
This paper is included in the Proceedings of
the 15th USENIX Conference on

File and Storage Technologies (FAST ’17).
February 27–March 2, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-36-2

Open access to the Proceedings of
the 15th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

SHRD: Improving Spatial Locality in Flash
Storage Accesses by Sequentializing in Host and

Randomizing in Device
Hyukjoong Kim and Dongkun Shin, Sungkyunkwan University;

Yun Ho Jeong and Kyung Ho Kim, Samsung Electronics

https://www.usenix.org/conference/fast17/technical-sessions/presentation/kim

SHRD: Improving Spatial Locality in Flash Storage Accesses by
Sequentializing in Host and Randomizng in Device

Hyukjoong Kim1, Dongkun Shin1, Yun Ho Jeong2, and Kyung Ho Kim2

1Sungkyunkwan University, Korea
2Samsung Electronics, Korea

Abstract
Recent advances in flash memory technology have re-
duced the cost-per-bit of flash storage devices such as
solid-state drives (SSDs), thereby enabling the develop-
ment of large-capacity SSDs for enterprise-scale storage.
However, two major concerns arise in designing SSDs.
The first concern is the poor performance of random
writes in an SSD. Server workloads such as databases
generate many random writes; therefore, this problem
must be resolved to enable the usage of SSDs in enter-
prise systems. The second concern is that the size of
the internal DRAM of an SSD is proportional to the ca-
pacity of the SSD. The peculiarities of flash memory re-
quire an address translation layer called flash translation
layer (FTL) to be implemented within an SSD. The FTL
must maintain the address mapping table in the inter-
nal DRAM. Although the previously proposed demand
map loading technique can reduce the required DRAM
size, the technique aggravates the poor random perfor-
mance. We propose a novel address reshaping technique
called sequentializing in host and randomizing in device
(SHRD), which transforms random write requests into
sequential write requests in the block device driver by
assigning the address space of the reserved log area in
the SSD. Unlike previous approaches, SHRD can restore
the sequentially written data to the original location with-
out requiring explicit copy operations by utilizing the ad-
dress mapping scheme of the FTL. We implement SHRD
in a real SSD device and demonstrate the improved per-
formance resulting from SHRD for various workloads.

1 Introduction

In recent times, the proliferation of flash-memory-based
storage such as solid-state drives (SSDs) and embedded
multimedia cards (eMMCs) has been one of the most sig-
nificant changes in computing systems. The cost-per-bit
of flash memory has continued to fall owing to semicon-
ductor technology scaling and 3-D vertical NAND flash

technology [32]. As a result, SSD vendors currently pro-
vide up to 16 TB of capacity.

Flash memory has several characteristics that must
be carefully handled. In particular, its “erase-before-
write” constraint does not permit in-place update. In or-
der to handle the peculiarities of flash memory, special
software–called a flash translation layer (FTL) [14, 20]–
is embedded within flash storage systems. When a page
of data must be updated, the FTL writes the new data to a
clean physical page and invalidates the old page because
in-place overwrite is prohibited in flash memory. There-
fore, the logical address and physical address of a flash
page will be different. The FTL maintains a mapping ta-
ble for the logical-to-physical (L2P) address translation.
When the SSD has an insufficient number of clean pages,
garbage collection (GC) is triggered to reclaim invalid
pages. GC selects victim blocks to be recycled, copies all
the valid pages in the recycling blocks to another block,
and erases the recycling blocks.

Recent flash storage devices adopt page-level address
mappings instead of block-level schemes in order to pro-
vide higher performance. Page-level mappings permit
requests to be serviced from any physical page on flash
memory, whereas block-level mappings restrict the phys-
ical page location of a request based on its logical ad-
dress. However, the finer-grained mapping scheme re-
quires a large L2P mapping table. Typically, the size of a
page-level mapping table is 0.1% of the total storage ca-
pacity because the length of the address translation data
for a 4 KB page is 4 bytes.

The mapping table is accessed by every I/O request;
therefore, in order to achieve high performance, the en-
tire table must be loaded into an internal DRAM of the
SSD. Thus, as an example, 8 TB of SSD requires 8 GB
of DRAM for the mapping table. More than 4 GB of
DRAM requires a 64-bit processor, which is hardly ac-
ceptable to embedded systems. In addition, a larger ca-
pacity of DRAM system composed of multiple DRAM
modules requires DRAM controller to handle more ad-

USENIX Association 15th USENIX Conference on File and Storage Technologies 271

dress lines, which will increase the controller cost and
DRAM access latency. Furthermore, a large DRAM-
equipped SSD will have a high power consumption and
product cost. Therefore, the large mapping table is the
most critical hurdle in increasing the capacity of SSDs.

In order to resolve this problem, on-demand map load-
ing schemes such as DFTL [14] were proposed. In-
stead of maintaining all the address translation entries
in DRAM, DFTL dynamically loads/unloads the page-
level mapping entries to/from a small DRAM according
to the workload access patterns. The entire image of
the page-level mapping table is stored in reserved flash
memory blocks called map blocks. If storage workloads
exhibit significant temporal locality, the performance of
the demand-loading approach will be similar to the per-
formance of the traditional page-level mapping scheme
that loads all the mapping entries in DRAM. In addition,
DFTL can utilize spatial locality by loading multiple log-
ically contiguous mapping entries at the miss of a map-
ping entry. However, real scenarios have many random
workloads with low localities. DFTL is vulnerable to
these workloads; this limitation is a critical drawback of
DFTL in real computing systems.

In this paper, we focus on random write rather than
read because writes occupy about 70% at server storage
workloads as observed in [28]. In addition, whereas read
requests are controllable by several optimization tech-
niques such as page caching or prefetching, the imme-
diate handling of write requests are unavoidable in many
cases because they are generated for data durability.

One possible solution for random write workloads is to
use log-structured file systems (LFSs) (e.g., NILFS [21]
and F2FS [22]) or copy-on-write file systems (e.g.,
btrfs [33]) because they generate sequential write re-
quests using an out-of-place update scheme. The key-
value stores based on LSM-Trees (e.g., LevelDB [7] and
RocksDB [9]) and log-structured databases (e.g., Re-
thinkDB [8]) also remove random writes. However, such
log-structured file systems or applications suffer from
garbage collection or compaction overhead and require
many metadata block updates owing to their out-of-place
update scheme. Moreover, file system and SSD perform
duplicated garbage collections [35].

Another solution is to translate random write requests
into sequential write requests in the block device driver.
ReSSD [26] and LSDM [37] sequentialize random write
requests by providing an additional address translation
layer in the storage device driver and temporarily writ-
ing the sequentialized data to a reserved area in the stor-
age device. We call this operation sequentializing. How-
ever, when the reserved area becomes full, the temporar-
ily written data must be moved to the original location;
this operation is called randomizing (restoring). The ran-
domizing operation results in additional storage traffic.

Further, it eventually sends random writes to storage.
In this paper, we propose a novel scheme, called se-

quentializing in host and randomizing in device (SHRD),
to reshape the storage access pattern. In order to reduce
the map-handling overhead in a DFTL-based SSD, the
proposed scheme sequentializes random write requests
into sequential requests at the block device driver by
redirecting random write requests to the reserved storage
area. Therefore, it is analogous to the previous device-
driver-level sequentializing approach. However, in the
previous schemes, randomizing is achieved by perform-
ing explicit move operations in the host system; thus,
they use the “sequentializing in host and randomizing in
host (SHRH)” approach. Our scheme conducts the ran-
domizing in storage device by changing only the logical
addresses of the sequentialized data.

SHRD has several advantages. It can improve ran-
dom write performance by reducing map-loading or
command-handling overheads and by increasing the uti-
lization of parallel units in an SSD. It can also improve
the lifetime of an SSD. The reduction in the number of
map update operations results in a reduction in the num-
ber of program and erase operations on flash memory
blocks, thus minimizing the write amplification ratio.

This study makes the following specific contributions.
(1) We propose and design a novel request reshaping
scheme called SHRD, which includes a storage device
driver and the FTL of an SSD. The idea of SHRD is to
improve the spatial locality for FTL mapping table ac-
cesses by logging random requests in the storage and re-
ordering these requests. (2) We implement the proposed
SHRD scheme by modifying the firmware of an SSD
device and the Linux SCSI device driver. Unlike many
other studies based on SSD simulators and I/O traces, our
scheme is demonstrated and verified by using a real SSD
device. (3) We use several enterprise-scale workloads
to demonstrate the improved performance achieved by
SHRD. We observe that in comparison with DFTL, the
performance of SHRD is 18 times better for a random-
write dominant I/O workload and 3.5 times better for a
TPC-C workload.

The remainder of this paper is organized as follows:
In Section 2, the FTL schemes are introduced; in Section
3, the motivation and main idea are presented; in Section
4, the proposed SHRD scheme is described in detail; the
experimental results are presented in Section 5; previous
studies on improving random write performance are pre-
sented in Section 6; and the conclusion of this study is
described in Section 7.

2 Backgrounds

Generally, the page-level mapping FTL maintains the
entire L2P mapping table in the internal DRAM of an

272 15th USENIX Conference on File and Storage Technologies USENIX Association

SSD. In order to service incoming write requests, FTL
allocates active flash blocks, writes incoming data se-
quentially in the physical pages of the active blocks, and
updates the L2P mapping table in DRAM. If the active
blocks are full with user data, the FTL flushes dirty map-
ping entries into the reserved area of flash memory called
map blocks and then allocates new active blocks. If a
sudden power-off occurs before the map flush operation,
the power-off recovery (POR) operation of an SSD scans
only the active blocks and rebuilds the L2P mapping ta-
ble with the logical page numbers (LPNs) stored in the
out-of-bound (OOB) area of flash pages; this OOB area
is a hidden space reserved for FTL-managed metadata.

In order to reduce the mapping table size, several
solutions have been proposed such as hybrid mapping
schemes [20, 25] and extent mapping schemes [27, 16,
31]. Although these solutions can reduce the mapping ta-
ble size significantly, they are vulnerable to random write
workloads. Hybrid mapping scheme shows considerable
performance degradation when the log blocks and nor-
mal data blocks are merged. Extent mapping scheme
must split a large extent into multiple smaller extents
when the random updates are requested.

Rather than reducing the size of the mapping table,
we can use an on-demand map loading scheme such as
DFTL [14]. This scheme uses a small amount of DRAM
for the cached mapping table (CMT), which has only
a subset of the entire page-level mapping table that is
maintained in the map blocks of flash chips, as shown
in Figure 1. For each I/O request, DFTL determines
the physical page number (PPN) to be accessed based
on the mapping entries in the CMT. The map blocks
must be read and written as page units; therefore, mul-
tiple contiguous mapping entries constitute a map page,
and DFTL loads/unloads mapping entries in map page
units. For example, if each mapping entry has a size
of 4 bytes, 4 KB of map page can contain 1024 logi-
cally contiguous mapping entries. Owing to the page-
level loading scheme, DFTL requires spatial locality as
well as temporal locality in the storage access workload.
In order to handle a map miss, one victim map page
must be written in the map block if the map page is
dirty and one demanded map page must be read from the
map block. Therefore, the demand map loading scheme
demonstrates poor performance for a random workload
due to additional storage traffic.

The map-miss handling in DFTL decreases the utiliza-
tion of the parallel units of SSD. In order to provide high
I/O bandwidth, multiple flash chips in SSD should be
accessed simultaneously via parallel channels and chip
interleaving. However, if several requests generate map
misses simultaneously and the missed map entries must
be read from a same chip, the handling of the requests
must be serialized and thus several flash chips will be

Cached Mapping Table

Solid-State Drive

PPN

DRAM

data blocks

Flash Chips Data OOB

map blocks

...
LPN 0 1023

map page 0

...
4096 5119

map page 4

...
7168 8191

map page 7

...
9216 10239

map page 9

map

pages

unloading (flushing)loading

Figure 1: Demand map loading.

idle during the map-miss handling.

3 Main Idea
The poor random write performance of SSD can be
attributed to various reasons. The first reason is the
mapping-table handling overhead. If the SSD uses a de-
mand map loading scheme such as DFTL, random re-
quests will result in frequent CMT misses, as explained
in Section 2. Even if the SSD can load all the mapping
entries into the DRAM, the random writes will generate
many dirty map pages in the DRAM. When the SSD pe-
riodically flushes dirty map pages, many pages will be
updated in the map blocks.

The second reason is the request-handling overhead.
The occurrence of many small requests increases the re-
quest traffic between the host computer and the SSD
and increases the interrupt-handling overhead of the host
computer. In order to solve this problem, eMMC adopts
the packed command from the version 4.5 standard; thus,
multiple requests can be merged into one packed com-
mand [1]. However, the current SATA/SAS protocol
does not support the request merging.

The final reason is the cost of GC. GC selects a vic-
tim flash block having a small number of valid pages
in order to reduce page-copy operations. While a se-
quential write workload generates many completely in-
valid blocks, a random write workload distributes invalid
pages among several flash blocks, thus making it diffi-
cult to find a low-cost GC victim block. The overhead
of GC can be mitigated by using hot and cold separation
algorithms [10, 24].

From among the several reasons for poor random per-
formance of flash storage, we focus on the mapping-table
handling overhead and the request-handling overhead be-
cause they are the major causes and do not have any so-
lutions currently. SHRD can reduce the mapping-table
handling overhead by improving the spatial locality of a
workload, and can reduce the request-handling overhead

USENIX Association 15th USENIX Conference on File and Storage Technologies 273

0%

20%

40%

60%

80%

100%

0%

5%

10%

15%

NONE 2MB 4MB 8MB 16MB 32MB 64MB

Reordering buffer size

u
ti
liz

a
ti
o
n

o
f

p
a
ra

lle
l

u
n
it

M
a
p
 m

is
s

ra
ti
o

stg_0 web_0 proj_0

stg_0 web_0 proj_0parallelism

map miss ratio

Figure 2: Effect of request reordering.

by packing multiple requests into one large request.
Even if a workload has low spatial locality within a

short time interval, it can have high spatial locality within
a long time interval. If a memory space is available for
request buffering, the map miss ratio can be reduced by
reordering requests in the order of LPN to improve spa-
tial locality. Figure 2 shows the simulation results for
the map miss ratio of DFTL and the utilization of par-
allel flash chips in an SSD. The MSR-Cambridge server
workloads [4] are used for input traces. We assume that
the CMT size of DFTL is 128 KB and a maximum of 64
flash pages can be accessed in parallel via multi-channel,
multi-bank, and multi-plane mechanisms. The x-axis
shows the reordering buffer size. In each experiment, all
the I/O requests are partitioned into several groups in the
order of request arrival time such that the total request
size of each group is equal to the reordering buffer size.
Then, the requests within a group are sorted in the order
of LPN. Such transformed input traces are provided to
an SSD simulator, which uses the DFTL algorithm. In
comparison with the original trace, the map miss ratios
significantly decrease as the size of the reordering buffer
increases because the spatial locality improves. The uti-
lization of the parallel units of the SSD also improves.

In order to support such a request reordering, we
must allocate the reordering buffer in either host system
or SSD. The host-level buffering has several problems.
First, a large memory space is required for data buffering.
Second, applications may invoke synchronous operations
such as fsync() in order to ensure instant data durability.
Most database systems rely on the fsync system call to
be assured of immediate data durability. Therefore, host-
level data buffering is impractical. The large memory
allocation within SSD also does not correspond with our
motivation.

Our idea is to buffer only mapping entries instead of
request data. The mapping entries are buffered in a small
size of host memory, and the data are directly written
at SSD without buffering. To obtain the same effect of
request reordering, SHRD writes random write requests

in a reserved space in the SSD called random write log
buffer (RWLB). This step is sequentializing. The RWLB
is a logical address space; therefore, an SSD can allocate
any physical flash blocks for the RWLB. SHRD assigns
a temporary logical page number (tLPN) sequentially
for each original logical page number (oLPN). tLPNs
are allocated from the RWLB address space. The write
operations to the RWLB can be performed with large
and sequential write requests that invoke little mapping-
table handling overhead because the original addresses
are sequentially mapped to the addresses of the RWLB.
The storage device driver in host computer maintains the
mapping information between oLPN and tLPN in order
to redirect read requests, and thus SHRD does not require
any change on host file systems.

When the logical address space of the RWLB is ex-
hausted, the buffered mapping entries in host system are
sent to SSD after being reordered based on their oLPNs.
SSD restores the sequentialized data into the original ad-
dresses with the mapping entries. This step is random-
izing (restoring), which modifies only the L2P mapping
table of the SSD instead of moving the sequentialized
data. Although the randomizing operation updates many
L2P mapping entries, the map-loading overhead is min-
imized because the randomizing operations of sequen-
tialized pages are performed in the order of oLPN, thus
improving the spatial locality during map update opera-
tions.

4 SHRD Scheme

4.1 Overall Architecture
The SHRD architecture consists of an SHRD device
driver (D/D) in the host system and SHRD-supporting
firmware in the SSD, as shown in Figure 3. The file
system sends a write request, which consists of the tar-
get logical page number (oLPN), the size, and the mem-
ory pointer to user data. The SHRD D/D receives the
write request and checks whether sequentializing is re-
quired based on the write request size. The sequen-
tializing and randomizing involve special operations;
therefore, they result in some overhead. Considering
the trade-off between performance gain and the over-
head caused by SHRD, only small and random requests
must be sequentialized. If the request size does not ex-
ceed a predefined threshold value called RW threshold,
the sequentializer assigns sequential temporary ad-
dresses (tLPNs) to the request.

The sequentialized write requests are sent to the
SHRD-supporting SSD via a special command, called
twrite, which sends both the oLPN and the as-
signed tLPN. The SSD writes the sequentialized
data into the blocks assigned to the RWLB. The

274 15th USENIX Conference on File and Storage Technologies USENIX Association

Sequentializer
Redirection Table

(oLPN, tLPN)
Randomizer

write(oLPN)

Map Blocks Data Blocks RWLB Blocks

write(oLPN)
twrite

(oLPN, tLPN)

in
se

rt

(o
L

P
N

,
tL

P
N

)

read(tLPN)read(oLPN)

remap(tLPN, oLPN)

File System

small

large

Device Driver

full

write

read
read(oLPN)

CMT

SSD

update

yesno oLPN is

found?
Size ?

Figure 3: SHRD architecture.

free

block

active

block
data

block
RWLB

block

alloc

alloc

garbage collection

map flush

remap

POR target

Figure 4: Life cycle of flash memory block.

sequentializer also inserts the mapping information
into the redirection table; read requests use this ta-
ble to redirect the original address to the sequentialized
temporary address.

If the logical address space of the RWLB is ex-
hausted, the randomizer restores the original logical
addresses of the sequentialized data via the remap com-
mand. When the SSD receives the remap command,
it changes only the internal L2P mapping table without
changing the physical location of the data.

The SHRD-supporting FTL is similar to DFTL, but
it can handle SHRD-supporting special commands such
as twrite and remap. It also manages several different
types of flash memory blocks such as data block, active
block, RWLB block, and map block. Figure 4 shows the
life cycle of a flash memory block. The FTL allocates
active blocks and RWLB blocks for the normal data re-
gion and RWLB, respectively. The mapping entries of
the pages in these regions are updated only in the CMT;
therefore, the POR operation must scan the OOB area of
these blocks to rebuild the mapping information. When
the mapping entries of an active block are flushed into
the map blocks, the active block is changed to a data
block and it can be a victim of GC. If all the pages in
an RWLB block are remapped to its original logical ad-
dress, the block is changed to a data block. An RWLB
block cannot be a victim for garbage collection because
the mapping entries of its pages are not fixed yet.

seq_ptr

(after twrite)

rand_ptr

(after remap)

seq_ptr

(before twrite)

RWLB

address

space

valid log area

500

800

1028

1024

randomizng

area

free area

remap(tLPN: 500-800)

rand_ptr

(before remap)

0

twrite(tLPN: 1024-1028)

Figure 5: RWLB address management.

4.2 Sequentializing in Host
In order to manage the address space of the RWLB,
which is hidden from the file system, SHRD maintains
two address pointers to the RWLB address space, as
shown in Figure 5. The RWLB is managed in a circu-
lar manner. seq ptr is the start location for sequential
address allocation, and it is incremented by sequential-
izing. rand ptr is the start location of sequentialized
pages that must be randomized, and it is incremented by
randomizing. Therefore, the redirection table in the host
has the mapping information of the pages that are written
to the address range from rand ptr to seq ptr.

The sequentialized write requests are not immediately
sent to the SSD. In order to minimize the command-
handling overhead, multiple sequentialized write re-
quests are packed into one write request, as shown in the
example in Figure 6. The request packing can also re-
duce the interrupt handling overhead. The sequentialized
write requests have contiguous address values; therefore,
the packed write request has only one start address value.
The block layer of the Linux operating system supports
a maximum of 512 KB of write requests; therefore, the
requests can be packed until the total packed request size
does not exceed 512 KB. If no request is present in the
I/O scheduler queue, the sequentializer sends the packed
requests to the storage device immediately instead of
waiting for more requests even though the size of packed
requests is less than 512 KB. The request packing also
halts if a higher priority request such as flush arrives.
During the random write packing operation, if an exam-
ined request is not sequentialized (e.g., a read or large
write request), SHRD sends first the normal request to
storage and then the packing operation for random write
requests continues. As more requests are packed into a
single request, the command-handling overhead will be
reduced. However, the request packing does not affect
the map-handling overhead in SSD because subsequent
twrite requests will be assigned with sequential tLPNs.

SHRD-supporting SSD must handle the sequential-
ized and packed requests differently from normal write
requests; therefore, we need to implement twrite as a
special command. The SATA storage interface provides

USENIX Association 15th USENIX Conference on File and Storage Technologies 275

...

a b c d

5 58 30 7oLPN

a b c d

1010 1011 1012 1013tLPN

5 1010

7 1013

30 1012

58 1011

oLPN tLPN

Host Redirection Table

RWLB Block

1010 100

LPN PPN

1011 101

1012 102

1013 103

L2P Map Table

...

sequentializer

randomizer

LPN PPN

L2P Map Table

LPN PPN

twrite_header(1010,4,{5,58,30,7})

remap({1010,5}, {1013,7},

 {1012,30},{1011,58})

free tLPNs

register

tLPNs

SHRD

D/D

a

b
c

d

100
101

102

103

5

58
30

7

OOBPPN data

...

...

...

5 100

6

7 103

30 102

58 101

...

-

...

...

...

1010 -

1011 -

1012 -

1013 -

...

...

...

... ...

SSD

twrite_data(1010,4,{a,b,c,d})

write request

packed write request

Figure 6: Example of SHRD operations.

vendor commands to support the extension of its com-
mand set. However, a vendor command cannot be used
in the command queueing mode, and thus, the perfor-
mance can degrade significantly. In order to overcome
such a problem, we implemented several special com-
mands of SHRD operations by utilizing the legacy write
command. The SHRD-supporting special commands are
exactly same as the normal write command except that
their target address values are beyond the logical address
space of storage device. Depending on the address value
of write command, SSD firmware interprets it as a par-
ticular special command. The information of the special
command (e.g., oLPN and tLPN) is transferred via data
blocks of the write command. Therefore, no hardware
or software changes are required in the SATA interface
protocol.

Two SHRD commands (i.e., twrite header and
twrite data) are used to write the sequentialized data to
the RWLB of the SSD. twrite header contains the ad-
dress mapping information in its 4 KB of data, i.e., start
tLPN, page count, and array of oLPNs, as shown in Fig-
ure 6. The sequentializing information of a maximum of
128 pages can be transferred via 4 KB of data.

After a twrite header command is sent, the corre-
sponding twrite data command is sent in order to trans-
fer the packed user data (maximum of 512 KB), which
will be written to the RWLB blocks. The twrite data
command contains the target logical address value of
tLPN, which is assigned by the sequentializer. The SSD
firmware determines a PPN for each tLPN and inserts the
mapping entry (tLPN, PPN) into the L2P mapping table.
Each oLPN value transferred by the twrite header com-
mand is written into the OOB area of the corresponding
flash page. The oLPN will be used for POR when the
page is in the RWLB block, and it will be used by GC

after its block is changed to a data block.
After the completion of the twrite command, the se-

quentializer inserts the address translation entry between
oLPN and tLPN into the redirection table. Because the
remap entry will be used by subsequent read requests and
remap operations, the redirection table maintains both
the oLPN-to-tLPN and tLPN-to-oLPN map entries. If
an old mapping entry for the same oLPN exists, the redi-
rection table is updated and a trim command for the pre-
vious tLPN can be optionally sent to the SSD in order
to inform it about the invalidation of the data at the ad-
dress of the tLPN. The size of the redirection table is
determined by the size of the RWLB. For example, in
our implementation, when the RWLB size is 64 MB, the
size of the redirection table is 256 KB and the table can
contain 16K mapping entries.

During the handling of twrite commands, normal read
or write commands can be transferred to SSD if their tar-
get addresses are not related with a pending twrite com-
mand. However, any dependent read request must wait
for the completion of the related twrite command. In
addition, any dependent write request can be processed
only after the redirection map table is updated by twrite.

4.3 Read Redirection
For a read request from the file system, the SHRD D/D
searches for the target logical page numbers, oLPNs, in
the redirection table. If the oLPNs are found, the sequen-
tializer redirects the read request to the RWLB by chang-
ing the target address to the corresponding tLPNs. Other-
wise, the original addresses are used. The search time in
the redirection table can increase read request latencies.
In order to minimize the search time, the oLPN-to-tLPN
mapping entries in the redirection table are maintained
with a red-black (RB) tree; thus, the search time grows
at the rate of O(log n). A complex case of read handling
is the scenario in which the target logical address range
has been partially sequentialized. In this case, the read
request must be split into multiple sub-read requests, and
only the sub-reads for sequentialized data must be sent
to the RWLB. After the completion of all the sub-read
requests, the original read request will be completed.

4.4 Randomizing in Device
When the RWLB address space is exhausted by sequen-
tializing operations, the SHRD D/D performs the ran-
domizing operation to reclaim the allocated addresses of
the RWLB by sending a special command called remap,
which restores the oLPNs of sequentialized pages. First,
the randomizer selects the address range to be reclaimed;
this address range starts from the rand start pointer of
the RWLB. Then, the randomizer searches the redirec-
tion table for the mapping entries whose tLPN values are
included in the randomizing address range and creates

276 15th USENIX Conference on File and Storage Technologies USENIX Association

the remapping entries for randomizing. The search oper-
ation accesses the tLPN-to-oLPN mapping entries in the
redirection table. The generated remapping entries, each
of which is represented by (tLPN, oLPN), are sorted. By
sending the oLPN-sorted remapping entries to the SSD,
the spatial locality of CMT access is improved and the
CMT miss ratio can be reduced.

The remapping entries are sent as a 4 KB of data in the
remap command. The size of one remapping entry is 8
bytes, and one remap command can transfer a maximum
of 511 remapping entries. The remaining space is used
to store the number of remapping entries. Therefore, the
SHRD D/D sends multiple remap commands incremen-
tally during randomizing, and other irrelevant read/write
requests can be sent to the SSD between remap com-
mands. However, normal requests can be delayed within
the SSD if there are many pending remap requests, be-
cause each remap command modifies a large number of
address mapping entries of the SSD and normal requests
cannot be handled simultaneously with the remap com-
mand. To solve this problem, two optimization tech-
niques are used. First, we can reduce the maximum
number of remapping entries for a single remap com-
mand. Second, the maximum number of remap com-
mands which are pending in the SSD can be limited.
In our implementation, these two numbers are limited
to 128 and 1, respectively. Using these techniques, the
delay of normal request can be limited. If a normal re-
quest is relevant to a remap command, it must wait for
the completion of the remap command.

When the SSD receives a remap command, for each
remapping entry (tLPN, oLPN), it inserts the mapping
entry (oLPN, PPN) into the L2P mapping table. The
PPN is the physical location of the data to be random-
ized, and it can be obtained by reading the mapping en-
try (tLPN, PPN) from the L2P mapping table. Therefore,
two map pages must be accessed for randomizing one
physical page–the map page that contains (tLPN, PPN)
and the map page that contains (oLPN, PPN). However,
the sorted remapping entries in a remap command will
modify only a small number of map pages because it
is quite probable that consecutive remapping entries will
access a same map page. After all the pages in an RWLB
block are randomized, the block is changed to a normal
data block. In order to change the block information,
dirty mapping entries of the CMT must be flushed into
the map blocks, and then, the block change information
must be written to the map blocks. After the comple-
tion of the remap command, the randomizer removes the
mapping entry (oLPN, tLPN) from the redirection table.
Optionally, host can send a trim command for tLPN.

The special commands of SHRD have ordering
constraints. The twrite data(tLPN) command must
be sent after the corresponding twrite header(oLPN,

tLPN) command is completed. The remap(oLPN,
tLPN) command must be sent after the corresponding
twrite data(tLPN) command is completed. If the SHRD
D/D issues a command before its dependent command
is completed, these commands can be reordered by the
command queueing scheme of the storage interface, thus
potentially violating the consistency of the SSD data.
Owing to the ordering constraints, SHRD operations re-
sult in a small amount of performance overhead in our
current implementation. If the SSD firmware can guaran-
tee the ordering between dependent commands, the over-
head can be reduced. We will consider this requirement
in future work.

4.5 Power-Off-Recovery and Garbage Col-
lection

The redirection table is maintained in the host DRAM;
therefore, a sudden power-off can result in a loss of all
the sequentializing mapping information. In order to ad-
dress this issue, we use the autoremap technique dur-
ing POR. As shown in Figure 6, each flash page of se-
quentialized data contains the oLPN in its OOB area.
Therefore, the mapping between PPN and oLPN can
be obtained. The POR operation scans all the RWLB
blocks and performs the randomizing operation by us-
ing the PPN-to-oLPN mappings. The autoremap oper-
ation is similar to the randomizing by the SHRD D/D,
except that autoremap is invoked internally by the SSD
POR firmware. Therefore, only the SSD mapping table
is modified without changing the physical locations. The
POR operation must scan all the RWLB blocks; there-
fore, the RWLB size influences the POR time. However,
the increased POR time is not critical because sudden-
power-offs are rare and the POR is performed at the de-
vice booting time. In addition, in our implementation,
the RWLB block scan time is less than 0.7 seconds for 64
MB of RWLB. After the autoremap operation, the blocks
in the RWLB are changed to normal data blocks and they
can be victims for GC.

For each valid page in a GC victim block, GC must
copy the pages to a free block and modify the corre-
sponding mapping entry in the L2P mapping table. GC
uses the oLPN in the OOB area in order to access the
L2P mapping entry of the copied page. If a selected GC
victim block was initially allocated as a RWLB block,
there can be many map misses in the CMT during GC,
because the valid pages of the victim block were writ-
ten by random write requests. To handle the map misses
during GC, we use a map logging technique. If the map-
ping entry of a copied page is missed from the CMT,
the proposed map logging technique does not load the
corresponding map page from a map block immediately.
Instead, the new mapping entry is written in the map log
table (MLT) in DRAM. For the purpose, a small amount

USENIX Association 15th USENIX Conference on File and Storage Technologies 277

of memory space is reserved in DRAM. After several GC
victim blocks are reclaimed, the MLT will have many
mapping entries to be written to the map pages. If the
MLT is full, GC sorts the mapping entries based on the
LPN value to improve the spatial locality when access-
ing map pages, and flushes all the mapping entries of the
MLT into the map pages.

The idea of map-logging technique is similar to that
of SHRD technique. Therefore, the map logging may
be also applied to normal write request handling. How-
ever, SSD must reserve a large amount of memory space
for the MLT to support normal write requests. In ad-
dition, the map logging technique cannot reduce the re-
quest handling overhead. Therefore, it is better to use
SHRD technique for normal requests.

5 Experiments

5.1 Experimental Setup
We implemented an SHRD-supporting SSD by modify-
ing the firmware of the Samsung SM843 SSD, which
is designed for data center storage. For our exper-
iments, the parallel units in the SSD were partially
enabled–4 channels, 4 banks/channel, and 4 planes/bank.
We implemented two 4-KB-page-level mapping FTLs,
demand-loading FTL (DFTL) and SHRD-supporting
FTL (SHRD-FTL). They use the CMT scheme with a
DRAM whose size is less than that of the entire mapping
table. Although the total storage capacity is 120 GB, the
device provides only 110 GB of address space to the host
system. The remaining over-provisioning space is used
for GC and for the RWLB. The host computer system
used a Linux 3.17.4 kernel and was equipped with In-
tel Core i7-2600 3.4 GHz CPU and 8 GB DRAM. The
SHRD device driver was implemented by modifying the
SCSI device driver of the Linux kernel. For the simplic-
ity of the system, the trim/discard commands are not en-
abled.

In order to demonstrate the performance improve-
ment achieved by the SHRD scheme, several server
benchmarks were used: fio [3], tpcc [6], YCSB [13],
postmark [19], and fileserver/varmail workloads of
filebench [2]. In the case of the fio random write work-
load, four concurrent threads were generated and each
thread wrote 8 GB of data with 4 KB of random write re-
quests in 32 GB of address space. The tpcc workload was
generated by percona’s tpcc-mysql. The DB page size
was configured to 4 KB, the number of warehouses was
120, and the number of connections was 20. In the case
of the YCSB workload, MySQL system and the update-
heavy workload (i.e., Workload A), which has 20% reads
and 80% updates, were used. The number of transactions
of postmark workload was 100,000. In the cases of the
fileserver and varmail workloads, the number of files was

Table 1: Workload Characteristics
logical avg. write write writes btwn

benchmark space (GB) size (KB) portion flushes
fio(RW) 32 4.8 100% 61.6
tpcc 16 14.8 60% 18.9
YCSB 24 24.1 63% 5.7
postmark 20 72.0 90% 2743.7
fileserver 24 65.6 65% 2668.0
varmail 10 12.8 44% 1.0

Table 2: Statistics on SHRD Operations
small req. requests pages updated map pages

benchmark portion /twrite /twrite /remap
fio(RW) 100% 30.3 31.42 5.74
tpcc 58% 3.95 6.76 5.33
YCSB 57% 2.45 9.71 9.76
postmark 88% 11.54 57.38 1.34
fileserver 33% 9.33 57.3 1.66
varmail 97% 1.19 3.25 1.24

configured as 200,000. Other parameters used the default
options. The benchmarks were run at EXT4 filesystem
by default. Table 1 presents the characteristics of each
workload, which includes the logical address space, the
average size of write requests, the portion of write re-
quests, and the frequency of flush command generated
by fsync calls (the average number of write requests be-
tween two flush commands).

For all the following experiments, the default sizes of
RWLB, RW threshold, and CMT are 64 MB, 128 KB,
and 1 MB, respectively, unless they are specified.

5.2 Experimental Results
Performance improvement with SHRD Table 2
shows several statistics on SHRD operations for each
workload, i.e., the portion of sequentialized small write
requests, the average number of packed requests/pages
per single twrite command, and the average number of
updated map pages per single remap command. Al-
though each remap command contains a maximum of
128 remapping entries, it updated less than 10 map pages
at all workloads due to the oLPN-sorted map access.
Table 3 shows the portions of three reasons for request
packing interruption during sequentializing, and the por-
tion of small twrite requests that have less than 32 KB of
packed requests.

Figure 7(a) compares the performance of fio random
write benchmark under the SHRD and DFTL schemes
for different values of the CMT size. Because the logi-
cal address space of fio benchmark is 32 GB, if the CMT
size is 32 MB, all the mapping entries of the workloads
can be fully loaded into the CMT; thus, there is no map-
miss handling overhead. If CMT size is less than 32 MB,
the CMT can cache the mapping entries for 32 GB of
address space partially. For example, 1 MB of CMT
can contain only 3.1% of the entire mapping entries of
the workload. Figure 7(b) shows the average number of

278 15th USENIX Conference on File and Storage Technologies USENIX Association

Table 3: Reasons for packing interruption
reasons small twrites

benchmark no req flush full (< 32 KB)
fio(RW) 66% 31% 4% 6%
tpcc 50% 50% 0% 53%
YCSB 56% 39% 5% 86%
postmark 81% 0% 19% 1%
fileserver 51% 0% 49% 1%
varmail 21% 79% 0% 83%

0

10

20

30

40

50

60

128KB 256KB 512KB 1MB 2MB 4MB 8MB fully

loaded

b
an

d
w

id
th

(M

B
/s

)

CMT size

DFTL SHRD

(a) performance comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128KB 256KB 512KB 1MB 2MB 4MB 8MB fully

loaded

m
ap

 l
o
ad

 p
er

 p
ag

e
IO

CMT size

DFTL SHRD

(b) map miss comparison
Figure 7: Fio random write workload results.

map page misses per write operation. A value of 1 in-
dicates that every write operation triggers one additional
map page load operation. As the CMT size decreases,
DFTL shows worse performance because the number of
map page loads increases. However, the performance of
SHRD is similar to the performance when map pages are
fully loaded into DRAM, irrespective of the CMT size.
Even when the mapping table is fully loaded, SHRD
shows a better performance than DFTL owing to the re-
duction on request handling overhead.

Figure 8(a) compares the performance of the SHRD
and DFTL schemes for several real workloads under a
fixed size of CMT (i.e., 1 MB). For all benchmark work-
loads, SHRD improved the I/O performance in com-
parison with DFTL. For the database workloads (i.e.,
tpcc and YCSB), SHRD demonstrated significantly bet-
ter performance than DFTL because they are write-
dominant workloads. In addition, the average size of
write requests is small at these workloads; thus many
write requests were sequentialized as shown in Table 2.
However, DB workloads generate fsync calls frequently;
therefore, the request packing at sequentializing was fre-
quently interrupted by the flush command, as shown in

0

0.5

1

1.5

2

2.5

3

3.5

4

tpcc YCSB postmark fileserver varmail

th
ro

ug
hp

ut

(n
o
rm

al
iz

ed

to
 D

F
T

L
)

(a) performance comparison

0

0.1

0.2

0.3

0.4

0.5

tpcc YCSB postmark fileserver varmail

m
ap

 l
o
ad

 p
er

 p
ag

e
IO

DFTL SHRD

(b) map miss comparison
Figure 8: Real workload results.

Table 3, and a smaller number of requests were packed
for the DB workloads in comparison with other work-
loads.

The postmark workload is more write-dominant than
the DB workloads, and many requests were sequential-
ized. However, the performance gain was similar to that
of YCSB workload because its average write request size
is larger. The fileserver workload generates many large
requests; therefore, DFTL also show good performance.
In addition, the fileserver workload includes many read
requests. Because SHRD cannot directly improve read
performance, the performance gain was small. The var-
mail workload generates fsync frequently; therefore, a
smaller number of requests were packed by the sequen-
tializer as shown in Table 2. Then, many special com-
mands of SHRD must be transferred, thus degrading the
performance owing to the ordering constraints explained
in Section 4.4. In addition, the varmail workload is read-
dominant, thus its performance improvement was small.
We used the varmail workload as an adverse workload to
check the SHRD overhead. Nevertheless, SHRD showed
a better performance than DFTL even for the workload.

Figure 9 shows the map entries accessed by SHRD-
FTL during the execution of postmark benchmark. Al-
though the original postmark workload has many small
and random write requests, SHRD changed them to se-
quential write requests to the RWLB address region (blue
dots). Therefore, only a small number of accesses oc-
curred on the normal address region by large sequential
requests (black dots). During the periodic randomizing
operations, the original addresses and the temporary ad-
dresses were accessed (read dots). The map entry ac-

USENIX Association 15th USENIX Conference on File and Storage Technologies 279

Figure 9: Map entry access pattern (postmark).

0

2

4

6

8

10

12

14

16

w/o map

logging

w/ map

logging

DFTL SHRD

B
a
n

d
w

id
th

 (
M

B
/s

)

0

20

40

60

80

100

120

140

160

w/o map

logging

w/ map

logging

DFTL SHRD

#
 o

f
m

a
p

 l
o

a
d

s
 (
x

1
0
0
0
0
)

GC map load
IO map load

(a) performance improvement (b) map page miss reduction
Figure 10: Effect of map logging at GC.

cess pattern during randomizing is sequential owing to
the LPN-sorted accesses.
Map logging GC In order to examine the effect of map
logging technique explained in Section 4.5, we initial-
ized the SSD with an aging operation. First, 60% of
the logical area of SSD was filled with sequential writes.
Then, 80% of the sequentially-written data were over-
written with random writes. Finally, we ran the fio work-
load. The MLT size is 96 KB. Because the aging oper-
ation consumes all the physical blocks of SSD, the GC
was triggered at the start of the fio test. As shown in
Figure 10(a), the performance was further improved by
using the map logging technique in addition to SHRD.
As shown in Figure 10(b), SHRD can reduce only the
number of map misses by normal IO requests. When the
map logging technique is used additionally, the number
of map misses by GC decreases.
SHRD overhead In the SHRD scheme, the redirection
table must be searched for each read request. We mea-
sured the read performance degradation due to the redi-
rection table searching overhead. First, we wrote two 4
GB files, one using 4 KB of random write requests and
the other using 512 KB of sequential write requests, re-
spectively. Then, the sequentially-written file was read
with 4 KB of random read requests. The RWLB size is
64 MB; hence, the redirection table was filled with the
mapping entries of the randomly-written file. Although,
for each random read request to the sequentially-written
file, its mapping entries cannot be found from the redi-
rection table, the read requests must traverse the RB tree
of the redirection table until the searching reaches the

leaf nodes. In the worst-case scenario, we observed that
the read performance degradation is less than 2%.

In the case of real workloads, read and write requests
are mixed, where SHRD may show a worse read per-
formance due to the sequentializing and randomizing
operations on write requests. In particular, the remap
command can delay the handling of read request, as ex-
plained in Section 4.4. Figure 11 compares the read per-
formance of DFTL and SHRD. The fio mixed workload
was used, which has four threads generating 4 KB of
random read and write requests. The ratio of write re-
quests is 80%; hence, it is a write-dominant workload.
SHRD improved the write performance and thus the read
performance was also improved by minimizing the wait-
ing time for write request, as shown in Figures 11(a) and
12(b). SHRD showed long read latencies when SSD han-
dles remap commands. However, the read latencies de-
layed by remap commands are similar to those delayed
by map misses at DFTL, as shown in Figure 11(c).

Performance improvement at EXT4 and F2FS In
order to compare the performance gains at different file
systems, EXT4 and F2FS were used. F2FS is a log-
structured file system, and it supports the slack space
recycling (SSR) which permits overwrite operations for
invalid blocks [22]. Compared to the garbage collection
of LFS, the SSR operation can prevent significant per-
formance degradation when the file system utilization is
high. Figure 12(a) shows the performance improvement
by SHRD for a random workload under the EXT4 and
F2FS file systems. The file system utilizations were ini-
tialized to 75% by creating 1,024 files with sequential
requests and updating 20% of the data with 4 KB of ran-
dom write requests. Then, the fio random write workload
was run. EXT4 showed a significant performance degra-
dation for the random workload when DFTL was used.
SHRD improved the performance of EXT4 significantly
by reducing the map handling overhead. For F2FS, many
free segments were generated by a background garbage
collection before running the fio workload. Therefore,
F2FS showed significantly better performance than the
original EXT4 file system until 40 seconds elapsed be-
cause F2FS generated sequential write requests to the
free segments. However, the free segments were ex-
hausted and SSR operations were triggered starting from
40 seconds. The SSR operations generated small ran-
dom write requests to utilize invalid blocks; thus, the
performance of F2FS plummeted. However, by adopt-
ing the SHRD scheme, the performance of F2FS was im-
proved even when the SSR operation was triggered. Con-
sequently, EXT4 and F2FS showed similar performance
when they adopted the SHRD scheme. As shown in Fig-
ure 12(b), F2FS showed worse sequential read/write per-
formance than EXT4 at an aged condition. Although
EXT4 showed worse random write performance than

280 15th USENIX Conference on File and Storage Technologies USENIX Association

0

5

10

15

20

25

DFTL SHRD

B
a
n

d
w

id
th

 (
M

B
/s

)
read write

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60 70 80 90 100 110 120

C
D

F

latency (ms)

DFTL

SHRD

0

0.04

0.08

0.12

0.16

0 2 4 6 8 10

la
te

n
c
y

 (
s
)

time (s)

DFTL SHRD

time (s)

(a) bandwidth (b) CDF of read latency (c) read latency fluctuation
Figure 11: Read performance.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

B
a
n

d
w

id
th

 (
M

B
/s

)

time(s)

F2FS (SSR) w/ DFTL

F2FS (SSR) w/ SHRD

EXT4 w/ DFTL

EXT4 w/ SHRD

(a) performance change over time

0

20

40

60

80

100

120

140

160

180

200

Sequential write Random write Sequential read Random read

w
ri

te
 b

a
n

d
w

id
th

 (
M

B
/s

)

EXT4 w/ DFTL

EXT4 w/ SHRD

F2FS (SSR) w/ DFTL

F2FS (SSR) w/ SHRD

(b) performance comparison at different workloads
Figure 12: Effect of SHRD at EXT4 and F2FS.

F2FS under the DFTL scheme, SHRD removed the ran-
dom write performance gap between EXT4 and F2FS.
Therefore, the combination of EXT4 and SHRD can pro-
vide better performance for all types of workloads.
RWLB size and RW threshold When the SHRD
scheme is implemented, several factors must be deter-
mined by considering the tradeoffs. As a larger size of
RWLB is used, more number of remapping entries can
share each map page, thus improving the spatial locality
on accessing the map pages. In addition, the overwrite
operations can invalidate more number of sequentialized
pages in RWLB before they are randomized. However, a
large RWLB requires a large redirection table and a large
amount of table searching overhead. Figure 13 shows the
performance changes for various sizes of the RWLB. A
large RWLB provides better performance; however, the
performance reaches a saturation point. Therefore, the
RWLB size must be selected considering the drawbacks

1

1.2

1.4

1.6

1.8

2

2.2

DFTL 8 16 24 32 40 48 56 64 72 80

th
ro

ug
hp

ut

(n
o

rm
al

iz
ed

to

 D
F

T
L

)

RWLB size (MB)

fileserver

postmark

Figure 13: Effect of RWLB sizes.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

DFTL 4 8 16 32 64 128 256 512

th
ro

ug
hp

ut

(n
o
rm

al
iz

ed

to
 D

F
T

L
)

RW threshold (KB)

fileserver

postmark

Figure 14: Effect of RW threshold.

of a large RWLB.
The RW threshold determines the amount of data to be

sequentialized by SHRD. As we increase the threshold,
the performance can be improved by reducing the map
handling overhead in the SSD as shown in Figure 14.
However, a too large threshold can degrade performance
by increasing the overhead of SHRD operations.

6 Related Work
Several studies have investigated approaches to handle
the performance gap between sequential writes and ran-
dom writes at flash storage. LFSs can eliminate random
writes at the file system layer; SFS [29] and F2FS [22]
are examples of such LFSs. SFS separates hot and cold
data into different segments to reduce the cleaning over-
head of a traditional LFS. F2FS arranges the on-disk lay-
out from the perspective of the FTL on the SSDs and
adopts adaptive logging to limit the maximum latency of
segment cleaning. However, despite all the efforts, these

USENIX Association 15th USENIX Conference on File and Storage Technologies 281

flash-based LFSs continue to suffer from write amplifica-
tion in the segment cleaning phase. Further, LFSs show
poor read performance as shown in Figure 12(b).

DFS [17], open-channel SSD [5], and application-
managed flash [23] elevate the flash storage software into
the OS layer and directly manage flash block allocation
according to the flash address space. Therefore, the ad-
dress mapping table is managed by host computer, and
SSD will receive only sequential write requests. How-
ever, they can be used only for a specific SSD design and
burdens the OS with excessive flash management over-
head such as wear-leveling and GC.

Nameless Write [36] permits the storage device to
choose the location of a write and inform the OS about
the chosen address. Therefore, Nameless Write could
eliminate the need for address indirection in SSDs. How-
ever, this scheme requires burdensome callback func-
tions to communicate the chosen address to the host OS
and necessitates significant changes to the conventional
storage interface.

ReSSD [26] and LSDM [37] log random writes se-
quentially in a pre-reserved storage area and maintain the
redirection map table in host memory. However, similar
to the previous LFSs, these schemes must copy the data
when the log space is reclaimed, thus causing write am-
plification. Further, they do not consider the POR issue;
therefore, when a sudden power-off occurs, the logged
data can be lost because the host memory is volatile.

The NVMe standard has a new interface called host
memory buffer (HMB) [11], which permits NVMe SSD
to utilize the DRAM of the host system via PCIe inter-
face; thus, the vendor can build DRAM-less SSDs by
maintaining the entire mapping table in the host DRAM.
However, the latency of the host DRAM will be greater
than the latency of the internal DRAM for SSD con-
troller. In addition, the volatile mapping table must be
flushed periodically to the SSD. On the contrary, SHRD
minimizes the flushing overhead of the mapping table
and requires only a small size of host memory.

Meanwhile, several studies adopt the FTL-level remap
concept, in a manner similar to SHRD. JFTL [12] remaps
the addresses of journal data to the addresses of home
locations, thus eliminating redundant writes to flash stor-
age. X-FTL [18] supports transactional flash storage for
databases by leveraging the address mapping scheme of
FTL. ANViL [34] proposes a storage virtualization inter-
face based on FTL-level address remapping by permit-
ting the host system to manipulate the address map using
three operations-clone, move, and delete. SHARE [30]
also utilizes the address remapping to enable host-side
database engines to achieve write atomicity without
causing write amplification. Ji et al. [15] proposed to
use the remap operation for file system defragmentation.

Although the concept of address remapping was intro-

duced by the mentioned studies, it is not trivial to imple-
ment the remap operation. SSD maintains two directions
of address mappings, i.e., L2P mapping and its reverse
P2L mapping. The P2L mapping is used by GC to iden-
tify the LPN of a physical page. The remap operation
must change both the mappings, and the changed map-
ping information must be stored in flash memory blocks
in order to ensure the durability. The P2L map of each
physical page is generally stored in the OOB area of flash
page, and thus it cannot be modified without copying the
remapped physical page into another flash page. Other-
wise, SSD must maintain a separate P2L mapping table.
This problem is not easy, and any solution can involve
P2L map handling overhead exceeding the benefits of
remap operation. In the case of SHRD, we require a
“restore” operation to the predetermined address rather
than a remap operation to any address because we know
the original logical address of a sequentialized page. We
can easily implement the restore operation by storing the
original logical address in the OOB area at sequentializ-
ing without modifying the P2L mapping.

7 Conclusion
We proposed a novel address reshaping technique,
SHRD, in order to reduce the performance gap be-
tween random writes and sequential writes for SSDs with
DRAM resource constraints. The sequentializer of the
SHRD technique transforms random write requests into
sequential write requests in the block device driver by
assigning the address space of a reserved log area in the
SSD. Read requests can access the sequentialized data by
using a redirection table in the host DRAM. Unlike the
previous techniques, SHRD can restore the original log-
ical addresses of the sequentialized data without requir-
ing copy operations, by utilizing the address indirection
characteristic of the FTL. We also resolved the POR issue
of the redirection table on the host DRAM. We developed
a prototype of an SHRD-supporting SSD and a Linux
kernel device driver to verify the actual performance ben-
efit from SHRD, and demonstrated the remarkable per-
formance gain. SHRD will be an effective solution for
DRAM size reduction in large-capacity enterprise-class
SSDs.

Acknowledgements
We thank the anonymous reviewers and our shepherd
Sungjin Lee for their valuable comments. We also thank
Dong-Gi Lee and Jaeheon Jeong in Samsung Electron-
ics for supporting our work on Samsung SSD device.
This research was supported by Samsung Electronics
and the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (No.
2016R1A2B2008672).

282 15th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Embedded Multi-media card (eMMC), Electrical stan-

dard (4.5 Device). http://www.jedec.org/standards-
documents/results/jesd84-b45.

[2] Filebench. http://filebench.sourceforge.net/.

[3] Flexible I/O Tester. https://github.com/axboe/fio.

[4] MSR Cambridge Traces. http://iotta.snia.org/traces/388.

[5] Open-Channel Solid State Drives. http://lightnvm.io/.

[6] tpcc-mysql. https://github.com/Percona-Lab/tpcc-mysql.

[7] LevelDB. http://leveldb.org, 2016.

[8] RethinkDB: The open-source database for the realtime web.
https://www.rethinkdb.com/, 2016.

[9] RocksDB: A persistent key-value store for fast storage environ-
ments. http://rocksdb.org, 2016.

[10] CHANG, L.-P., AND KUO, T.-W. An adaptive striping archi-
tecture for flash memory storage systems of embedded systems.
In Proc. of 8th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS ’02, pp. 187–196.

[11] CHEN, M. C. Host Memory Buffer (HMB) based SSD System.
http://www.flashmemorysummit.com/, 2015.

[12] CHOI, H. J., LIM, S.-H., AND PARK, K. H. JFTL: A flash
translation layer based on a journal remapping for flash memory.
ACM Transactions on Storage 4, 4 (2009), 14:1–14:22.

[13] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
YCSB. In Proc. of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, pp. 143–154.

[14] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: A flash
translation layer employing demand-based selective caching of
page-level address mappings. In Proc. of the 14th interna-
tional Conference on Architectural Support For Programming
Languages and Operating Systems, ASPLOS ’09, pp. 229–240.

[15] JI, C., CHANG, L., SHI, L., WU, C., AND LI, Q. An empirical
study of file-system fragmentation in mobile storage systems. In
Proc. of 8th USENIX Workshop on Hot Topics in Storage and File
Systems, HotStorage ’16.

[16] JIANG, S., ZHANG, L., YUAN, X., HU, H., AND CHEN, Y.
S-FTL: An efficient address translation for flash memory by ex-
ploiting spatial locality. In Proc. of IEEE 27th Symposium on
Mass Storage Systems and Technologies, MSST ’11, pp. 23–27.

[17] JOSEPHSON, W. K., BONGO, L. A., FLYNN, D., AND LI, K.
DFS: A file system for virtualized flash storage. In Proc. of the
8th USENIX Conference on File and Storage Technologies, FAST
’10.

[18] KANG, W.-H., LEE, S.-W., MOON, B., OH, G.-H., AND MIN,
C. X-FTL: Transactional FTL for sqlite databases. In Proc. of
the ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pp. 97–108.

[19] KATCHER, J. Postmark: A new file system benchmark. Tech.
rep., TR3022, Network Appliance, 1997.

[20] KIM, J., KIM, J. M., NOH, S. H., MIN, S. L., AND CHO, Y. A
space-efficient flash translation layer for compact flash systems.
IEEE Transactions on Consumer Electronics 48, 2 (2002), 366–
375.

[21] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KIHARA,
S., AND MORIAI, S. The linux implementation of a log-
structured file system. ACM SIGOPS Operating Systems Review
40, 3 (2006), 102–107.

[22] LEE, C., SIM, D., HWANG, J.-Y., AND CHO, S. F2FS: A new
file system for flash storage. In Proc. of the 13th USENIX Con-
ference on File and Storage Technologies, FAST ’15.

[23] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND ARVIND.
Application-managed flash. In Proc. of 14th USENIX Conference
on File and Storage Technologies, FAST ’16, pp. 339–353.

[24] LEE, S., SHIN, D., KIM, Y.-J., AND KIM, J. LAST: locality-
aware sector translation for NAND flash memory-based storage
systems. ACM SIGOPS Operating Systems Review 42, 6 (2008),
36–42.

[25] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK,
S., AND SONG, H.-J. A log buffer-based flash translation layer
using fully-associative sector translation. ACM Transactions on
Embedded Computing Systems 6, 3 (2007).

[26] LEE, Y., KIM, J.-S., AND MAENG, S. ReSSD: A software
layer for resuscitating SSDs from poor small random write per-
formance. In Proc. of the ACM Symposium on Applied Comput-
ing, SAC ’10, pp. 242–243.

[27] LEE, Y.-G., JUNG, D., KANG, D., AND KIM, J.-S. µFTL: A
memory-efficient flash translation layer supporting multiple map-
ping granularities. In Proc. of the 8th ACM International Confer-
ence on Embedded Software, EMSOFT ’08, pp. 21–30.

[28] LI, Q., SHI, L., XUE, C. J., WU, K., JI, C., ZHUGE, Q., AND
SHA, E. H.-M. Access characteristic guided read and write cost
regulation for performance improvement on flash memory. In
Proc. of 14th USENIX Conference on File and Storage Technolo-
gies, FAST ’16, pp. 125–132.

[29] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y. I. SFS:
Random write considered harmful in solid state drives. In Proc. of
the 10th USENIX Conference on File and Storage Technologies,
FAST ’12.

[30] OH, G., SEO, C., MAYURAM, R., KEE, Y.-S., AND LEE, S.-
W. SHARE interface in flash storage for relational and NoSQL
databases. In Proc. of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, pp. 343–354.

[31] PARK, D., DEBNATH, B., AND DU, D. CFTL: A convertible
flash translation layer adaptive to data access patterns. In Proc. of
the ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS ’10,
pp. 365–366.

[32] PARK, K.-T., ET AL. Three-dimensional 128 Gb MLC vertical
NAND flash memory with 24-WL stacked layers and 50 MB/s
high-speed programming. IEEE JOURNAL OF SOLID-STATE
CIRCUITS 50, 1 (2015), 204–213.

[33] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage 9, 3 (2013), 9:1–9:32.

[34] WEISS, Z., SUBRAMANIAN, S., SUNDARARAMAN, S., TA-
LAGALA, N., ARPACI-DUSSEAU, S. A. C., AND ARPACI-
DUSSEAU, R. H. ANViL: Advanced virtualization for modern
non-volatile memory devices. In Proc. of the 13th USENIX Con-
ference on File and Storage Technologies, FAST ’15.

[35] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., AND
SUNDARARAMAN, S. Don’t stack your log on my log. In Proc.
of 2nd Workshop on Interactions of NVM/Flash with Operating
Systems and Workloads, INFLOW ’14.

[36] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. De-indirection for flash-based SSDs
with nameless writes. In Proc. of the 10th USENIX Conference
on File and Storage Technologies, FAST ’12.

[37] ZUCK, A., KISHON, O., AND TOLEDO, S. LSDM: Improving
the performance of mobile storage with a log-structured address
remapping device driver. In Proc. of 8th International Conference
on Next Generation Mobile Applications, Services and Technolo-
gies (2014), pp. 221–228.

USENIX Association 15th USENIX Conference on File and Storage Technologies 283

