
Two-Level Logging with Non-Volatile Byte-Addressable

Memory in Log-Structured File Systems
Yeonseong Hwang Hyunho Gwak Dongkun Shin

College of Information and Communication Engineering, Sungkyunkwan University, Suwon, Korea

{sami0708, gusghrhkr, dongkun}@skku.edu

ABSTRACT

The file system durability is provided by flushing dirty pages

periodically into the non-volatile storage. Since the traditional

storage devices such as hard disk and flash memory can be written

in the unit of block, the file system writes a whole block even

when only a small number of bytes are modified. To resolve such

a wasting write traffic problem, we propose a two-level logging

scheme by exploiting non-volatile and byte-addressable memories

(NVMs). Whereas the previous approach which exploits the

NVM device is targeted for EXT4 file system, our scheme uses

log-structured file systems in order to guarantee the file system

reliability even for sudden system crashes. While the NVM is

used for fine-grained logging, the flash memory is used for

coarse-grained logging. Experiments with a real NVM device

show that the proposed scheme reduces the write traffic on storage

by up to 78% and improves the I/O performance significantly.

Keywords

Sub-page logging, Log-structured file system, Non-volatile

memory

1. INTRODUCTION
Traditional block storage devices such as hard disk and solid

state disk can be read or written in the unit of block. Therefore,

file systems also manage the storage space in the unit of block.

Generally, the block size is 4 KB. Even though only several bytes

are modified, the file system writes a 4 KB of block at the storage

device. We observed how many blocks are updated partially

during the execution of mobibench SQLite benchmark. About

45% of written blocks are partially updated. As a result, 32% of

total written data are uselessly written at the storage.

Recently, non-volatile byte-addressable memories (NVMs)

such as PRAM and STT-MRAM are emerging. These NVMs

offer latencies that are comparable to DRAM but they are also

non-volatile. Since NVMs support byte-level write operations,

they can be solutions for the wasting block writes due to the

partial block updates. While NVMs provide short latencies for

small-sized I/O requests, their I/O bandwidths for large-sized or

burst requests are lower compared to the traditional block devices.

Therefore, in order to provide high performance and remove

wasting block updates, it is better to use a hybrid storage that has

both NVM and flash memory. In this paper, we propose a two-

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses,

contact the Owner/Author.

Copyright is held by the owner/author(s).

CF'15, May 18-21, 2015, Ischia, Italy

ACM 978-1-4503-3358-0/15/05.

http://dx.doi.org/10.1145/2742854.2742892

level logging technique for the hybrid storage.

The delta-journaling [1] technique supports the sub-page

logging for EXT4 journals. It is targeted for a hybrid storage

which has PRAM and flash memory for journal space and normal

data space, respectively. Only the differences between the old and

new data pages are recorded at PRAM during journal commits.

The journals are called delta-journal. During the checkpointing, a

new data page is built with the old data page and the delta-journal,

and the new data page is overwritten at the old page. However, the

delta-journaling has a file system reliability problem. If there is a

sudden system crash during the overwrite operations on the old

pages, the corrupted data cannot be recovered even under the

journaling technique. This is because the delta-journals have only

partial information.

To solve the file system reliability problem of the delta-

journaling, we use the log-structured file system (LFS). Since LFS

maintains the old data until it is reclaimed by garbage collection,

the file system reliability can be guaranteed even though there is a

system crash while the sub-page logs in NVM are written to the

file system in flash memory. Our two-level logging technique

maintains fine-grained logs (FG-logs) at NVM and coarse-grained

logs (CG-logs) at flash memory. When there are dirty page write

requests on flash memory storage device, the write requests are

intercepted by the NVM device and only modified sub-pages are

recorded at the NVM device. If there is no free space in the NVM

device or there are needs for writing full-sized blocks at the file

system, our scheme recorded the CG-logs at the flash memory.

2. TWO-LEVEL LOGGING
We use the F2FS [2] as a target file system. F2FS is a log-

structured file system optimized for flash memory devices. We

modified the page cache management layer of Linux in order to

track sub-page modifications. As a finer-grained tracking is used,

the required memory overhead increases. In addition, our target

NVM device supports 128 byte of write granularity. Therefore, we

determine the size of sub-page modification tracking as 128 byte,

and 4 byte of bitmap is required for each page.

For the sub-page modification tracking, we add a bitmap data

structure in the page cache management layer. When a page is

modified, the corresponding bits in the bitmap are set. In addition,

we add another bitmap to manage logged bits. The logged bit

represents whether the corresponding page is logged at the NVM

device. When any sub-pages of a page are logged at the NVM

device, the logged bit is set. After the FG-logs of the page are

written at the flash memory, the logged bit is cleared.

Figure 1 shows the overall architecture of the proposed two-

level logging. In the step of (1), the file system loads three pages,

A0, B0, and C0, from the flash memory into the page cache. Their

states are clean. In the step of (2), B0 is changed to B1 by a write

operation, and the page cache has the dirty page B1. In the step of

(3), the flush thread generates a write-back request for the dirty

page B1, only the modified sub-pages are written at NVM, and the

state of B1 is changed to clean and logged. The flash memory

block at the address of 100 is allocated for B1 by F2FS, but it

remains empty. In the steps of (4)-(5), C0 is also modified, and the

NVM has the modified sub-pages of C1. In the step of (6), C1 is

again modified into C2, and the state of C2 becomes logged and

dirty.
(1) Read A0, B0, C0 (clean);

(2) Write B1 (dirty); (3) WB to NVM B1 (logged/clean);

(4) Write C1 (dirty); (5) WB to NVM C1 (logged/clean);

(6) Write C2 (logged/dirty);

(7) Evict A0;

(8) WB to flash B1 (clean); Evict B1; Invalidate log(△B1);

(9) WB to flash C2 (clean); Evict C2; Invalidate log(△C1);

A0 B1 C2

NVM

△B1

Flash memory

A0 B0 C0CP SIT NAT SSA

△C1

0 0 1 0 1 1

logged bit

dirty bit

Metadata area Main area

H

D

nid

(4B)

index

(4B)

bitmap

(4B)

Page cache

C2

logged clean

eviction
NVM GC

flush

thread

flash

addr

(4B)

Page log header

1

0

0

Space allocated for C1

100 104 1089692880 4 8 12

(3) (5)

(6)

(9)

2
5

0

(8)

1

0

4

2
5

1

log

start addr

(4B)

logging

granularity

(4B)

NVM header

clean logged/clean logged/dirty

B1

112

Figure 1. Overall architecture of two-level logging

When the clean page A0 is evicted in the step of (7), there is no

change in both NVM and flash memory. However, when the

logged/clean page B1 is evicted in the step of (8), the page is

written at the flash memory. Since the modified sub-pages are

logged at NVM, it is not required to write B1 at flash memory.

However, if there is a read request on B1 after the page eviction,

the file system should make B1 with B0 in flash memory and ΔB1

in NVM. The process should read both flash memory and NVM.

In addition, there are overheads for searching B0 and the related

log. Since the overhead can increase the read latencies, our two-

level logging scheme writes the evicted clean/logged page into the

flash memory. Therefore, either the page cache or the flash

memory has the latest version of data, and the read operation does

not need to access the NVM device. Instead of writing the logged

page at its allocated block in the flash memory (i.e., block address

100 for B1), a new flash memory block is allocated in order to

avoid random write requests. After the write operation on flash

memory, the FG-logs of the page in NVM are invalidated. In the

step of (9), the logged/dirty page C2 is also evicted to the flash

memory because there is no free space in the NVM device.

When a dirty page is sent to NVM, if too many sub-pages are

modified, our scheme writes the page at the flash memory directly

bypassing the NVM device. This is because the flash memory

provides a higher performance than the NVM device for large-

sized requests. However, the metadata pages of F2FS should be

written at the NVM device irrespective of the size of modified

sub-pages. Then, F2FS can access the old metadata in the flash

memory during file system recovery process for sudden system

crashes.

The NVM device has the NVM header which has the start

address of valid log and the logging granularity. Each FG-log for

a page has the page log header, which is composed of the

allocated flash memory block address of the page, its node ID, the

block index within its node, and the modified sub-page bitmap.

The node is a data structure of F2FS, which has the pointers for

data blocks. If a system crash occurs, the scheme makes the latest

version of each logged page by scanning the FG-logs in the NVM.

Then, the page is written at the flash memory.

3. EVALUATION
We evaluated the effectiveness of two-level logging with a 512

MB of PRAM-equipped embedded board [3]. It uses 4 GB of SD

card as storage. Figure 2 compares the write traffics under the

original F2FS and the two-level logging schemes. For the

mobibench and filebench workloads, the write traffics on flash

memory are reduced by 78% and 49%, respectively. The reduced

flash memory traffics are changed into the PRAM write traffics.

The PRAM write traffics occupy only 16% and 21% of the

reduced flash memory traffics at mobibench and filebench

workloads, respectively. Therefore, the proposed two-level

logging scheme can improve the lifetime of flash storage. As

shown in Table 1, the two-level logging scheme shows 2.2 times

higher bandwidth at the mobibench workload, and shows 4.6

times shorter latency at the filebench workload.

Figure 2. Write traffic comparison

 Table 1. Performance comparison

Benchmark measurement Original 2-level logging

mobibench bandwidth (txs/sec) 33 72

filebench latency (ms) 19.9 4.3

4. ACKNOWLEDGMENTS
This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education

(2013R1A1A2A10013598).

5. REFERENCES
[1] J. Kim, et al., “Reducing excessive journaling overhead with

small-sized NVRAM for mobile devices,” IEEE Trans. on

Consumer Electronics, 60.2 (2014): 217-224.

[2] C. Lee, et al., “F2FS: A New File System for Flash Storage,”

FAST 2015.

[3] T. Lee, et al., “FPGA-based prototyping systems for

emerging memory technologies,” RSP 2014.

