it is originally
used for vender-specific data. The size of reserved area is
configurable. The FAJ scheme creates five DE journal areas
and five FAT journal areas for five types of files at the
reserved area. The total size of journal area is 640 KB.

Boot

Sector
Reserved FAT DE

DE journal
area 1

DE journal
area 5

0 32

Origianl DE (Include long name entry)

160 192

256

Origianl DE (Include long name entry)

Start cluster
number 1

Start cluster
number 2

End cluster
number 1

End cluster
number 2

Number of
cluster chian

Journal
Area

DE
Journal
Entry

Data

DE
Journal
Entry

DE
Journal
Entry

192

224

FAT
Filesystem

4 Byte 4 Byte 4 Byte 4 Byte 4 Byte

256 Byte

DE
Journal
Entry

Block
number

Offset De size Checksum

4 Byte 4 Byte 4 Byte 4 Byte

Journal entry
number

4 Byte

Dumy data

Origianl DE (Include long name entry)

224

FAT
Journal
Entry

FAT journal
area 1

FAT journal
area 5

FAT
Journal
Entry

FAT
Journal
Entry

FAT
Journal
Entry

FAT
Journal
Entry

32 Byte

ChecksumDumy data

4 Byte0 32

Journal entry
number

4 Byte4 Byte

12 Byte

Fig. 5. Structure of the flash-aware journal.

 Since an 8KB of flash page can contain 256 DEs, each DE
journal area should contain 256 DE journal entries in order to
cope with program errors. Even when only one DE is
modified, FAJ stores all the DEs that share a flash memory
page with the modified DE. Then, FAJ can recover the
corrupted DEs even when a whole flash memory page is
corrupted by program errors. Each FAT journal area should
contain 2048 FAT journal entries since a page can have 2048
FAT chains at maximum. Each journal area is cleared when
the original metadata are successfully written at the storage.

A journal entry has the metadata log of one file. The DE
journal entry includes a copy of the original DE to be
modified. It also has the original location information such as

Y. Kim and D. Shin: Improving File System Performance and Reliability of Car Digital Video Recorders 227

the block number, the offset, and the size of DE. Since the
FAT file system supports the long name, the size of DE is
variable. The journal entry includes the journal entry index
and the checksum also. The checksum is used to check the
validity of journal entry.

The FAT journal entry includes the start/end cluster
numbers and the size of the cluster chain. Due to the PCA
scheme, a file is allocated with non-fragmented contiguous
clusters. Therefore, the cluster chain can be represented with
only the start and end cluster numbers. Since the cluster chain
can be divided into two separated regions only if it is allocated
across the partitioned region boundary, the FAT log has the
second start/end cluster numbers also. Compared with the
previous duplicated FAT schemes, the FAT journal entry has
only minimal logs.

Under the page-aligned pre-allocation technique, the file
recording is performed in three steps. First, the metadata is
updated to create a file. Second, the buffered data are flushed.
During the buffer flushing, there are no metadata updates at
the proposed scheme. Finally, the metadata is updated again to
de-allocate unused clusters at file close. The proposed
journaling technique writes the metadata journals just before a
file is closed as shown in Fig. 6. Therefore, if there is a failure
during the first metadata update, the metadata cannot be
recovered by the FAJ technique. However, this has no
problem since no data are stored. Even if there is a system
failure during the data flushing, the file system can access all
the successfully written data due to the cluster pre-allocation.
If there is a failure during journal write, the recorded file can
be accessed with the metadata written at file creation. Finally,
even if the metadata is corrupted during file close, it can be
recovered by redoing the journal logs.

Fig. 6. Data and metadata accesses while recording a file.

IV. EXPERIMENTS

In order to demonstrate the effectiveness of the proposed
techniques, several experiments are performed at a car DVR
simulator and a real development board. The car DVR
simulator receives the file system configuration and the
workload pattern as inputs, and reports the file fragmentations
and the storage internal behaviors as outputs. The car DVR
workload pattern is collected from a real car DVR product.
TABLE I shows the detailed configuration of the car DVR
simulator. Three different time durations are used, during
which the car DVR records five different types of data without
formatting the file system. The storage spaces and the
numbers of files for five types of data are based on the real
workload. Although there are no accidents on the real
workload, several driving events and parking events are
generated due to the false negative detection by the car DVR
system while crossing speed bumps and closing car door.

TABLE II shows the detailed specification of the car DVR
development board, which uses one channel video and a class
10 SD card. The storage capacity, cluster size, and file size are
same with those of car DVR simulator. At every 3 seconds,
the buffered data are flushed at the SD card.

TABLE I
CAR DVR SIMULATOR CONFIGURATION

Duration 30 / 90 / 180 days

SD Capacity 32GB

Cluster Size 32KB

Video Channel 1 Ch (74MB / min)

Storage Space Driving
Driving
Event

Parking
Motion

Parking
Event Manual

65% 12% 15% 5% 3%

Number of Files
/ Day

Driving
Driving
Event

Parking
Motion

Parking
Event Manual

127 6 6 1.3 0.3

File Size Driving
Driving
Event

Parking
Motion

Parking
Event Manual

74MB 24MB 24MB 24MB 74MB

TABLE II

CAR DVR BOARD SPECIFICATION

CPU 600 MHz RISC

RAM 256MB DDR2 memory

Storage 256MB NAND Flash

Camera Full HD

Slot Support Micro SD card

Kernel Linux kernel 2.6.35

Flush Interval 3 Seconds

A. Partitioned Cluster Allocation

With the car DVR simulator, the amount of file
fragmentations is measured under different cluster allocation
techniques. The original FAT file system suffers from the
fragmentation problem. Fig. 7(a) shows the ratios of fragmented
files for each file type under the original FAT file system. The
number of fragmented files increases as the car DVR is used
during a long time without formatting the SD card. Most of the
files are fragmented after 180 days. Fig. 7(b) shows the average
number of fragments of a file. One file is split into 11 regions on
average and 21 regions at maximum. However, the PCA
technique generates at maximum two fragmented cluster regions
irrespective of the time duration. The maximum case is when
the clusters of a file are allocated across the partition boundary.

The fragmented clusters will degrade the write performance.
Fig. 8 demonstrates the performance degradations by the file
fragmentation. Fig. 8(a) shows the latencies of file copy
operation when free clusters are fragmented at several regions.
The results are normalized by the latencies of a non-fragmented
file. The latencies are measured at the car DVR development
board. When the copied file should be written at 11 fragmented
regions, the copy time is increased by 60% compared to the
non-fragmented file since the file system should generate many
small and random write requests. The copy time is increased up
to by 2.4 times when the file is fragmented into 21 regions. Fig.
8(b) shows the numbers of flash memory block erases at

228 IEEE Transactions on Consumer Electronics, Vol. 61, No. 2, May 2015

different cluster allocation techniques and different FTL
schemes. Since the internal behaviors of SD card cannot be
observed at a real system, the car DVR simulator is used. The
simulator includes the BAST and FAST FTL simulators. The
number of block erases increases as the time elapses. The
original FAT file system shows more significant increases in the
block erase count. Since the write requests on the fragmented
file are small and random, the garbage collections of FTL are
frequently invoked and the write amplification in the flash
memory becomes significant. The block erase counts under the
original FAT file system become more than two times the block
erase counts under the PCA scheme after 180 days are elapsed.
The lifetime of SD card is determined by the number of erase
operations. Therefore, it can be known that the PCA scheme is
effective to expand the lifetime of SD card.

Fig. 7. Fragmentations of normal FAT file system.

B. Page-aligned Pre-allocation

The page-aligned pre-allocation technique has two
advantages. First, it can reduce the number of metadata
updates by allocating all the clusters at file creation. Second, it
can reduce the number of overwrite operations on flash
memory pages. In order to evaluate the effects of PAPA, the
car DVR development board is used. TABLE III compares the
number of metadata updates and the metadata update latencies
under different cluster allocation techniques. The update
latency consists of file system overhead, I/O scheduler
overhead, and storage latency. The file system overhead
includes the time taken to search free clusters from the FAT.

The I/O scheduler overhead represents the waiting time of
write requests before they are sent to the storage device. The
storage latency is the response time of storage device.

Fig. 8. Performance degradation by fragmentations.

TABLE III

TOTAL METADATA UPDATE OVERHEAD FOR ONE FILE RECORDING

Original
FAT FS

Page-aligned
Pre-allocation

FAT

Number of updates 20 2

File system (ms) 73.1 42.2

I/O scheduler (ms) 88.1 7.1

Storage (ms) 183.6 11.4

DE

Number of updates 20 2

File system (usec) 740 82

I/O Scheduler (ms) 393 0.8

Storage (ms) 129.7 7.2

Since the car DVR system flushes the buffered data at every 3

seconds, the number of metadata updates is 20 in the original
FAT file system. However, the PAPA modifies the metadata
only when the file is created and it is closed. Although both the
original file system and the PAPA technique allocate the same
number of clusters for the target file, PAPA shows shorter file
system overheads compared with the original scheme. This is
because the cluster search operations are not required at the
PCA technique. The I/O scheduler overhead and storage latency
are also decreased by the PAPA technique since the number of
write requests is reduced.

Y. Kim and D. Shin: Improving File System Performance and Reliability of Car Digital Video Recorders 229

The PAPA technique reduces not only the number of
metadata updates but also the probability of metadata
corruption. Since FAT and DEs are updated infrequently and
the update latencies are short, the failure-sensitive time
intervals are also reduced.

TABLE IV
THE AVERAGE NUMBER OF FAT PAGE OVERWRITES

Schemes The number of overwrites

Normal Pre-allocation 2.6

Page-aligned Pre-allocation 1.8

TABLE IV shows the number of overwrites at the pages

allocated for FAT under different pre-allocation techniques.
Whereas the normal pre-allocation scheme pre-allocates the
clusters only for the current file, the page-aligned pre-
allocation scheme pre-allocates the clusters for the next files
also in order to update the FAT in the unit of 8KB page.

 While recording ten 74 MB of files at SD card, the number
of overwrites on the FAT pages is measured. The pre-
allocation size is 75 MB. Therefore, several clusters can be
de-allocated and the FAT is also modified at file close. With
the page-aligned approach of PAPA, the number of page
overwrites is reduced.

C. Flash-Aware Journaling

The failure detection and recovery operations of the
proposed FAJ scheme are evaluated at the car DVR
development board. The car DVR performs four steps of file
recording as explained in Fig. 6. For experiments, the file
system metadata or journals are corrupted manually at each
step. When there are metadata corruptions, the file system
consistency will be broken if the FAJ scheme cannot recover
the metadata. The size of corrupted metadata ranges from a
few bits to one logical page. If a whole page is corrupted, the
metadata of previously created files can be corrupted as well
as the metadata of the current file.

All the experiments showed that all the recorded files are
successfully accessed despites corrupted metadata due to the
recovery operation of FAJ.

V. CONCLUSION

The current FAT file system adopted by car DVRs has
performance and reliability problems. To solve these problems,
this paper proposed three file system techniques. The
partitioned cluster allocation can improve the write
performance and lifetime of SD card by removing
fragmentations. The page-aligned pre-allocation can reduce
the number of metadata updates and the probability of data
corruption. The flash-aware journaling guarantees the file
system consistency even when metadata is corrupted by
system failures. The experiment results showed that these
techniques improve the performance and reliability of the car
DVR storage system.

This paper focused on the FAT file system. Recently, the
car DVR systems begin to adopt a new file system called

exFAT in order to support a large capacity of storage. Since
the exFAT file system also has similar performance and
reliability problems, the proposed file system techniques will
be applied to the exFAT file system.

REFERENCES
[1] B. Carrier, File System Forensic Analysis, Addison-Wesley Professional,

2005, pp. 129-217.
[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to

flash memory,” in Proc. IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.
[3] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, “Understanding the

robustness of SSDs under power fault,” in Proc. USENIX Conference on
File and Storage Technologies, pp. 271-284, Feb. 2013.

[4] G. D. Nijs, A. Biesheuvel, A. Denissen, and N. Lambert, “The effects of
filesystem fragmentation,” in Proc. Linux Symposium, vol. 1, no. 1, pp.
193-208, Jul. 2006.

[5] B. Ha, H. Cho, and Y. I. Eom, “A study on the block fragmentation
problem of SSD based on NAND flash memory,” in Proc. 5th
International Conference on Ubiquitous Information Management and
Communication, Feb. 2011.

[6] Y. Kim and D. Shin, “High performance and high reliable file system
for car digital video recorders,” in Proc. IEEE International Conference
on Consumer Electronics, pp. 193-194, Jan. 2015.

[7] S. Park and S. Ohm, “New techniques for real-time FAT file system in
mobile multimedia devices,” IEEE Trans. on Consumer Electronics, vol.
52, no. 1, pp. 1-9, Feb. 2006.

[8] S. Ryu, C. Lee, S. Yoo, and S. Seo, “Flash-aware cluster allocation
method based on filename extension for FAT file system,” in Proc.
2010 ACM Symposium on Applied Computing, pp. 502-509, Mar. 2010.

[9] N. Kim and Y. Yu, “HFAT: log-based FAT file system using dynamic
allocation method,” Journal of Information and Communication
Convergence Engineering, vol. 10, no. 4, pp. 405-410, Dec. 2012.

[10] L. Alei, L. Kejia, L. Xiaoyong, and G. Haibing, “FATTY: a reliable FAT
file system,” in Proc. 10th Euromicro Conference on Digital System
Design, pp. 390-395, Aug. 2007.

[11] Y. Ryu, “A flash translation layer for NAND flash-based multimedia
storage devices,” IEEE Trans. on Multimedia, vol. 13, no. 3, pp. 563-
572, Jun. 2011.

[12] H. Kim, J. Kim, S. Choi, H. Jung, and J. Jung, “A page padding method
for fragmented flash storage,” in Proc. International Conference on
Computational Science and Its Applications, pp. 164-177, Aug. 2007.

[13] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space efficient
flash translation layer for compact flash systems,” IEEE Trans. on
Consumer Electronics, vol. 48, no. 2, pp.366-375, May. 2002.

[14] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, “A log buffer-
based flash translation layer using fully-associative sector translation,”
ACM Trans. on Embedded Computing Systems, vol. 6, no. 3, Jul. 2007.

BIOGRAPHIES

Younghun Kim received the B.S. degree in computer
engineering from Sungkyunkwan University, Korea in
2014. He is currently a master student in the College of
Information and Communication Engineering,
Sungkyunkwan University. His research interests include
embedded software, low-power, memory management,
file systems and flash memory.

Dongkun Shin (M’08) received the BS degree in
computer science and statistics, the MS degree in
computer science, and the PhD degree in computer
science and engineering from Seoul National University,
Korea, in 1994, 2000, and 2004, respectively. He is
currently an associate professor in the College of
Information and Communication Engineering,

Sungkyunkwan University (SKKU). Before joining SKKU in 2007, he was a
senior engineer of Samsung Electronics Co., Korea. His research interests
include embedded software, low-power systems, computer architecture, and
real-time systems. He is a member of the IEEE.

