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Figure 11: Read performance.
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Figure 12: Effect of SHRD at EXT4 and F2FS.

F2FS under the DFTL scheme, SHRD removed the ran-
dom write performance gap between EXT4 and F2FS.
Therefore, the combination of EXT4 and SHRD can pro-
vide better performance for all types of workloads.
RWLB size and RW threshold When the SHRD
scheme is implemented, several factors must be deter-
mined by considering the tradeoffs. As a larger size of
RWLB is used, more number of remapping entries can
share each map page, thus improving the spatial locality
on accessing the map pages. In addition, the overwrite
operations can invalidate more number of sequentialized
pages in RWLB before they are randomized. However, a
large RWLB requires a large redirection table and a large
amount of table searching overhead. Figure 13 shows the
performance changes for various sizes of the RWLB. A
large RWLB provides better performance; however, the
performance reaches a saturation point. Therefore, the
RWLB size must be selected considering the drawbacks
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Figure 13: Effect of RWLB sizes.
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Figure 14: Effect of RW threshold.

of a large RWLB.
The RW threshold determines the amount of data to be

sequentialized by SHRD. As we increase the threshold,
the performance can be improved by reducing the map
handling overhead in the SSD as shown in Figure 14.
However, a too large threshold can degrade performance
by increasing the overhead of SHRD operations.

6 Related Work
Several studies have investigated approaches to handle
the performance gap between sequential writes and ran-
dom writes at flash storage. LFSs can eliminate random
writes at the file system layer; SFS [29] and F2FS [22]
are examples of such LFSs. SFS separates hot and cold
data into different segments to reduce the cleaning over-
head of a traditional LFS. F2FS arranges the on-disk lay-
out from the perspective of the FTL on the SSDs and
adopts adaptive logging to limit the maximum latency of
segment cleaning. However, despite all the efforts, these
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flash-based LFSs continue to suffer from write amplifica-
tion in the segment cleaning phase. Further, LFSs show
poor read performance as shown in Figure 12(b).

DFS [17], open-channel SSD [5], and application-
managed flash [23] elevate the flash storage software into
the OS layer and directly manage flash block allocation
according to the flash address space. Therefore, the ad-
dress mapping table is managed by host computer, and
SSD will receive only sequential write requests. How-
ever, they can be used only for a specific SSD design and
burdens the OS with excessive flash management over-
head such as wear-leveling and GC.

Nameless Write [36] permits the storage device to
choose the location of a write and inform the OS about
the chosen address. Therefore, Nameless Write could
eliminate the need for address indirection in SSDs. How-
ever, this scheme requires burdensome callback func-
tions to communicate the chosen address to the host OS
and necessitates significant changes to the conventional
storage interface.

ReSSD [26] and LSDM [37] log random writes se-
quentially in a pre-reserved storage area and maintain the
redirection map table in host memory. However, similar
to the previous LFSs, these schemes must copy the data
when the log space is reclaimed, thus causing write am-
plification. Further, they do not consider the POR issue;
therefore, when a sudden power-off occurs, the logged
data can be lost because the host memory is volatile.

The NVMe standard has a new interface called host
memory buffer (HMB) [11], which permits NVMe SSD
to utilize the DRAM of the host system via PCIe inter-
face; thus, the vendor can build DRAM-less SSDs by
maintaining the entire mapping table in the host DRAM.
However, the latency of the host DRAM will be greater
than the latency of the internal DRAM for SSD con-
troller. In addition, the volatile mapping table must be
flushed periodically to the SSD. On the contrary, SHRD
minimizes the flushing overhead of the mapping table
and requires only a small size of host memory.

Meanwhile, several studies adopt the FTL-level remap
concept, in a manner similar to SHRD. JFTL [12] remaps
the addresses of journal data to the addresses of home
locations, thus eliminating redundant writes to flash stor-
age. X-FTL [18] supports transactional flash storage for
databases by leveraging the address mapping scheme of
FTL. ANViL [34] proposes a storage virtualization inter-
face based on FTL-level address remapping by permit-
ting the host system to manipulate the address map using
three operations-clone, move, and delete. SHARE [30]
also utilizes the address remapping to enable host-side
database engines to achieve write atomicity without
causing write amplification. Ji et al. [15] proposed to
use the remap operation for file system defragmentation.

Although the concept of address remapping was intro-

duced by the mentioned studies, it is not trivial to imple-
ment the remap operation. SSD maintains two directions
of address mappings, i.e., L2P mapping and its reverse
P2L mapping. The P2L mapping is used by GC to iden-
tify the LPN of a physical page. The remap operation
must change both the mappings, and the changed map-
ping information must be stored in flash memory blocks
in order to ensure the durability. The P2L map of each
physical page is generally stored in the OOB area of flash
page, and thus it cannot be modified without copying the
remapped physical page into another flash page. Other-
wise, SSD must maintain a separate P2L mapping table.
This problem is not easy, and any solution can involve
P2L map handling overhead exceeding the benefits of
remap operation. In the case of SHRD, we require a
“restore” operation to the predetermined address rather
than a remap operation to any address because we know
the original logical address of a sequentialized page. We
can easily implement the restore operation by storing the
original logical address in the OOB area at sequentializ-
ing without modifying the P2L mapping.

7 Conclusion
We proposed a novel address reshaping technique,
SHRD, in order to reduce the performance gap be-
tween random writes and sequential writes for SSDs with
DRAM resource constraints. The sequentializer of the
SHRD technique transforms random write requests into
sequential write requests in the block device driver by
assigning the address space of a reserved log area in the
SSD. Read requests can access the sequentialized data by
using a redirection table in the host DRAM. Unlike the
previous techniques, SHRD can restore the original log-
ical addresses of the sequentialized data without requir-
ing copy operations, by utilizing the address indirection
characteristic of the FTL. We also resolved the POR issue
of the redirection table on the host DRAM. We developed
a prototype of an SHRD-supporting SSD and a Linux
kernel device driver to verify the actual performance ben-
efit from SHRD, and demonstrated the remarkable per-
formance gain. SHRD will be an effective solution for
DRAM size reduction in large-capacity enterprise-class
SSDs.
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