
Removing Duplicated Writes at DB Checkpointing

with File System-Level Block Remapping
Daejun Park

College of Information and Communication Engineering,
Sungkyunkwan University

Suwon, Korea
Tel: +82-31-299-4662

pdaejun@skku.edu

Dongkun Shin
College of Information and Communication Engineering,

Sungkyunkwan University
Suwon, Korea

Tel: +82-31-299-4662

dongkun@skku.edu

ABSTRACT

Database systems use the journaling techniques in order to

guarantee database consistency even at system crashes. Since the

journaling needs duplicated write operations, it exhausts the

lifetime of NAND flash-based storage device. In this paper, we

propose a novel file system-level block remapping technique,

which changes only the file system metadata at database

checkpointing without any data write operations. Experiments

show that the proposed scheme can reduce the write traffic on

storage device by 17% on average.

Keywords

database journaling; file system; NAND flash memory

1. INTRODUCTION
NAND flash memory-based storage systems have the

advantages of low power consumption, non-volatility, fast random

access performance, and durability. However, flash memory chip

has a limited number of program/erase (P/E) cycles. If a flash

memory block is programmed and erased repeatedly as the

number of maximum P/E cycles, the block cannot be further

utilized. Recently, the semiconductor process technology is scaled

down and multi-level cell flash memory devices are widely used.

As a result, the storage capacity has been increased significantly

by sacrificing the maximum P/E cycles of flash memory. Recent

mobile devices such as smartphones generally use the SQLite

DBMS in order to manage various user data and system

configurations easily. The database files are stored at NAND flash

memory-based storages such as eMMC and SD card. Therefore,

the storage performance can affect the performance of mobile

devices. SQLite supports two journaling modes: rollback journal

and write-ahead log (WAL) [1]. The rollback journal scheme first

copies the original pages of DB file to the rollback journal file

before updating the DB pages. If a system crash occurs during the

update operation, the journaling scheme can restore the old data

with the rollback journal. The WAL scheme appends a new data

to a WAL file without modifying the original DB file. When the

WAL file is filled with many logs, SQLite copies all the valid log

pages of the WAL file to the original DB file, which is called

checkpointing. These journaling schemes ensure the database

consistency with duplicated write operations on the original DB

file and the journal file. Such duplicated write operations shorten

the lifetimes of NAND flash storage devices. Considering that the

data to be written at checkpointing have already been written in

the journal file under the DB journaling schemes, we can remove

the duplicated write operations at checkpointing by changing only

the block mapping information of file system. Then, we can

mitigate the write traffic on the storage device. File system

maintains a block mapping table which can translate a file offset

into the storage block address. By modifying the mapping table,

we can remap the journal file blocks to the original DB file blocks

without explicit file system read and write operations. In this

paper, we propose a file system-level block remapping technique

for DB checkpointing, targeting for EXT4 file system.

2. BLOCK REMAPPING FOR

CHECKPOINTING
EXT4 file system manages an inode for each file, which has the

attributes of each file and the block mapping table for the file. By

referring to the block mapping table, the file system can access the

corresponding storage block for a given file offset. The proposed

block remapping technique changes the block mapping tables of

DB file and journal file at checkpointing. For the purpose, we

added the remap system call at EXT4 file system, which can

exchange the blocks of two different files. Figure 1 shows the file

system metadata changes in the block remapping technique.

The original DB file has the data of A and B at the file offsets

of 31 and 35, respectively. By DB update operations, the WAL

file has the data of A′ and B′, which are modified data of A and B,

respectively. When the checkpointing is issued, the original

SQLite reads A′ and B′ from the WAL file, and writes them at the

DB file. However, our modified SQLite sends the remap system

call with the file offsets to be exchanged as arguments. For the

Figure 1: block remapping operations.

DB file WAL file

31 35 25 28

23

A

27

B

65

A`

76

B`

…
31 à 23

...
35 à 27

...

DB file
mapping table

WAL file
mapping table

…
25 à 65

...
28 à 76

...

remap

file system level blocks

before
after

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the Owner/Author.

Copyright is held by the owner/author(s).

CF'15, May 18-21, 2015, Ischia, Italy

ACM 978-1-4503-3358-0/15/05.

http://dx.doi.org/10.1145/2742854.2742891

remap system call, EXT4 file system exchanges the blocks of DB

file and WAL file by modifying the mapping tables. The block

mapped to the file offset 31 of the DB file is changed from the

block address 23 to the block address 65 by the block remapping

operation in Figure 1. Then, the DB file can access the new data

after the block remapping.

For the block remapping, the DB pages should be aligned with

the block size of file system. Generally, Linux uses 4KB of block

size, and the data page size of SQLite DB can be configured as

4KB. However, as shown in Figure 2(a), the WAL header and

frame header of WAL file are smaller than 4KB, and thus the data

pages are miss-aligned at 4KB boundary. To solve this problem,

we modified the file format of WAL as shown in Figure 2(b). By

gathering multiple frame headers at the first 4KB-sized block, the

data pages can be located at the 4KB-aligned addresses.

When SQLite creates a WAL file, EXT4 file system generally

allocates contiguous storage blocks for the file. During the DB

modifications, SQLite writes data at the WAL file sequentially.

After the checkpointing, SQLite reuses the WAL file, and the file

is overwritten sequentially. Therefore, the write pattern on the

WAL file is always sequentially. However, under the block

remapping technique, since the WAL file exchanges its data

blocks with the DB file, the blocks of WAL file will be

fragmented after several checkpointing operations. The

fragmented WAL file will provide a low write performance since

flash memory devices have a low random write performance. To

solve the problem, our scheme reserves a large sequential storage

space for a WAL file, and uses an address translation layer

between the WAL file and EXT4 file system as shown in Figure 3.

The translation layer changes the start block address of WAL file

after each checkpointing within the sequentially reserved space by

a user-transparent fashion. The remapped start block is the next

block to the last written block at the previous checkpointing.

Therefore, the written data of WAL file are appended sequentially

at the reserved space even after the checkpointing. With the

translation layer, we can implement an append-only WAL file

without modifying the original SQLite. The translation layer is

implemented with a stackable file system, wrapfs [2]. By using the

translation layer instead of reallocating sequential blocks for

WAL file, we can remove the metadata handling overhead for

block allocation since the translation layer pre-allocates the data

blocks for WAL file when it is created. Even when there is a

system crash during the checkpointing, the original SQLite can

redo the checkpointing since the WAL file still remains without

any modifications. However, the block remapping technique

modifies the blocks of WAL file. Therefore, the blocks of DB file

and WAL file may be exchanged partially at the sudden failure.

We can solve the problem by exploiting the file system journaling

technique which can guarantee an atomic change on file system

metadata. That is, all the changes on block mapping tables can be

written atomically at the storage. Therefore, the database

consistency can be guaranteed under the block remapping scheme.

3. EXPERIMENTS
We evaluated the proposed technique at an Android-based

smartphone device equipped with 32-GB eMMC storage. With

the Mobibench SQLite benchmark [3], we observed the changes

on the storage write traffic and the DB performance by the block

remapping technique. 8KB records are inserted at DB files during

the experiments. We implemented two versions of block

remapping technique, DB remap and DB remap+. The first uses

only the block remapping technique without the pre-allocation

technique. The second uses the append-only pre-allocated WAL

additionally. The size of pre-allocated WAL file is 150 MB.

Since the DB remap scheme changes only the file system

metadata without extra DB write operations, it reduces the amount

of written data by 17% compared with the original WAL scheme

as shown in Figure 4. However, the performance of DB remap is

decreased by 5% compared with the original WAL scheme. This

is because the WAL file is fragmented by the block remapping.

However, the DB remap+ scheme improved the performance by

11% by removing the fragmentation problem. However, the pre-

allocation of WAL file can be a system overhead. We will

optimize the pre-allocation technique as a future work.

4. ACKNOWLEDGEMENT
This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education

(2013R1A1A2A10013598).

5. REFERENCES
[1] http://www.sqlite.org/wal.html.

[2] E. Zadok, I. Badulescu, and A. Shender, “Extending File

Systems Using Stackable Templates”, USENIX Annual

Technical Conference, General Track’99, pp.57-70, 1999.

[3] S. Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won,

“AndroStep: Android Storage Performance Analysis Tool”,

Software Engineering (Workshops), pp.327-340, 2013

Figure 4: Write amount and elapsed time.

Figure 3: Architecture of block remapping scheme.

modified

SQLite

wrapfs

remap-

supporting

ext4

original

SQLite

original

ext4

kernel

NAND based storage

checkpoint

WAL read/
DB write

file read/
file write

checkpoint

remap
syscall

metadata
write

transaction

WAL
write

change
mapping

modify
offset

modify
offset

file write

DB open

WAL
open

pre-allocate
blocks

file open/
pre-allocation

Figure 2: WAL file formats.

WAL

header

frame

header

data metadata

(a) original WAL file format

WAL

header

frame

header
frame...

(b) modified WAL file format

frame

header

frame

header
 frame frame

filesystem block

http://www.sqlite.org/wal.html

