a2 United States Patent

Shin et al.

US009798761B2

US 9,798,761 B2
Oct. 24,2017

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS AND METHOD FOR FSYNC
SYSTEM CALL PROCESSING USING
ORDERED MODE JOURNALING WITH FILE
UNIT

(71) Applicant: RESEARCH & BUSINESS

FOUNDATION SUNGKYUNKWAN
UNIVERSITY, Suwon-si (KR)
(72)

Inventors: Dong Kun Shin, Seoul (KR); Dae Jun

Park, Suwon-si (KR)
(73) Research & Business Foundation
Sungkyunkwan University, Suwon-si
(KR)

Assignee:

(*) Notice:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 342 days.

21

(22)

Appl. No.: 14/805,993

Filed: Jul. 22, 2015

(65) Prior Publication Data

US 2016/0026674 Al Jan. 28, 2016

(30) Foreign Application Priority Data

Jul. 24, 2014 (KR) woovovvvveecccee 10-2014-0093725

(51) Int.CL
GOGF 7/04

GO6F 17/30
US. CL

CPC .. GO6F 17/30371 (2013.01); GO6F 17/30174

(2013.01); GO6F 17/30191 (2013.01); GO6F

17/30227 (2013.01); GOGF 17/30368

(2013.01)

(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC GOG6F 17/30174; GOGF 17/30227; GO6F
17/30191; GOGF 17/30368; GOGF
17/30371; GO6F 17/30377; GO6F
17/30165
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

8,290,994 B2* 10/2012 Allalouf GOGF 3/0604
707/821
2012/0137299 A1* 5/2012 Moyer GO6F 3/0613
718/102

(Continued)

FOREIGN PATENT DOCUMENTS

KR 10-0453228 Bl
KR 10-2005-0052016 A

10/2004
6/2005

OTHER PUBLICATIONS

Shen et al, “Journaling of Journal is (Almost) Free,” FAST ’14,
Usenix Conference of File and Storage Technolofies, Feb. 17-20,
2014.*

(Continued)

Primary Examiner — Bruce Moser
(74) Attorney, Agent, or Firm — NSIP Law

(57) ABSTRACT

A computing device supporting ordered mode journaling.
The computing device includes a memory that stores a
program for operating a file system supporting ordered mode
journaling; and a processor that operates the program stored
in the memory. Wherein during execution of the program,
when ordered mode journaling for a transaction including
one or more files is implemented, the processor stores the
transaction in a data area of the memory, and implements the
journaling by storing a common journal including metadata
of the transaction in a journal area of the memory.

11 Claims, 8 Drawing Sheets

IMPLEMENTING ORDERED MODE JOURNALING FOR A
TRANSACTION INCLUDING ONE OR MORE FILES

5500

| J

STORING THE TRANSACTIONIN A DATA AREA OF A
MEMORY

~-8510

\

IMPLEMENTING THE JOURNALING BY STORING A
COMMON JOURNAL INCLUDING METADATA OF THE
TRANSACTION IN A JOURNAL AREA OF THE MEMORY

--S520

|

US 9,798,761 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2015/0356112 A1* 12/2015 Leeccccocevevnne GO6F 17/30174
707/625
2015/0379036 Al* 12/2015 Shincccoeeee GOG6F 17/30191
707/624

OTHER PUBLICATIONS

Park et al, “iJournaling: Fine-Grained Journaling for Improving the
Latency of Fsync System Call,” 2017 Usenix Annual Technical
Conference, Jul. 12-14, 2017.*

* cited by examiner

US 9,798,761 B2

Sheet 1 of 8

Oct. 24,2017

U.S. Patent

0200 900 900 SROEGRC 000 M 00 66

& #

#
bt (T Mt |TH ¥

fTis . ‘
[o 5 i
e R P g
0 001400 400 GOV RGE Q0 A0 N0 N0 0 N0 WRAEG G0 WG 90 4R NG 60 00 GOeNKE 90 G0N 00 9§
& § 3 ¥
§OpTM et £ :
%aozuzog??eﬂﬁﬁ.m F oo 00 00 108 400 400 00e 00 o B oo oo oo 300 g s gt e 0o

% #

318YL HO14MO83d
dNOYD 14D
dVINLIE MO01d #04

1 dVINLIE JOONI #D8
F78v1 3AONI #08

VI DI4

~a—1 NOLLOVSNVHL

\.\
0l

US 9,798,761 B2

Sheet 2 of 8

Oct. 24,2017

U.S. Patent

VRV YivQ
A

VIUY TYNANOP
A

Bl
JOVIOLS

U.S. Patent Oct. 24, 2017 Sheet 3 of 8 US 9,798,761 B2

FIG. 2

100

COMPUTING DEVICE
110

PROCESSOR

I 1;0
/

MEMORY

U.S. Patent Oct. 24, 2017 Sheet 4 of 8 US 9,798,761 B2

FIG. 3
JOURNAL HEADER BLOCKS
"1 JOURNAL DESCRIPTOR
4B~ | BLOCK TAG
| BLOCK TAG (APPENDED)
4KB~< METADATA -
4KB~ METADATA (APPENDED) pet——rd
4KB~< COMMIT RECORD

U.S. Patent Oct. 24, 2017 Sheet 5 of 8 US 9,798,761 B2

FIG. 4

FSYNC JOURNAL HEADER BLOCKS
EXISTING JOURNAL DESCRIPTOR > 128
INODE NUMBER

INODE MATERIAL STRUCTURE \» 2568

4KB< PARENT INODE NUMBER

FILE NAME LENGTH
e s
 BlockTe -
| BLookTAG (4PPENDED) |

4KB- INODE EXTERNAL EXTENT ot

4Kg< | INODE EXTERNAL EXTENT
(APPENDED))

4KB< COMMIT RECORD

U.S. Patent Oct. 24, 2017 Sheet 6 of 8 US 9,798,761 B2

FIG. 5

(" START

IMPLEMENTING ORDERED MODE JOURNALING FOR A
TRANSACTION INCLUDING ONE OR MORE FILES

l

I STORING THE TRANSACTION IN A DATA AREA OF A

~—S500

MEMORY ~—S510

l

IMPLEMENTING THE JOURNALING BY STORING A
COMMON JOURNAL INCLUDING METADATA OF THE
TRANSACTION IN A JOURNAL AREA OF THE MEMORY

e

59520

U.S. Patent Oct. 24, 2017 Sheet 7 of 8 US 9,798,761 B2

FIG. 6

{ START

OCCURRENCE OF FSYNC SYSTEM CALL -—S600

'

RECORDING THE FILE IN THE DATA AREA OF THE S610
MEMORY T
IMPLEMENTING THE JOURNALING BY STORING AN | 5620

FSYNC JOURNAL INCLUDING METADATA OF THE FILE
IN THE JOURNAL AREA OF THE MEMORY

END

U.S. Patent Oct. 24, 2017 Sheet 8 of 8 US 9,798,761 B2

FIG. 7
(" START
RESTORATION OCCURRENGE |—S700
i $720
/ﬂENTIFYNG\\ém GCOMMON -
e
A TYPE OF A JOURNAL FINALLY ~~—_ JOURNAL | "COTORING THE FILE SYSTEM
BY USING METADATA OF THE
STORED IN THE JOURNAL AREA OF SOMON JOURNAL
THE MEMORY

FSYNG
JOURNAL

RESTORING THE FILE SYSTEM BY
USING METADATA OF THE FSYNC
JOURNAL

| |
{ |
1 i
l t
! {
1 |
| !
{ !
1 i
| !
{ |
| |
| i
| !
| |
{ |
1 i
| {
i |
1 |
{ |
{ I
1 i
| !
f t
1 i

—~-8730

CORRECTING THE METADATA | S740
RECORDED IN THE MEMORY BY
USING THE METADATA RECORDED
IN THE FSYNC JOURNAL

US 9,798,761 B2

1
APPARATUS AND METHOD FOR FSYNC
SYSTEM CALL PROCESSING USING
ORDERED MODE JOURNALING WITH FILE
UNIT

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of Korean Patent
Application No. 10-2014-0093725 filed on Jul. 24, 2014, the
disclosures of which are incorporated herein by reference.

TECHNICAL FIELD

The embodiments described herein pertain generally to a
method and an apparatus for fsync system call processing
using ordered mode journaling with a file unit.

BACKGROUND

A file system included in an operating system accesses a
storage device of a computing device like a desktop com-
puter, a notebook computer, a smartphone, a tablet PC or
others to implement reading, writing and managing a file.

A file system, which has been widely used in recent years,
is an extended file system 4 (EXT4). EXT4 is an improved
version of the extended file system 3 (EXT3) and provides
journaling guaranteeing consistency and continuity. In this
case, the journaling is a technique that can restore a file
system fast when the system is suddenly terminated due to
occurrence of a system failure, a power error or other
problems in the computing device. In EXT4, the journaling
periodically records a journal log of a storage device in a
pre-reserved area of the storage device, i.e., a journal area.

The journaling of EXT4 supports a write-back mode, an
ordered mode, and a data mode. The ordered mode journal-
ing is a basic option of the journaling of EXT4. In order to
maintain consistency of the file system, the ordered mode
journaling records only metadata in the journal area after all
data that need to be updated are recorded.

In general, the ordered mode journaling of EXT4 uses a
journal thread executed in a background. Thus, the ordered
mode journaling has no significant problem even when there
is a large volume of data to be stored, and a file having a long
response time is stored. However, unlike the conventional
ordered mode journaling, an fsync system call does not use
the journal thread, and thus, storing a file is not implemented
in a background. Therefore, the response time of the jour-
naling may be critical upon the fsync system call.

The fsync system call is one of system call functions of
Linux, which is used to be guaranteed as to whether changes
in a file designated by a user have been surely recorded in
the storage device. In EXT4, the fsync system call records
one or more corrected data and their metadata within a
transaction in a data area and a journal area of a memory by
using the journaling thread. In this case, the transaction is a
collection of updates of a file system. That is, the transaction
may include corrected data of a file and metadata thereof
generated by file calculation after the latest change in a file
system. Thus, the transaction may include a file, which is not
included in the fsync system call. If there are significant
changes in a file, which has not been requested in the fsync
system call, the time for implementing the fsync system call
may increase.

15

20

25

40

45

60

65

2

Below are conventional disclosures to solve the foregoing
problems.

Korean Patent Application Publication No. 10-2005-
0052016 (entitled: “Method of and Apparatus for Logging
and Restoring the Metadata in File System™) describes
changing metadata in a transaction unit, and storing logs of
the changed metadata in a global log buffer unit. This
disclosure identifies whether there has been any change in
the metadata stacked in the buffer by using the metadata
logs, and stores the change, if any, in a disk.

In addition, Korean Patent Publication No. 10-0453228
(entitled: “Journaling and Recovery Method for Shared Disk
File System”) describes identifying whether any change has
been made in metadata stacked in a buffer and storing the
change, if any, in a storage device.

SUMMARY

In order to solve the foregoing conventional technical
problems, an example embodiment provides a method and
an apparatus for reducing implementation time upon an
fsync system call by using ordered mode journaling with a
file unit.

However, the problems sought to be solved by the present
disclosure are not limited to the above description, and other
problems can be clearly understood by those skilled in the
art from the following description.

In accordance with a first exemplary embodiment, there is
provided a computing device supporting ordered mode
journaling. The computing device includes a memory that
stores a program for operating a file system supporting
ordered mode journaling; and a processor that operates the
program stored in the memory. During execution of the
program, when ordered mode journaling for a transaction
including one or more files is implemented, the processor
stores the transaction in a data area of the memory, and
implements the journaling by storing a common journal
including metadata of the transaction in a journal area of the
memory. And when an fsync system call for any one file
included in the transaction occurs, the processor stores the
file, for which the fsync system call has occurred, in the data
area of the memory, and implements the journaling by
storing an fsync journal including metadata of the file, for
which the fsync system call has occurred, in the journal area
of the memory.

In accordance with a second exemplary embodiment,
there is provided a method for ordered mode journaling of
a file system. The method included implementing ordered
mode journaling for a transaction including one or more
files; storing the transaction in a data area of a memory; and
implementing the journaling by storing a common journal
including metadata of the transaction in a journal area of the
memory. When an fsync system call for any one file included
in the transaction occurs, journaling with a unit of the file,
for which the fsync system call has occurred, is implemented
in response to the fsync system call.

In accordance with a third exemplary embodiment, there
is provided a method for restoring a file system based on
ordered mode journaling. The method included identifying a
type of a journal finally stored in a journal area of a memory;
restoring the file system by using metadata of a common
journal if the type of the journal is the common journal; and
restoring the file system by using metadata of an fsync
journal if the type of the journal is an fsync journal.

In accordance with one of the foregoing technical means,
an example embodiment can provide a method and an
apparatus for fsync system call processing using ordered

US 9,798,761 B2

3

model journaling with a file unit, and as a result, various
ripple effects in relevant business areas can be expected.

Since an example embodiment implements ordered mode
journaling with a file unit upon implementing an fsync
system call, it can reduce time required for the fsync system
call, compared to conventional ordered mode journaling
with a transaction unit. Further, upon restoring a file system,
an example embodiment implements the restoration by
using an fsync journal only when ordered mode journaling
has not been implemented after the fsync system call, and
thus, consistency of the file system can be maintained.
Therefore, performance deterioration of a database and an
application, which often use the fsync system call, can be
suppressed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A and FIG. 1B are illustrative diagrams for depict-
ing an fsync system call processing process using ordered
mode journaling in conventional EXT4.

FIG. 2 is a structure diagram illustrating a computing
device in accordance with an example embodiment.

FIG. 3 is a structure diagram illustrating a common
journal in accordance with an example embodiment.

FIG. 4 is a structure diagram illustrating an fsync journal
in accordance with an example embodiment.

FIG. 5 is a flow chart of ordered mode journaling in
accordance with an example embodiment.

FIG. 6 is a flow chart of a method for fsync system call
processing using ordered mode journaling in accordance
with an example embodiment.

FIG. 7 is a flow chart of a method for restoring a file
system using ordered mode journaling in accordance with an
example embodiment.

DETAILED DESCRIPTION

Hereinafter, example embodiments will be described in
detail with reference to the accompanying drawings so that
inventive concept may be readily implemented by those
skilled in the art. However, it is to be noted that the present
disclosure is not limited to the example embodiments but
can be realized in various other ways. In the drawings,
certain parts not directly relevant to the description are
omitted to enhance the clarity of the drawings, and like
reference numerals denote like parts throughout the whole
document.

Throughout the whole document, the terms “connected
to” or “coupled to” are used to designate a connection or
coupling of one element to another element and include both
a case where an element is “directly connected or coupled
to” another element and a case where an element is “elec-
tronically connected or coupled to” another element via still
another element. In addition, the term “comprises or
includes” and/or “comprising or including” used in the
document means that one or more other components, steps,
operation and/or existence or addition of elements are not
excluded in addition to the described components, steps,
operation and/or elements unless context dictates otherwise.

A file system means a system, which stores and manages
files or data in a storage device, a database and others
connected to a computing device. For example, the file
system may include a file allocation table 32 (FAT32), a new
technology file system (NTFS), EXT3, EXT4, etc.

Next, an fsync system call processing process using
ordered mode journaling in conventional EXT4 is described
by using FIG. 1A and FIG. 1B.

10

15

20

25

30

35

40

45

50

55

60

65

4

A file system, which has been widely used in recent years,
is EXT 4. EXT4 is a file system, which is mostly used in an
operating system like Android, Linux or others, and provides
journaling guaranteeing consistency and continuity.

In this case, the journaling is a technique that periodically
records changes of a file system in a storage device to
rapidly restore the file system when the system is suddenly
terminated due to a system failure, a power error, or the like.
Journaling supported in EXT4 includes write-back mode
journaling, ordered mode journaling, and data mode jour-
naling. Here, the ordered mode journaling is the represen-
tative journaling used in EXT4.

In order to maintain consistency of a file system, the
ordered mode journaling records one or more data that are
included in a transaction and need to be updated in a data
area of a storage device, and then, records metadata thereof
in a journal area of the storage device. In this case, since the
conventional general ordered mode journaling is imple-
mented in a background, there is no significant problem even
though the data include data requiring long time to be stored
in the transaction. However, unlike the conventional general
ordered mode journaling, in case of using an fsync system
call, which is not implemented in a background, response
time of journaling is critical.

FIG. 1A and FIG. 1B are illustrative diagrams for depict-
ing an fsync system call processing process using ordered
mode journaling in conventional EXT4.

Referring to FIG. 1A, the transaction includes four files,
of which data have been corrected, but have not yet been
stored in the storage device, and their related eight metadata.
In this case, the metadata may include inode tables, block
bitmap, inode bitmap, a group descriptor table(GDT) and
others with regard to the corrected files. The inode tables is
metadata that record information of files. And the block
bitmap is metadata that record allocation of files. Also, the
block bitmap is metadata that record allocation of data
blocks within a block group.

Referring to FIG. 1B, the storage device includes one
journal area and one data area. For example, the data area
may consist of four block groups indicated as “BG1,”
“BG2,” “BG3” and “BG4.”

When an fsync system call for “File 3” occurs, the
conventional general ordered mode journaling calls a jour-
naling thread to implement journaling for the transaction. In
this case, the fsync system call is used for files, which is
frequently updated and should be assured to be stored in the
storage device at a certain time, like an XML setting file of
data or applications to be stored in a database management
system (DBMS).

In this case, the fsync system call is not implemented in
a background. Thus, when an fsync system call occurs, the
conventional general ordered mode journaling waits until
corrected data of all the files present in the transaction are
stored in the data area. That is, in FIG. 1A, when an fsync
system call occurs, the conventional general ordered mode
journaling waits by the time that all corrected data of “File
1,” “File 2,” and “File 4,” to which corrections have been
made, in addition to target “File 3,” are stored in the data
area of the storage device of FIG. 1B. After the corrected
data of all the files are written in the data area, the conven-
tional general ordered mode journaling records the metadata
present in the transaction in the journal area.

Since the conventional general ordered mode journaling
waits until even the files irrelative to “File 3" are stored in
the data area, the response time of the fsync system call
increases. Especially, if the files having no relationship to

US 9,798,761 B2

5

“File 3” are large in size, the response time of the fsync
system call may further increase.

In order to solve the problem, the ordered mode journal-
ing with a file unit has been suggested. The ordered mode
journaling with a file unit separates a file implementing an
fsync system call from the transaction to implement the
ordered mode journaling in a file unit. The ordered mode
journaling with a file unit may reduce the time required for
an fsync system call, compared to the conventional general
ordered mode journaling. However, in the ordered mode
journaling with a file unit, the metadata of the transaction
also reflect results of changes by file calculation of another
file, which is not the corresponding file, due to the charac-
teristics of the metadata. Thus, the ordered mode journaling
with a file unit may result in the inconsistency state.

An example embodiment provides an apparatus and a
method for ordered mode journaling with a file unit, which
solve the problems of the conventional ordered mode jour-
naling and the conventional ordered mode journaling with a
file unit, and are capable of reducing response time of an
fsync system call while maintaining consistency of a file
system, upon implementing the fsync system call.

Next, a computer device supporting ordered mode jour-
naling with a file unit in accordance with an example
embodiment is described referring to FIG. 2 to FIG. 4.

FIG. 2 is a structure diagram illustrating a computing
device in accordance with an example embodiment.

A computing device 100 in accordance with an example
embodiment may include a memory 120 that is a storage
device equipped with a program for operating a file system
supporting ordered mode journaling with a file unit, and a
processor 110 that operates the program stored in the
memory 120.

The computing device 100 may include a server, a work-
station, general computers such as a desktop computer and
a notebook computer, latest smart devices such as a smart-
phone and a tablet PC, and so on.

The memory 120 of the computing device 100 generally
refers to a storage device that continuously keeps stored
information even when no power is supplied. For example,
the memory 120 may include a NAND flash memory such
as a compact flash (CF), a secure digital (CD) card, a
memory stick, a solid-state drive (SSD), and a micro SD
card, or a magnetic computer storage device such as a hard
disk drive (HDD).

The program stored in the memory 120 may operate as an
operating system that operates a file system, to which an
example embodiment is applied, or be configured in a form
of an application equipped with a file system, to which an
example embodiment is applied.

In addition, the memory 120 may include a data area and
a journal area like the memory supporting the conventional
ordered mode journaling. In an example embodiment, the
journal area may store a common journal or an fsync journal.
In addition, the data area may store data.

During execution of the program, when ordered mode
journaling for a transaction including one or more files is
implemented, the processor 110 may store the transaction in
the data area of the memory 120, and implement the
journaling by storing a common journal including metadata
of the transaction in the journal area of the memory 120.

In addition, during execution of the program, when an
fsync system call for one file included in the transaction
occurs, the processor 110 may store the file in the data area
of the memory 120, and implement the journaling by storing
an fsync journal including metadata of the fsync file in the
journal area of the memory 120.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

That is, the ordered mode journaling in accordance with
an example embodiment may be similar to the conventional
ordered mode journaling. Thus, upon implementing ordered
mode journaling for a transaction, the processor 110 may
implement the journaling for one or more files belonging to
the transaction. However, since the journaling in the fsync
system call in accordance with an example embodiment is
implemented only for the corresponding file, it is different
from the conventional ordered mode journaling in light of
this point. When the fsync system call occurs, the processor
110 implements journaling only for the corresponding file,
and as a result, there is an advantage in that required time is
reduced, compared to the conventional ordered mode jour-
naling. The general ordered mode journaling and the ordered
mode journaling in accordance with an example embodi-
ment are described for comparison with reference to FIG. 3
and FIG. 4.

FIG. 3 is a structure diagram illustrating a common
journal in accordance with an example embodiment. FIG. 4
is a structure diagram illustrating an fsync journal in accor-
dance with an example embodiment.

The common journal may be structured as shown in FIG.
3, and the fsync journal may be structured as shown in FIG.
4. As illustrated in FIG. 3, the common journal may include
a journal descriptor, a block tag, metadata and a commit
record. Unlike the common journal, the fsync journal of
FIG. 4 may include inode information, file information and
others together with a journal descriptor. The inode infor-
mation to be stored in the fsync journal may be an inode
number, an inode material structure and others. The inode
information may be used to restore inode of the correspond-
ing file. Thus, upon restoring the file system, the processor
110 may implement the restoration in the manner of record-
ing an inode material structure corresponding to existing
inode tables.

The common journal and the fsync journal may be stored
in the journal area of the memory 120 by using an appending
method. Thus, a journal that the processor 110 finally stores
in the journal area may be a common journal or an fsync
journal, for which journaling has been most recently imple-
mented.

In addition, the fsync journal in accordance with an
example embodiment may include fsync journal header
blocks. The fsync journal header blocks is the same as the
fsync journal header blocks of FIG. 4, and may include a
journal descriptor, an inode number and an inode material
structure, which are inode information, a parent inode num-
ber, a file name length and a file name, which are file
information, and others. Thus, during execution of the
program, the processor 110 may record inode information
and name information of a file in the fsync journal header
blocks.

In FIG. 4, the parent inode number, the file name length,
the file name, etc., of the fsync journal header blocks of the
fsync journal are information for restoring a name of the
corresponding file. The processor 110 may find the parent
inode in the existing inode tables, to implement the resto-
ration in the manner of renewing the corresponding file
name in a directory entry.

In addition, in order to restore the file system, the pro-
cessor 110 may analyze a type of a journal finally appended
to the journal area of the memory 120. If the type of the
finally appended journal is a common journal, the processor
110 may restore the file system by using metadata of the
common journal. To the contrary, if the type of the finally

US 9,798,761 B2

7

appended journal is an fsync journal, the processor 110 may
restore the file system by using metadata of the fsync
journal.

Since the processor 110 implements journaling in a file
unit when the fsync system call is implemented, the fsync
journal may not have information about a file, which belongs
to an identical transaction to the transaction of the file as the
target of the fsync system call and shares the metadata of the
transaction. Thus, in the case where the processor 110 has
implemented the ordered mode journaling after the imple-
mentation of the fsync system call, if the restoration is
implemented by using the fsync journal, the file system may
be in the inconsistency state.

However, as described above, since recording in the
journal area is implemented in the appending manner, a
journal finally appended to the journal area may be the
journal, for which journaling has been most recently imple-
mented. Thus, the processor 110 may analyze a type of the
finally appended journal and implement the restoration
depending on the type of the journaling that has been most
recently implemented, so as to maintain the consistency of
the file system.

That is, if a journal finally stored in the journal area is the
fsync journal, the ordered mode journaling has not been
implemented after the fsync system call, and thus, the
processor 110 may implement the restoration of the file
system by using the fsync journal. If the finally stored
journal is the common journal, the ordered mode journaling
has been implemented after the fsync system call, and thus,
the processor 110 may restore the file system by using the
same method as the common restoration process.

In this case, if the type of the journal is the fsync journal,
the processor 110 may correct the metadata stored in the
memory 120 by using the metadata recorded in the fsync
journal, after the restoration of the file system. Since the
metadata stored in the memory 120 are corrected after the
restoration of the file using the fsync journal, the processor
110 can maintain the consistency of the file system.

Meanwhile, since the processor 110 in accordance with an
example embodiment implements the ordered mode jour-
naling with a file unit upon the implementation of the fsync
system call, it can reduce the required time, compared to the
conventional ordered mode journaling with a transaction
unit. In addition, upon restoring the file system, the proces-
sor 110 may implement the restoration by using the fsync
journal only when the ordered mode journaling has not been
implemented after the fsync system call. Thus, the processor
110 may correct the metadata stored in the memory 120 after
the implementation of the restoration of the file system using
the fsync journal, so as to maintain the consistency of the file
system.

Next, the ordered mode journaling with a file unit in
accordance with an example embodiment is described by
using FIG. 5 and FIG. 6.

FIG. 5 is a flow chart of ordered mode journaling in
accordance with an example embodiment. FIG. 6 is a flow
chart of an fsync system call processing method using
ordered mode journaling in accordance with an example
embodiment.

The computing device 100 in accordance with an example
embodiment may implement ordered mode journaling for a
transaction including one or more files (S600). Once the
ordered mode journaling is implemented, the computing
device 100 may first store the transaction in the data area of
the memory 120 (S610). The computing device 100 may
implement the journaling by storing the common journal
including metadata of the transaction in the journal area of

20

25

40

45

60

65

8

the memory 120 (S620). In this case, when an fsync system
call occurs, the computing device 100 may implement the
journaling in a file unit in response to the fsync system call.

The computing device 100 may implement the journaling
in the same manner as the conventional ordered mode
journaling. That is, when the ordered mode journaling for
the transaction is implemented, the computing device 100
may implement the journaling for one or more files included
in the transaction.

However, the computing device 100 may implement the
fsync system call of the file system in a different manner
from the conventional ordered mode journaling. In order to
implement the journaling with a fine unit in response to the
fsync system call of the file system, when the fsync system
call occurs (S700), the computing device 100 may record the
corresponding file in the data area of the memory 120
(S710). The computing device 100 may implement the
journaling by storing the fsync journal including metadata of
the file in the journal area of the memory 120 (S720). Since
the computing device 100 implements journaling only for
the file, which is the target for the fsync system call, among
one or more files included in the transaction, it is advanta-
geous in that required time is reduced upon implementation
of the fsync system call, compared to the conventional
ordered mode journaling.

In this case, the fsync journal may include fsync journal
header blocks. Thus, in order to implement journaling by
storing the fsync journal including metadata of the file,
which is the target of the fsync system call, in the journal
area of the memory 120, the computing device 100 may
record inode information and name information of the
corresponding file in the fsync journal header blocks.

As described above, the common journal and the fsync
journal are structured as shown in FIG. 3 and FIG. 4,
respectively. That is, as shown in FIG. 3, the common
journal may include a journal descriptor, a block tag, meta-
data and a commit record. Unlike the common journal, the
fsync journal of FIG. 4 may include inode information, file
information and others together with a journal descriptor.
The inode information stored in the fsync journal may be an
inode number, an inode material structure and others. The
inode information may be used to restore inode of the
corresponding file. Upon restoring the file system, the res-
toration may be implemented in the manner of recording an
inode material structure corresponding to existing inode
tables.

In addition, the fsync journal may include fsync journal
header blocks. As described above, the fsync journal header
blocks is the same as the fsync journal header blocks of FIG.
4, and may include a journal descriptor, an inode number
and an inode material structure, which are inode informa-
tion, a parent inode number, a file name length and a file
name, which are file information, and others. Information
such as the parent inode number, the file name and file name
length may be used to restore the name of the corresponding
file upon restoring the file.

The computing device 100 may use the appending method
for the common journal and the fsync journal included in the
journal area of the memory 120. Thus, the computing device
100 may finally record the common journal or the fsync
journal, for which journaling has been most recently imple-
mented, in the journal area of the memory 120.

Next, a restoration method using the ordered mode jour-
naling with a file unit in accordance with an example
embodiment is described by using FIG. 7.

US 9,798,761 B2

9

FIG. 7 is a flow chart of a file system restoring method
using ordered mode journaling in accordance with an
example embodiment.

For the file system restoration based on the ordered mode
journaling, when the restoration of the file system is imple-
mented (S800), the computing device 100 may identity a
type of a journal, which has been finally stored in the journal
area of the memory 120 (S810). If the type of the journal
finally stored in the memory 120 is the common journal, the
computing device 100 may restore the file system by using
metadata of the common journal (S820). However, if the
type of the journal finally stored in the memory 120 is the
fsync journal, the computing device 100 may restore the file
system by using metadata of the fsync journal (S830).

When fsync system call is implemented, the computing
device 100 implements journaling in a file unit, and as such,
the fsync journal stored in the journal area of the memory
120 may not include information about a file, which belongs
to the same transaction as that of the file of the fsync system
call and share the metadata thereof. Thus, in the case where
the ordered mode journaling has been implemented after the
implementation of the fsync system call, if the computing
device 100 implements the restoration by using the fsync
journal, the file system may be in the inconsistency state.

However, since the journal area of the memory 120 stores
the common journal and the fsync journal by using the
appending method, the common journal or the fsync journal,
for which journaling has been most recently implemented,
may be finally recorded in the journal area of the memory
120. That is, if the computing device 100 analyzes a type of
the journal finally stored in the journal area, it can identify
a type of the journaling that has been most recently imple-
mented. Thus, the computing device 100 may analyze a type
of a journal finally stored in the journal area of the memory
120 prior to the implementation of the restoration. Also, the
computing device 100 may implement the restoration by
using the fsync journal only when the ordered mode jour-
naling has not been implemented after the fsync system call.
Through this process, the computing device 100 may main-
tain the consistency of the file system.

In addition, in order to maintain the consistency of the file
system, the computing device 100 may correct the metadata
recorded in the memory 120 by using the metadata recorded
in the fsync journal after restoring the file system by using
the metadata of the fsync journal (S840).

Upon restoring the file system by using the file system
restoring method, the computing device 100 may implement
the restoration by using the fsync journal only when the
ordered mode journaling has not been implemented after the
fsync system call. Also, the computing device 100 may
correct the metadata stored in the memory 120 after the
restoration of the file system using the fsync journal is
implemented, so as to maintain the consistency of the file
system.

The apparatus 100 and the method for fsync system call
processing using the ordered mode journaling with a file unit
in accordance with an example embodiment can provide an
fsync system call processing method and apparatus using
ordered mode journaling with a file unit.

Accordingly, since the apparatus 100 and the method for
fsync system call processing implement the ordered mode
journaling with a file unit upon implementation of an fsync
system call, they can reduce time required for the fsync
system call, compared to the ordered mode journaling with
a transaction unit. In addition, since the apparatus 100 and
the method for fsync system call processing implement the
restoration by using the fsync journal only when the ordered

20

25

30

40

45

60

65

10

mode journaling has not been ordered after the fsync system
call, the consistency of the file system can be maintained.
Thus, the apparatus 100 and the method for fsync system
call processing can suppress performance deterioration of a
database, an application and others, which often use the
fsync system call.

The example embodiments can be embodied in a storage
medium including instruction codes executable by a com-
puter or processor such as a program module executed by the
computer or processor. A computer readable medium can be
any usable medium which can be accessed by the computer
and includes all volatile/nonvolatile and removable/non-
removable media. Further, the computer readable medium
may include all computer storage and communication
media. The computer storage medium includes all volatile/
nonvolatile and removable/non-removable media embodied
by a certain method or technology for storing information
such as computer readable instruction code, a data structure,
a program module or other data. The communication
medium typically includes the computer readable instruction
code, the data structure, the program module, or other data
of' a modulated data signal such as a carrier wave, or other
transmission mechanism, and includes information trans-
mission mediums.

The method and the system of the example embodiments
have been described in relation to the certain examples.
However, the components or parts or all the operations of the
method and the system may be embodied using a computer
system having universally used hardware architecture.

The above description of the example embodiments is
provided for the purpose of illustration, and it would be
understood by those skilled in the art that various changes
and modifications may be made without changing technical
conception and essential features of the example embodi-
ments. Thus, it is clear that the above-described example
embodiments are illustrative in all aspects and do not limit
the present disclosure. For example, each component
described to be of a single type can be implemented in a
distributed manner. Likewise, components described to be
distributed can be implemented in a combined manner.

The scope of the inventive concept is defined by the
following claims and their equivalents rather than by the
detailed description of the example embodiments. It shall be
understood that all modifications and embodiments con-
ceived from the meaning and scope of the claims and their
equivalents are included in the scope of the inventive
concept.

We claim:
1. A computing device supporting ordered mode journal-
ing, comprising:

a memory that stores a program for operating a file system
supporting ordered mode journaling; and

a processor that operates the program stored in the
memory,

wherein during execution of the program, when ordered
mode journaling for a transaction including one or
more files is implemented, the processor stores the
transaction in a data area of the memory, and imple-
ments the ordered mode journaling by storing a com-
mon journal including metadata of the transaction in a
journal area of the memory, and

when an fsync system call for any one file included in the
transaction occurs, the processor stores the file, for
which the fsync system call has occurred, in the data
area of the memory, and implements the journaling by
storing an fsync journal including metadata of the file,

US 9,798,761 B2

11

for which the fsync system call has occurred, in the
journal area of the memory.

2. The computing device of claim 1,

wherein the processor stores the common journal and the
fsync journal using an appending manner in the journal
area of the memory.

3. The computing device of claim 1,

wherein the fsync journal comprises fsync journal header
blocks,

the processor records inode information and name infor-
mation of the file, for which the fsync system call has
occurred, in the fsync journal header blocks.

4. The computing device of claim 1,

wherein the processor analyzes a type of a journal finally
appended to the journal area in order to restore the file
system,

if the type of the journal is the common journal, the
processor restores the file system by using metadata of
the common journal, and

if the type of the journal is the fsync journal, the processor
restores the file system by using metadata of the fsync
journal.

5. The computing device of claim 4,

wherein if the type of the journal is the fsync journal, the
processor corrects the metadata recorded in the
memory by using the metadata recorded in the fsync
journal, after the restoration of the file system.

6. A method for ordered mode journaling of a file system,

comprising:

implementing ordered mode journaling for a transaction
including one or more files;

storing the transaction in a data area of a memory; and

implementing the ordered mode journaling by storing a
common journal including metadata of the transaction
in a journal area of the memory,

wherein when an fsync system call for any one file
included in the transaction occurs, journaling with a

20

25

12

unit of the file, for which the fsync system call has
occurred, is implemented in response to the fsync
system call.

7. The ordered mode journaling method of claim 6,

wherein the journaling with the unit of the file comprises:

recording the file, for which the fsync system call has
occurred, in a data area of the memory; and

implementing the ordered mode journaling by storing an
fsync journal including metadata of the file, for which
the fsync system call has occurred, in a journal area of
the memory.

8. The ordered mode journaling method of claim 7,

wherein the fsync journal comprises fsync journal header
blocks,

the implementing of the journaling by storing the fsync
journal records inode information and name informa-
tion of the file, for which the fsync system call has
occurred, in the fsync journal header blocks.

9. The ordered mode journaling method of claim 7,

wherein the step of implementing the journaling stores the
common journal and the fsync journal using an append-
ing manner in the journal area of the memory.

10. A method for restoring a file system based on ordered

mode journaling, comprising:

identifying a type of a journal finally stored in a journal
area of a memory;

restoring the file system by using metadata of a common
journal if the type of the journal is the common journal;
and

restoring the file system by using metadata of an fsync
journal if the type of the journal is an fsync journal.

11. The method of claim 10,

wherein the step of restoring of the file system by using
the metadata of the fsync journal comprises correcting
the metadata recorded in the memory by using the
metadata recorded in the fsync journal.

* * Ed Ed *

