
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 ISSN(Print) 1598-1657
http://dx.doi.org/10.5573/JSTS.2015.15.5.539 ISSN(Online) 2233-4866

Manuscript received Apr. 21, 2015; accepted Sep. 24, 2015
College of Information & Communication Engineering,
Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si,
Gyeonggi-do, 16419, Korea
Corresponding Author: Dongkun Shin
E-mail : dongkun@skku.edu

Offline Deduplication for Solid State Disk Using a
Lightweight Hash Algorithm

Eunsoo Park and Dongkun Shin*

Abstract—Deduplication technique can expand the
lifespan and capacity of flash memory-based storage
devices by eliminating duplicated write operations.
The deduplication techniques can be classified into
two approaches, i.e., online and offline approaches.
We propose an offline deduplication technique that
uses a lightweight hash algorithm, whereas the
previous offline technique uses a high-cost hash
algorithm. Therefore, the memory space for caching
hash values can be reduced, and more pages can be
examined for deduplication during short idle intervals.
As a result, it can provide shorter write latencies
compared to the online approach, and can show low
garbage collection costs compared to the previous
offline deduplication technique.

Index Terms—Flash memory, SSD, deduplication,
lifespan, reliability

I. INTRODUCTION

As flash memory technology advances, memory
density is increasing, but the reliability and endurance are
declining [1]. The limited number of program/erase (P/E)
cycles of flash memory sharply drops as technology
scaling continues to high-density flash devices. For
example, 2-bit multi-level cell (MLC) flash memory chip
permits ten times less P/E cycles than single level cell

(SLC) flash memory chip [4]. Therefore, it is important
to manage the lifespan of flash memory efficiently.

Flash memory-based storage is composed of multiple
flash memory chips. Each chip consists of thousands of
erase blocks. A block is normally made up of 64~256
numbers of 4KiB-pages. Flash memory has unique
characteristics as follows: (1) Flash memory supports
three major operations. The read or write (a.k.a.
program) operation is performed in the unit of page.
However, the erase operation is performed in the unit of
block. (2) The whole block must be erased before writing
any page in the block. That is, flash memory does not
support in-place overwrite. (3) The pages in an erase
block must be written sequentially. (4) The erase block
permits a limited number of program/erase cycles. These
characteristics of flash memory require a special
firmware, called FTL (Flash Translation Layer), to
emulate the block storage interface. The FTL provides
the following functionalities :
·Logical-to-physical (L2P) address mapping: FTL

manages the mapping table to convert logical
addresses from the file system to physical addresses
in flash memory.

·Garbage collection: FTL copies the valid pages in
a block to other free block and erases the block to
reuse it.

·Power-off recovery: FTL prevents data in flash
storage from losing in sudden power-off situation.

·Wear-leveling: FTL provides the functionality for
all blocks in flash storage to be worn out evenly.

Recent flash memory devices such as solid state disks

(SSDs) have smart controllers which can maximize the
lifetime of flash memory. There are two approaches to

540 EUNSOO PARK et al : OFFLINE DEDUPLICATION FOR SOLID STATE DISK USING A LIGHTWEIGHT HASH ALGORITHM

increase the lifetime of flash memory devices. The first
one is the wear-leveling technique that monitors the
aging level of each flash memory block and makes the
blocks to be worn out evenly [2]. The second one is to
reduce the total amount of write traffic on flash storage.
Many researches have made efforts to reduce the number
of write operations on flash storage. For example, an
efficient garbage collection (GC) technique can reduce
the write amplification factor (WAF) by selecting a low-
cost victim block to be reclaimed and thus minimizing
the number of page copy operations during the GC. The
other example is to reduce the amount of user data with
compression or deduplication. While the compression
technique can be effective on reducing the data size, it
has the size mismatch problem. Since the flash page can
be programmed in the unit of page, several compressed
pages should be merged before they are programmed. It
is difficult to remove the internal fragmentations
completely. The deduplication technique detects and
removes duplicated pages from the storage device. The
compression and deduplication techniques can also
reduce the GC cost by minimizing the number of pages
to be copied. However, these schemes have considerable
runtime overheads.

The deduplication techniques can be classified into the
online and offline approaches, depending on when the
deduplication is performed. The online scheme checks
each incoming page when it arrives, and drops it if a
same page exists in the storage. Instead, the FTL
firmware changes the address translation table such that
the target logical page shares the pre-written physical
page with other logical pages. Although the online
scheme can reduce the number of write operations, it has
the runtime deduplication overhead. Moreover, it has a
reliability problem if there is a sudden power-off before
the modified address mapping entries are not saved
permanently.

The offline deduplication, on the other hand, writes all
the data sent from the host at the storage, and removes
the duplicated pages during idle time. It can hide the
deduplication overhead by exploiting the idle time, and it
has no problem related to sudden power-offs. Although
the offline technique cannot reduce the number of write
operations for handling host requests, it can reduce the
GC overhead by eliminating the copy operations on
duplicated pages. Both the online and offline techniques

need a high complexity of hash algorithm such as SHA-1
and MD5 in order to generate a collision-free fingerprint
of each page.

In this paper, we propose a novel offline deduplication
technique, which uses a lightweight hash function such
as CRC32 instead of high complexity of hash functions
in order to reduce the deduplication overhead. Since our
scheme is an offline technique, it can solve the reliability
problem of the online technique. In addition, it can
reduce the deduplication overhead compared to the
previous techniques by using a lightweight hash
algorithm.

The rest of this paper is organized as follows. In
section II, we discuss on deduplication techniques for
flash memory, and address several problems of previous
techniques [4, 8]. Section III introduces the design of
proposed offline deduplication technique. We present the
experimental results in section IV. The last section
concludes this paper.

II. RELATED WORKS

Many host-level deduplication techniques have been
proposed in order to save the storage space [5], where the
file system or storage device controller in the host system
performs the deduplication. In the device-level
deduplication techniques, on the other hand, the storage
controller performs the deduplication work. The device-
level deduplication in SSD changes the address mapping
table if duplicated data is found. By modifying the
mapping table, the logical pages which have identical
data can share a same physical page. Since the physical
page location can be changed by GC, the data-sharing
logical pages point to a shared physical page via the
virtual page number as shown in Fig. 1 [3].

Since the logical pages with the LPNs (logical page
numbers) of 204 and 208 have the same data of C, they

Fig. 1. An example of data deduplication

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 541

are mapped to the VPN (virtual page number) of 1027,
which is again mapped to the PPN (physical page
number) of 203. The physical page with the PPN of 207
is invalidated after the deduplication.

CAFTL (Content-Aware Flash Translation Layer) [3]
proposed both the online and offline deduplication
techniques for SSD, although it focuses on the online
deduplication as a main deduplication process. In the
online scheme of CAFTL, the incoming write request is
first temporarily written at the on-device buffer. Then, a
collision-free fingerprint such as SHA-1 is computed for
each page in the buffer. The generated fingerprint is
looked up against a fingerprint store which maintains the
fingerprints of all the pages in the storage. If a same
fingerprint is found from the fingerprint store, only the
address mapping table is updated such that the duplicated
pages share a physical page, without writing the new data
at flash memory. If no match is found, the write is
performed as a regular write. Thus, the average write
latency could be reduced in the environment with a high
redundancy such as virtualization server. If the
redundancy level is low, on the other hand, the online
scheme may increase the write latency since it should
generate a complex hash value for each page.

Moreover, some deduplicated pages can be lost at
sudden power-offs. Generally, FTL does not flush the
updated mapping table into non-volatile flash device
immediately. Therefore, the storage device may have the
old version of address mapping table at the power-off-
recovery. In this situation, FTL can recover the mapping
entries of all the written pages with the reverse mapping
(i.e., physical-to-logical (P2L) page mapping) in the
spare (OOB) area of flash pages. However, the
deduplicated pages at online scheme are never written in
the flash memory and the reverse mapping is not either.
Consequently, the FTL cannot recover the deduplicated
pages at sudden power-offs. Therefore, the file system
consistency will be crashed.

If SSD flushes the mapping table at each deduplication
in order to solve the problem, there is no gain by
deduplication since each deduplicated page invokes one
page write operation. CAFTL assumes that supercap can
be used to solve the problem, but it requires additional
hardware cost. Therefore, the online deduplication
technique is not practical considering the sudden power-
off situation.

The offline deduplication technique hides the
deduplication overhead by exploiting the idle time of
flash storage. All the incoming data is first written at
flash memory. The written data is later examined for
deduplication during idle time. The previous offline
scheme also generates the high complexity of hash value,
and it is maintained at the fingerprint store. If a match
found in the fingerprint store, the duplicated physical
page is invalidated by modifying the L2P mapping table.

In the offline deduplication, we can indirectly reduce
the average write latency by reducing GC overhead. The
block separation technique for offline deduplication [6]
can further reduce the GC cost by separating
deduplicable pages into specific blocks so that the pages
to be invalidated by deduplication are collected in the
blocks. In order to check whether a page has a possibility
of duplication (i.e., deduplicable page), the block
separation technique uses a light-weight hashing at
online.

III. OFFLINE DEDUPLICATION WITH

LIGHTWEIGHT HASH

We adopt the offline approach as a deduplication
technique considering the reliability issue of the online
deduplication. In order to improve the performance of the
offline deduplication, the incoming pages are pre-hashed
at online with a light-weight hashing such as CRC32, and
the pages with a same pre-hash value are managed as
candidates for deduplication. Fig. 2 shows the overall
architecture of the proposed offline deduplication scheme.
For each page in the page buffer, a CRC32 hash is
computed and it is searched from the CRC32 table. The
CRC32 hash table is cached in the internal DRAM of
flash storage. The CRC32 table has multiple buckets.
Each bucket is identified with a unique CRC32 value,
and it has the list of physical pages whose data have the
CRC32 value of the bucket.

If no match is found from the CRC32 table, the page is
identified to be unique and it is inserted into a new
bucket. If a match is found, the page is undetermined
whether they are duplicated or not since the CRC32 hash
function is not collision-free. Then, the PPN is inserted at
the corresponding bucket in the CRC32 table. The flash
memory blocks are classified into the non-determined
(ND) blocks and the unique (U) blocks [6]. While the

542 EUNSOO PARK et al : OFFLINE DEDUPLICATION FOR SOLID STATE DISK USING A LIGHTWEIGHT HASH ALGORITHM

non-determined pages are written at the ND blocks, the
unique pages are written at the U blocks. Each entry in
the CRC32 buckets has a flag to represent the page type,
either ND flag or U flag. The flag can be changed after
the offline deduplication.

When the host notices the start of idle time via the
SATA interface, legacy SSD normally activates the
background GC. In the proposed scheme, however, we
set a higher priority on the offline deduplication and
allow SSD to activate background GC after the
completion of the deduplication process to reduce the
page copy overhead. We are solving such an arbitration
situation with the novel technique in future work. For
example, we can predict deduplication probability of the
page by profiling the request and the page with lower
probability would be dropped from CRC32 table so as to
reduce the deduplication cost. Moreover we also refer to
sooner update probability of the victim page, since
deduplication process for the page which is about to be
updated soon makes useless deduplication. Therefore, in
idle time, the candidate pages are examined for
duplication with byte-level comparison, so that we can
remove the time and space overhead of the collision-free
fingerprints. For each physical page with the ND flag in a
bucket, it is compared with the physical pages with the U
flag in the same bucket. Compared with the previous
offline deduplication technique, the proposed technique

can reduce the number of comparisons for deduplication
by examining only the pages written in the ND region.

If a non-determined page has the same data with a
unique page, it is invalidated by updating the L2P
mapping table. The corresponding entry of the
deduplicated page in the bucket is removed from the
CRC32 table. If a non-determined page is identified to be
unique, the flag of the entry in the CRC32 table is
changed to unique. Each bucket has the reference count,
which represents how many duplicated pages were found
from the bucket. The bucket with the highest reference
count is first examined to find duplicated pages since the
bucket has a higher probability of duplication.

Although the byte-level comparison has a high cost,
the cost can be reduced in proposed offline deduplication.
For the byte-level comparison without hashing, all pages
in the flash storage should be read from flash to dram in
controller and compared with the target page. Using a
light-weight algorithm, however, only few pages have to
be read and compared since CRC32 table provides the
PPNs to be compared. In addition, the lightweight hash
such as CRC32 is still powerful as enough as it does not
generate much collision [3], the number of read and
comparisons is small. Therefore, the overhead of byte-
level comparison is the read overhead for at least two
pages and CPU comparison overhead. Concerning CPU
comparison overhead, for the single page byte-level

Fig. 2. Architecture of proposed offline deduplication technique

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 543

comparison CPU spends smaller cycles than lightweight
hash key generation according to SimpleScalar.
Moreover, it is common that the comparison finished
sooner than expected since the different pages are usually
not matched in middle.

Since CRC32 table has the PPN instead of LPN, the
offline deduplication can directly access the target
physical pages without accessing the L2P mapping table.
In addition, when a duplicated page is found, the
corresponding L2P mapping entry can be accessed with
the P2L mapping written at the spare area.

IV. EXPERIMENTS

Our simulation environment was built by inserting the
deduplication module at the DiskSim-based SSD
simulator [7]. We used two storage access workloads for
evaluations, WebVM [8] and Windows Application
Installation. The former workload is based on the traces
of web mail proxy and online course management, and
the latter is generated with the Open Storage Toolkit
while installing multiple versions of applications.

We assumed that the latencies of SHA-1, CRC32 hash
functions, and 4KiB byte-level comparison overhead are
100 μs, 13 μs, and 10 μs, respectively, which are
measured with the SimpleScalar-ARM cycle accurate
simulator. We used the default SSDSim parameters of
page read and write latencies, i.e., 25 μs and 200 μs,
respectively. In order to generate GC, we prepended the
dummy write to the trace files for 90% SSD utilization.

Fig. 3 shows the response time of write request, which
is normalized by the response time of normal SSD
without deduplication. The noticeable differences are
shown in both the SHA-1 generation latency and the
page write latency between the online and offline

techniques. The online scheme has shorter page write
latencies than those of the offline scheme. However, the
online scheme has significant fingerprinting overheads.
In a high redundancy workload, the reduction in page
write latency will be larger than the increased
fingerprinting cost. In a low redundancy workload, on
the other hand, the fingerprinting cost will be larger than
the reduction in page write latency, and thus the offline
deduplication will be superior to the online deduplication
in the average write latency. The examined two
workloads have redundancy rates of 30% and 35%,
respectively. Under the low redundancy rates, the offline
deduplication shows 19% and 13% of shorter write
response times than the online deduplication,
respectively.

We also estimated the deduplication overheads under
different offline deduplication techniques as shown in Fig.
4. We implemented the original offline deduplication
technique of CAFTL [3]. The offline deduplication
technique with block separation [6] is also implemented
for comparison. Each overhead value is normalized by
the overhead of the original offline deduplication
technique.

The block separation technique uses a collision-free
hash as the original deduplication scheme does, and it
also uses the CRC32 hash value in order to separate
unique pages and non-determined pages into different
blocks. Therefore, the deduplication overhead of block
separation technique is the biggest among three
techniques. In the proposed technique, even though each
page should be read to check duplication, the page read
overhead is insignificant since the number of pages
written in the ND region is small. As a result, the
deduplication overhead is reduced by more than 30%
compared to the previous offline deduplication schemes.

Fig. 3. Response time of write request

Fig. 4. Offline deduplication overhead

544 EUNSOO PARK et al : OFFLINE DEDUPLICATION FOR SOLID STATE DISK USING A LIGHTWEIGHT HASH ALGORITHM

Fig. 5 shows the number of page copies during GCs.
The numbers are normalized by the value in the online
deduplication scheme. The number of page copies
depends on the number of deduplicated pages and
whether the block separation technique is applied or not.
In the proposed offline deduplication scheme, 42% and
23% of pages in the ND region are determined to be
unique pages under two workloads, respectively. Since
the offline deduplication process is performed only for
the ND region, more pages can be deduplicated during
short idle intervals. Therefore, more pages can be
invalidated before GCs, and the number of page copies
during GCs is reduced.

The application installation workload has short idle
intervals. The proposed deduplication scheme can
examine more pages than other offline deduplication
techniques. As a result, the offline deduplication with
light hash can reduce the GC overhead compared with
the previous offline deduplication techniques.

V. CONCLUSIONS

The reliability and endurance of flash memory is
getting worse as memory density is increased. Therefore,
it is an important issue to expand the lifespan of flash
memory-based storage. In this paper, we proposed an
offline deduplication to increase the lifespan of flash
memory. We first addressed the reliability and
deduplication overhead problems of the previous
deduplication techniques. To solve the problems, a novel
offline deduplication technique that uses a lightweight
hash function is proposed. We evaluated our technique
with a SSD simulator. The proposed offline
deduplication reduces the GC overhead significantly
compared with the previous offline deduplication
schemes.

ACKNOWLEDGMENTS

This research was supported by Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (2013R1A1A2A10013598).

REFERENCES

[1] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo,
“Endurance enhancement of flash-memory storage
systems: An efficient static wear leveling design,”
Design Automation Conference, pp.212–217, Jun.,
2007.

[2] S. Boboila and P. Desnoyers, “Write endurance in
flash drives: measurements and analysis ,” File and
storage technologies, the 8th USENIX conference
on, Vol.10, pp.9-9, Feb., 2010.

[3] Chen, Feng, Tian Luo, and Xiaodong Zhang,
"CAFTL: A Content-Aware Flash Translation
Layer Enhancing the Lifespan of Flash Memory
based Solid State Drives," File and storage
technologies, USENIX conference on, Vol. 11, Feb.,
2011.

[4] Andersen, David G., and Steven Swanson,
"Rethinking flash in the data center," IEEE micro 4,
pp.52-54, 2010.

[5] Meyer, Dutch T., and William J. Bolosky, "A study
of practical deduplication," ACM Transactions on
Storage, 7.4:14, 2012.

[6] A. Jeongcheol, S. Dongkun, “Offline
Deduplication-Aware Block Separation for Solid
State Disk,” File and storage technologies,
USENIX conference on, 2013.

[7] N. Agrawal et al., “Design Tradeoffs SSD
Performance,” USENIX Annual Technical
Conference, Jun., 2008.

[8] R. Koller et al., “I/O Deduplication: Utilizing
Content Similarity to Improve I/O Performance,”
ACM Transactions on Storage, 6.3, 2010.

Fig. 5. The number of page copies during GC

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 545

Eunsoo Park received the B.S.
degree in computer engineering from
Sungkyunkwan University, Korea in
2015. He is currently a Master
student in the School of Information
and Communication Engineering,
Sungkyunkwan University. His

research interests include embedded software, file
systems and flash memory.

Dongkun Shin received the B.S.
degree in computer science and
statistics, the M.S. degree in
computer science, and the Ph.D.
degree in computer science and
engineering from Seoul National
University, Korea, in 1994, 2000 and

2004, respectively. He is currently an Assistant Professor
in the School of Information and Communication
Engineering, Sungkyunkwan University (SKKU). Before
joining SKKU in 2007, he was a senior engineer of
Samsung Electronics Co., Korea. His research interests
include embedded software, low-power systems,
computer architecture, multimedia and real-time systems.

