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Abstract - The compressed swap cache such as zswap is a memory overcommitment technique of Linux 

kernel, which is suitable for smart devices with NAND flash swap storage. It compresses the pages which are 

in the process of being swapped out and stores them in a RAM-based memory pool. Since the sizes of 

compressed pages vary widely, the memory pool should efficiently manage the memory area in order to 

minimize memory wastage and flash memory write operations. We propose an enhanced management 

technique for the zswap memory pool. Experiment results show that the improved memory pool reduces the 

response time of memory-hungry applications by up to 11.3% and takes up to 46% less swap space than the 

default memory pool. 
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1 Introduction 
 

 Modern smart devices like smartphones and IoT 

devices require a large capacity of main memory to 

support complex applications and to utilize the multi-core 

hardware. Device manufactures are increasing the heap 

size limit of each application as well as the total DRAM 

size in order to support more versatile applications. 

However, it is not easy to increase the memory size since 

these devices are sensitive to power consumption, device 

size and cost. For example, Samsung IoT module ARTIK 

5 is equipped with 512MB of DRAM. The Tizen 

smartphone Samsung Z1 has only 768 MB of DRAM. 

Therefore, researchers are exploring other solutions to run 

memory-hungry applications on such low-cost devices.  

 Smart devices generally have NAND flash-based 

storage such as embedded MultiMediaCard (eMMC) as 

internal storage and Secure Digital (SD) card as external 

storage. These storage devices are unsuitable for swap 

space due to the long access latency and limited endurance 

of flash memory. Therefore, when there is no sufficient 

free memory for running applications, Linux’s Out-Of-

Memory (OOM) killer terminates several processes to 

reclaim the memory space allocated for the processes. The 

compressed swap cache technique can be useful to 

increase the available memory size without killing 

background processes on embedded devices [1][2]. For a 

swap-out request, the compressed swap cache technique 

compresses the page and writes it at the reserved memory 

space. For a swap-in request, it decompresses the page and 

loads it at the page cache. Since the reads from the 

compressed cache are faster than the reads from a swap 

storage device, the performance impact of swapping can 

be mitigated. Moreover, it can reduce the life-shortening 

writes on the NAND flash storage as swap device. Since 

the size of the compressed page varies widely, the memory 

pool for the compressed objects should be managed 

efficiently. A compressed swap cache can be efficient if it 

generates less swap write operations and increases the 

swap cache utilization. However, the current memory 

pools do not satisfy both requirements. 

 In this paper, we propose several enhancements of 

the zsmalloc memory pool of Linux. The techniques can 

increase the density of compressed swap cache. From 

experiments, we demonstrate that the enhanced zsmalloc 

can reduce the response times of memory-hungry 

applications by up to 11.3% and takes up to 46% less 

swap space compared to the Linux’s default compressed 

memory pool, zbud. 

 

2 Linux’s compressed memory system 
 

 Currently, three in-kernel memory compression 

solutions exist in Linux kernel [3]: zram, zcache and 

zswap. The zram is a RAM based block device for swap 

pages. When the swap subsystem sends a page to the zram 

device, the page is sent to the zram driver through the 

block I/O subsystem. Then, the page is compressed and is 



saved at the RAM-based block device. Since the swapped-

out page is written at memory, zram provides fast response 

time. In addition, since the page is compressed, zram can 

save memory space. 

 On the other hand, zcache and zswap use the 

frontswap of swap subsystem. The swapped pages go 

directly to zcache/zswap and thus the swap-out has a low 

latency [3]. Each swap page is compressed into a 

compressed page, called zpage. Each zpage is associated 

with a key which is generated with the page address. The 

key is searched at swap-in operation. User can control the 

maximum size of the compressed pool. Since zcache can 

store both swap data and page cache data, it requires a 

large size of index key. However, zswap handles only 

swap data and thus it is more suitable for resource-

constrained embedded systems. 

 Zswap uses the dynamically allocated memory pool, 

called zpool, in order to store zpages. There are two 

implementations of zpool in the current Linux kernel: zbud 

and zsmalloc. Zbud is the default zpool for zswap. It stores 

compressed pages in pairs in a single memory page called 

zbud page. The zbud type zpool allocates exactly one page 

to store two compressed pages, which means the 

compression ratio will always be 0.5 or worse because of 

half-full zbud pages. Zbud maintains an LRU list of zbud 

pages to select victims for writeback operations when the 

memory pool is full. Zbud provides a worse density than 

zsmalloc due to many internal fragmentations in the 

allocated zbud pages. Therefore, the memory pool reaches 

its size limit quickly. 

 Zsmalloc works well under low memory conditions 

since it maintains multiple classes to store different sizes 

of compressed pages. Zsmalloc links several 4KB of pages 

and forms a compound page, called zspage. The 

compressed pages can be stored within the zspage across 

the 4KB-page boundaries. In order to manage zpages 

efficiently, zsmalloc divides the memory pool into several 

classes, called size class, each of which can store a 

different size of compressed pages, as shown in the Figure 

1. For example, the class 2 has 12KB size zspages and 

stores the compressed pages less than 48 bytes. One 

zspage can store up to 256 compressed pages.  Currently, 

zsmalloc supports 69 number of size classes. Each size 

class maintains zspages in different fullness groups 

depending on the number of live objects they contain. 

When allocating or freeing objects, each zspage is 

assigned to the appropriate fullness group. For example, 

the fullness status of the zspage can change from almost 

full group to almost empty group when freeing an object. 

 Zpool can shrink the actual memory size of the pool by 

evicting some zpages. The fullness group is maintained to 

assist the pool shrinking feature of zsmalloc, which is not 

implemented yet. For this reason, once zswap fills it 

cannot evict the oldest page, it can only reject new pages. 

Zsmalloc shows poor performance in such a situation. 

Therefore, zbud is now preferable for zswap when the 

memory pool is small although zsmalloc provides higher 

density than zbud. Yang et al. [4] proposed a software-

based RAM compression technique called CRAMES. The 

memory manager of CREAMS is built upon the kernel 

page allocator. In order to identify the most appropriate 

memory allocation, they evaluated several allocation 

algorithms for the kernel page allocator. However, 

CREAMS suffers from internal fragmentation and shows 

poor performance in low memory situations. Therefore, an 

enhanced memory pool is required to provide high 

performance and high density of compressed cache. 

 

 
Figure 1. The memory pool of zsmalloc. 

 

  

3 Enhanced zsmalloc 
 

 We propose some improvements for zsmalloc in 

order to satisfy high performance and high density 

requirements. Zsmalloc should writeback some old pages 

into the swap storage to create free memory space for a 

new zpage store request. Then, it can store more recent 

zpages which have high probabilities to be referenced 

again. In order to free a zspage, zsmalloc should evict all 

objects in the zspage. Our technique maintains the least 

recently used (LRU) list of all zspages of each fullness 

group of each class. However, the LRU ordering between 

size classes is not maintained since our observation shows 

that the access pattern for size classes follows the uniform 

distribution. Therefore, we select the victim class in a 

round-robin manner. Table 1 shows the pseudocode of our 

zsmalloc writeback algorithm. 

 

Table 1. Zsmalloc writeback pseudocode.  

Initialize static Marker to zero 

Input: pool, count 

Output: reclaimed 

1. while reclaimed is less than count 

2.     do if FullnessGroup[Marker] is not empty 

3.         then get head zspage from FullnessGroup[Marker] 

of given pool // Head of the group is the LRU zspage  

4.         reclaimed ← evict the selected zspage 

5.     Marker ← (Marker + 1) % n  

     // n is the total number of fullness group of that pool 

6. return reclaimed 

 



 
Figure 2. Analysis of size class utilization in zsmalloc. 

 

 Current zsmalloc implementation accepts the zpage 

size up to system page size (4K bytes in 32 bit Linux 

system). Figure 2 shows the distributions of memory 

savings and memory pool usages of different size classes. 

The high indexed size classes show poor memory savings 

and high memory usages. For example, if zsmalloc stores 

one zpage in the 68
th

 size class, it can save 20% of system 

page size memory while the first two size classes give 

more than 99% of memory savings. Therefore, it is better 

to reject zpages in high indexed size classes to increase the 

zpool utilization when the memory pool has a low free 

space.  In this way, more number of small size of zpages 

can be stored. As a result, the memory pool density will be 

increased and the hit ratio of compressed cache will also 

be increased.  

 In order to decrease the maximum size of allowed 

zpage, our technique rejects all the zpages greater than the 

allowed size. If the allowed size is too small, the memory 

saving is significant but more zpages should be written at 

the swap storage. Therefore, a proper threshold value 

should be selected. As shown in Figure 3, when the 

maximum size of allowed object is 3072 bytes, the swap 

space usage is minimized. If the size becomes less than 

3072 bytes, the swap space usage increases since zsmalloc 

should reject all large objects. For this reason, we set the 

maximum size of allowed zpage to 3072 bytes.  

 

 
Figure 3. Swap usage with different maximum object size. 

 

4 Experiments 
 

 For experiment, we used an Odroid-U3 development 

board equipped with Exynos 4412 CPU and 2GB of 

DRAM. It runs Tizen 2.2 over Linux kernel 3.10.52. We 

have back-ported zpool, zbud, zsmalloc and zswap from 

the mainline Linux kernel 4.0.5. Then, we implemented 

our writeback operation of zsmalloc and set the maximum 

allowed zpage size to 3072 bytes. The maximum 

compressed pool size is set to 20MB, and 256MB of swap 

space is reserved at SD card. We measured the execution 

time of a memory hungry application while running  the 

Tizen web browser which opens several web pages. The 

memory hungry applicaton allocates 1500 MB of heap 

memory. In order to allocate such a big memory, many 

swap-out pages are sent to zswap. The swap space usage, 

and the density and write-back page count of the zswap 

memory pool are measured. 

 Table 2 compares the memory allocation time, the 

swap space usage, the memory pool density and the write-

back page count for allocating 1500 MB of memory at 

different schemes, the original zsmalloc, zbud and the 

enhaned zsmalloc. The enhanced zsmalloc shows about 

11.3% shorter execution time than zbud, it also shows 

about 73.5% shorter execution time than the current 

zsmalloc. It also takes about 46% and 51% less swap 

space than zbud and the original zsmalloc, respectively.  

 Since zbud consumes the memory pool quickly, the 

kernel page allocator is frequently called by zbud. 

However, if there is no available free memory in the 

system, the page allocator fails to allocate memory for 

zbud, and therefore zbud is forced to reject an incoming 

compressed page, which is eventually written at the swap 

storage device. Therefore, the enhanced zsmalloc can 

show better performance and use less swap space than 

zbud.  

 The enhanced zsmalloc pool density shows a higher 

density than other schemes. As the scheme rejects large 

size of zpages, it can store more number of small sized 

zpages in the zsmalloc memory pool. Since the pool 

density of zbud is low, zbud shoud writeback many old 

zpages to the swap storage space for new zpage requests. 

Therefore, the write-back page count of zbud is much 

higher than the enhanced zsmalloc. As the original 

zsmalloc does not have the write-back functionality, its 

write-back page count is zero. 

 

Table 2. Performance comparison of different zpool.  

Factors Original 

zsmalloc 

Zbud Enhanced 

zsmalloc 

Time (s) 28.04 17.99 16.16 

Swap usage (MB) 127 115 62 

Density (Obj/MB) 619 499 641 

Write-back  count 0 19128 1911 

 



5 Conclusions 
 

 An efficient utilization of memory is crucial for 

embedded systems. In this paper, we discussed the 

compressed cache techniques of Linux kernel. We 

proposed an enhanced zsmalloc which rejects large size of 

compressed pages to provide better performance and use 

less swap space than zbud. The enhanced zsmalloc shows 

better performance while it takes less swap space than 

zbud and the current zsmalloc. The enhanced zsmalloc 

also increases the pool density compared to zbud.  
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