

Selective Rejection Technique for Compressed Object at Compressed

Swap Cache

Md Salahuddin and Dongkun Shin

Sungkyunkwan University, Suwon, Korea

sagor@skku.edu, dongkun@skku.edu

Abstract - The compressed swap cache such as zswap is a memory overcommitment technique of Linux

kernel, which is suitable for smart devices with NAND flash swap storage. It compresses the pages which are

in the process of being swapped out and stores them in a RAM-based memory pool. Since the sizes of

compressed pages vary widely, the memory pool should efficiently manage the memory area in order to

minimize memory wastage and flash memory write operations. We propose an enhanced management

technique for the zswap memory pool. Experiment results show that the improved memory pool reduces the

response time of memory-hungry applications by up to 11.3% and takes up to 46% less swap space than the

default memory pool.

Keywords: Memory, Zsmalloc, Swap Cache, Linux kernel, Embedded Systems.

1 Introduction

 Modern smart devices like smartphones and IoT

devices require a large capacity of main memory to

support complex applications and to utilize the multi-core

hardware. Device manufactures are increasing the heap

size limit of each application as well as the total DRAM

size in order to support more versatile applications.

However, it is not easy to increase the memory size since

these devices are sensitive to power consumption, device

size and cost. For example, Samsung IoT module ARTIK

5 is equipped with 512MB of DRAM. The Tizen

smartphone Samsung Z1 has only 768 MB of DRAM.

Therefore, researchers are exploring other solutions to run

memory-hungry applications on such low-cost devices.

 Smart devices generally have NAND flash-based

storage such as embedded MultiMediaCard (eMMC) as

internal storage and Secure Digital (SD) card as external

storage. These storage devices are unsuitable for swap

space due to the long access latency and limited endurance

of flash memory. Therefore, when there is no sufficient

free memory for running applications, Linux’s Out-Of-

Memory (OOM) killer terminates several processes to

reclaim the memory space allocated for the processes. The

compressed swap cache technique can be useful to

increase the available memory size without killing

background processes on embedded devices [1][2]. For a

swap-out request, the compressed swap cache technique

compresses the page and writes it at the reserved memory

space. For a swap-in request, it decompresses the page and

loads it at the page cache. Since the reads from the

compressed cache are faster than the reads from a swap

storage device, the performance impact of swapping can

be mitigated. Moreover, it can reduce the life-shortening

writes on the NAND flash storage as swap device. Since

the size of the compressed page varies widely, the memory

pool for the compressed objects should be managed

efficiently. A compressed swap cache can be efficient if it

generates less swap write operations and increases the

swap cache utilization. However, the current memory

pools do not satisfy both requirements.

 In this paper, we propose several enhancements of

the zsmalloc memory pool of Linux. The techniques can

increase the density of compressed swap cache. From

experiments, we demonstrate that the enhanced zsmalloc

can reduce the response times of memory-hungry

applications by up to 11.3% and takes up to 46% less

swap space compared to the Linux’s default compressed

memory pool, zbud.

2 Linux’s compressed memory system

 Currently, three in-kernel memory compression

solutions exist in Linux kernel [3]: zram, zcache and

zswap. The zram is a RAM based block device for swap

pages. When the swap subsystem sends a page to the zram

device, the page is sent to the zram driver through the

block I/O subsystem. Then, the page is compressed and is

saved at the RAM-based block device. Since the swapped-

out page is written at memory, zram provides fast response

time. In addition, since the page is compressed, zram can

save memory space.

 On the other hand, zcache and zswap use the

frontswap of swap subsystem. The swapped pages go

directly to zcache/zswap and thus the swap-out has a low

latency [3]. Each swap page is compressed into a

compressed page, called zpage. Each zpage is associated

with a key which is generated with the page address. The

key is searched at swap-in operation. User can control the

maximum size of the compressed pool. Since zcache can

store both swap data and page cache data, it requires a

large size of index key. However, zswap handles only

swap data and thus it is more suitable for resource-

constrained embedded systems.

 Zswap uses the dynamically allocated memory pool,

called zpool, in order to store zpages. There are two

implementations of zpool in the current Linux kernel: zbud

and zsmalloc. Zbud is the default zpool for zswap. It stores

compressed pages in pairs in a single memory page called

zbud page. The zbud type zpool allocates exactly one page

to store two compressed pages, which means the

compression ratio will always be 0.5 or worse because of

half-full zbud pages. Zbud maintains an LRU list of zbud

pages to select victims for writeback operations when the

memory pool is full. Zbud provides a worse density than

zsmalloc due to many internal fragmentations in the

allocated zbud pages. Therefore, the memory pool reaches

its size limit quickly.

 Zsmalloc works well under low memory conditions

since it maintains multiple classes to store different sizes

of compressed pages. Zsmalloc links several 4KB of pages

and forms a compound page, called zspage. The

compressed pages can be stored within the zspage across

the 4KB-page boundaries. In order to manage zpages

efficiently, zsmalloc divides the memory pool into several

classes, called size class, each of which can store a

different size of compressed pages, as shown in the Figure

1. For example, the class 2 has 12KB size zspages and

stores the compressed pages less than 48 bytes. One

zspage can store up to 256 compressed pages. Currently,

zsmalloc supports 69 number of size classes. Each size

class maintains zspages in different fullness groups

depending on the number of live objects they contain.

When allocating or freeing objects, each zspage is

assigned to the appropriate fullness group. For example,

the fullness status of the zspage can change from almost

full group to almost empty group when freeing an object.

 Zpool can shrink the actual memory size of the pool by

evicting some zpages. The fullness group is maintained to

assist the pool shrinking feature of zsmalloc, which is not

implemented yet. For this reason, once zswap fills it

cannot evict the oldest page, it can only reject new pages.

Zsmalloc shows poor performance in such a situation.

Therefore, zbud is now preferable for zswap when the

memory pool is small although zsmalloc provides higher

density than zbud. Yang et al. [4] proposed a software-

based RAM compression technique called CRAMES. The

memory manager of CREAMS is built upon the kernel

page allocator. In order to identify the most appropriate

memory allocation, they evaluated several allocation

algorithms for the kernel page allocator. However,

CREAMS suffers from internal fragmentation and shows

poor performance in low memory situations. Therefore, an

enhanced memory pool is required to provide high

performance and high density of compressed cache.

Figure 1. The memory pool of zsmalloc.

3 Enhanced zsmalloc

 We propose some improvements for zsmalloc in

order to satisfy high performance and high density

requirements. Zsmalloc should writeback some old pages

into the swap storage to create free memory space for a

new zpage store request. Then, it can store more recent

zpages which have high probabilities to be referenced

again. In order to free a zspage, zsmalloc should evict all

objects in the zspage. Our technique maintains the least

recently used (LRU) list of all zspages of each fullness

group of each class. However, the LRU ordering between

size classes is not maintained since our observation shows

that the access pattern for size classes follows the uniform

distribution. Therefore, we select the victim class in a

round-robin manner. Table 1 shows the pseudocode of our

zsmalloc writeback algorithm.

Table 1. Zsmalloc writeback pseudocode.

Initialize static Marker to zero

Input: pool, count

Output: reclaimed

1. while reclaimed is less than count

2. do if FullnessGroup[Marker] is not empty

3. then get head zspage from FullnessGroup[Marker]

of given pool // Head of the group is the LRU zspage

4. reclaimed ← evict the selected zspage

5. Marker ← (Marker + 1) % n

 // n is the total number of fullness group of that pool

6. return reclaimed

Figure 2. Analysis of size class utilization in zsmalloc.

 Current zsmalloc implementation accepts the zpage

size up to system page size (4K bytes in 32 bit Linux

system). Figure 2 shows the distributions of memory

savings and memory pool usages of different size classes.

The high indexed size classes show poor memory savings

and high memory usages. For example, if zsmalloc stores

one zpage in the 68
th

 size class, it can save 20% of system

page size memory while the first two size classes give

more than 99% of memory savings. Therefore, it is better

to reject zpages in high indexed size classes to increase the

zpool utilization when the memory pool has a low free

space. In this way, more number of small size of zpages

can be stored. As a result, the memory pool density will be

increased and the hit ratio of compressed cache will also

be increased.

 In order to decrease the maximum size of allowed

zpage, our technique rejects all the zpages greater than the

allowed size. If the allowed size is too small, the memory

saving is significant but more zpages should be written at

the swap storage. Therefore, a proper threshold value

should be selected. As shown in Figure 3, when the

maximum size of allowed object is 3072 bytes, the swap

space usage is minimized. If the size becomes less than

3072 bytes, the swap space usage increases since zsmalloc

should reject all large objects. For this reason, we set the

maximum size of allowed zpage to 3072 bytes.

Figure 3. Swap usage with different maximum object size.

4 Experiments

 For experiment, we used an Odroid-U3 development

board equipped with Exynos 4412 CPU and 2GB of

DRAM. It runs Tizen 2.2 over Linux kernel 3.10.52. We

have back-ported zpool, zbud, zsmalloc and zswap from

the mainline Linux kernel 4.0.5. Then, we implemented

our writeback operation of zsmalloc and set the maximum

allowed zpage size to 3072 bytes. The maximum

compressed pool size is set to 20MB, and 256MB of swap

space is reserved at SD card. We measured the execution

time of a memory hungry application while running the

Tizen web browser which opens several web pages. The

memory hungry applicaton allocates 1500 MB of heap

memory. In order to allocate such a big memory, many

swap-out pages are sent to zswap. The swap space usage,

and the density and write-back page count of the zswap

memory pool are measured.

 Table 2 compares the memory allocation time, the

swap space usage, the memory pool density and the write-

back page count for allocating 1500 MB of memory at

different schemes, the original zsmalloc, zbud and the

enhaned zsmalloc. The enhanced zsmalloc shows about

11.3% shorter execution time than zbud, it also shows

about 73.5% shorter execution time than the current

zsmalloc. It also takes about 46% and 51% less swap

space than zbud and the original zsmalloc, respectively.

 Since zbud consumes the memory pool quickly, the

kernel page allocator is frequently called by zbud.

However, if there is no available free memory in the

system, the page allocator fails to allocate memory for

zbud, and therefore zbud is forced to reject an incoming

compressed page, which is eventually written at the swap

storage device. Therefore, the enhanced zsmalloc can

show better performance and use less swap space than

zbud.

 The enhanced zsmalloc pool density shows a higher

density than other schemes. As the scheme rejects large

size of zpages, it can store more number of small sized

zpages in the zsmalloc memory pool. Since the pool

density of zbud is low, zbud shoud writeback many old

zpages to the swap storage space for new zpage requests.

Therefore, the write-back page count of zbud is much

higher than the enhanced zsmalloc. As the original

zsmalloc does not have the write-back functionality, its

write-back page count is zero.

Table 2. Performance comparison of different zpool.

Factors Original

zsmalloc

Zbud Enhanced

zsmalloc

Time (s) 28.04 17.99 16.16

Swap usage (MB) 127 115 62

Density (Obj/MB) 619 499 641

Write-back count 0 19128 1911

5 Conclusions

 An efficient utilization of memory is crucial for

embedded systems. In this paper, we discussed the

compressed cache techniques of Linux kernel. We

proposed an enhanced zsmalloc which rejects large size of

compressed pages to provide better performance and use

less swap space than zbud. The enhanced zsmalloc shows

better performance while it takes less swap space than

zbud and the current zsmalloc. The enhanced zsmalloc

also increases the pool density compared to zbud.

Acknowledgements

 This work was supported by Samsung R&D Institute

Bangladesh and DMC R&D Center, Samsung Electronics

Co. Ltd.

References

[1] A. F. Briglia, A. Bezerra, L. Moiseichuk, and N.

Gupta, “Evaluating effects of cache memory compression

on embedded systems”, Proceedings of the Linux

Symposium, Vol. 1, pp. 53-64, Jun. 2007.

[2] S. Jennings, “The zswap compressed swap cache”,

https://lwn.net/Articles/537422/, 2013.

[3] D. Maegenheimer, “In-kernel memory compression”,

https://lwn.net/Articles/545244/, 2013.

[4] L. Yang, R.P. Dick, H. Lekatsas, and S. Chakradhar,

“Online memory compression for embedded systems”,

ACM Transactions on Embedded Computing Systems, Vol.

9, No. 3, pp. 27:1 – 27:30, Feb. 2010.

