
Host-Driven Block Management Scheme

Using Log-Structured File System for Memory-Constrained SSD

Sihoon Choi, Hyunho Gwak, and Dongkun Shin

College of Information and Communication Engineering,

Sungkyunkwan University, Suwon, Korea

beswan@skku.edu, gusghrhkr@skku.edu, dongkun@skku.edu

Abstract – Recently, Solid-State Disks (SSDs) are widely adopted by high-performance storage systems. As

the capacity of SSD increases, the DRAM size for address mapping table becomes a critical problem of SSD.

To address this problem, we propose a novel log-structured file system for block-level maping flash

translation layer. By synchronizing the address spaces of file system and flash translation layer, the scheme

can eliminate the duplicated garbage collection and can minimize the flash block management cost. In

experiments with a real SSD device, the proposed scheme improved the write performance significantly for

the random write intensive workloads.

Keywords: Flash memory, File system, Flash Transaltion Layer, Solid-State Disk.

1 Introduction

 Recently, Solid-State Disks (SSDs) are widely

adopted by high-performance storage systems. SSD uses

flash memory as storage media. A flash memory chip is

composed of several blocks, and a block is composed of

several pages. While the erase operation is performed by

the unit of block, the program or read operation is

performed by the unit of page.

 Flash memory does not support in-place update due

to its “erase-before-write” constraint. Therefore, several

out-of-place update schemes are used by SSD firmware,

called flash translation layer (FTL), which can emulate a

normal block device for flash memory. In order to handle

the out-of-place update scheme, FTL manages an address

mapping table that provides the translation information

between a logical address and a physical address.

Generally, recent SSDs use the page-level address

mapping rather than the block-level address mapping since

the former provides a higher performance.

 The size of mapping table is increasing in proportion

to the capacity of SSD. For example, a 1TB size of SSD

requires 512MB of DRAM space for mapping table if it

uses 8KB of page-level mapping. However, a large

capacity of DRAM requires extra power consumption,

space, and hardware cost. Since the capacities of SSDs are

exponentially increasing, the page-level mapping FTL can

be no longer adopted by the large capacity of SSDs.

 Several techniques are proposed for reducing the

memory space of address mapping table in SSD. In DFTL

[1] scheme, only a portion of the page-level mapping table

is cached at DRAM while the overall mapping table is

stored in flash memory. If the mapping entries that are

associated with an incoming I/O request are not cached,

DFTL replaces old mapping entries with the required

mapping entries on demand. The replacement operation

causes extra flash memory accesses, and thus degrades

SSD performance. In particular, when the storage access

pattern is random, there will be frequent replacement

operations. The block-level mapping with several log

blocks [2] can reduce the mapping table size. However,

the log block merge operation invokes a large

performance overhead. The block-level mapping also

shows a poor performance when the workload is random

since the random writes increase the log block merge cost.

As long as the poor random I/O performances of these

alternative mapping techniques are not solved, they cannot

be solutions for the mapping table size problem.

 In order to mitigate the random I/O performance

problem of the block-level mapping FTL, the log-

structured file system (LFS) can be useful since it can

control the write access pattern due to its out-of-place

update scheme. When a file system block should be

updated, LFS does not overwrite the block, instead it

writes new data at another free block. Therefore, LFS can

determine the write pattern considering the internal cost

within SSD. However, LFS must perform the garbage

collection in order to reclaim invalid blocks. The garbage

collection copies valid blocks in the victim segment to the

free segment. A critical problem of garbage collection is

that the same operations will happen at SSD. Even though

an LFS performs the garbage collection to make an empty

segment, FTL will also perform the garbage collection to

make a free flash memory block. The duplicated garbage

collections reduce the I/O performance and lifespan of

SSD [3].

 To solve the duplicated address space management

problem, Lee et al. [4] proposed the REDO scheme which

is composed of a simple block-level mapping FTL and a

LFS. The garbage collection is performed only by the file

system. However, the host-level garbage collection

invokes many data transfer operations between host and

device. In addition, if the file system block size and the

flash memory page size are different, the host file system

cannot perfectly control the internal behavior of SSD. For

example, if SSD uses 8KB of page size but LFS uses 4KB

of block size, SSD should perform the read-modify-write

operation for 4KB write request.

 In this paper, we proposes an integrated file system

and FTL scheme, which is composed of a block-level

mapping FTL for small mapping table and a LFS. In order

to remove the data transfer operations during garbage

collection, our LFS uses the threaded-logging scheme,

which reclaims invalid blocks (holes) by overwriting

instead of copying then into other free segments. The LFS

selects the holes considering the write cost in SSD.

2 Archtecture

2.1 Block-Level Mapping FTL

 Our scheme uses the block mapping, which allocates

a replacement block to update a flash block. The

replacement block uses the in-place write scheme, i.e., the

physical location within a block of each logical page is

determined based on the logical address. Therefore, the

data location can be directly controlled by the host file

system which determines the logical address. The FTL is

called as S-FTL.

 In the block mapping scheme with out-of-place log

blocks [2], the log block is programmed in the order of

request arrival time. Therefore, for random write requests,

there are significant log block merge overhead as shown in

Figure 1(a). However, our FTL performs the page

padding technique in order to maintain the in-place write

scheme as shown in Figure 1(b).

2.2 LFS

 Our LFS has several features. First, the LFS segment

size is equal to the flash memory block size of SSD.

Second, only the threaded-logging scheme is used to

remove the garbage collection cost. When the threaded-

logging selects holes for new data, it selects the block

location considering the padding cost. Third, the threaded-

logging utilizes the holes of a segment at the increasing

address order to generate only sequential write requests

for the associated flash block. The file system is called as

S-LFS.

 Figure 2 (a) shows an example of when the LFS

segment size is smaller than the flash block size. Although

the LFS considers the segment 1 as a free segment, the

segment 1 is associated with a part of flash block.

Therefore, the file system cannot directly control the

padding cost within SSD. As shown in Figure 2 (b), if the

file system segment size and the flash block size are

identical, there are no unexpected page copy operations in

SSD.

Segment 4

File System

E B F G

E B F G

PBN 6 PBN 25

Erase

 24 25 26 27PPN 100 101 102 103

Write(E, F, G)

Padding CopyFlash Storage

A B C D

A B C D

Segment 4

File System

E F G

PBN 6 PBN 25
 24 25 26 27PPN 100 101 102 103

Write(E, F, G)

Flash Storage

A B C D

A B C D

PBN 26
104 105 106 107

E B F G

Merge copyErase

Erase

(a) Block mapping w/ Log block

(b) Block mapping w/ in-place replacement block

Free

Valid

Invalid

Figure 1. FTL operation comparison

(a) Segment and flash block is unaligned

(b) Segment and flash block is aligned

Figure 2. FTL behavior comparison according to the alignment

between the segment and the flash block

 When the LFS generates the write requests in the

threaded-logging manner, if the block size of file system

and the flash page size in SSD are different, there will be

read-modify-write operations in FTL and the in-place

write policy in a flash block can be broken. To solve this

problem, our LFS performs the host-level padding

technique if the hole size is less than the flash page size or

the hole location is unaligned to the flash page size. It

reads valid blocks from SSD, merges it with new data, and

sends aligned write requests to SSD.

3 Experiments

 We implemented the proposed LFS technique at

F2FS [5]. The block-level mapping FTL was

implemented at the Jasmine OpenSSD platform [6]. For

comparisons, we also implemented DFTL [1] and the pure

block mapping of REDO [4] at the OpenSSD platform.

The ext4 file system is used for DFTL, and an F2FS-based

LFS is used for REDO. The flash memory chips in

OpenSSD uses 16KB of pages and 128 pages of block.

The total capacity of OpenSSD is 3GB and the

overprovision ratio is 3%. Several benchmark programs

are used such as Tiobench, TPC-C, and Filebench

(varmail workload). The target SSD is initialized with

dummy data such that the garbage collections are invoked

during the target workload executions.

 As shown in Figure 3, the proposed scheme improves

the performance by 71%~793%. The ext4 with DFTL

shows significantly low performance due to the random

write patterns of workloads. REDO performs well in the

Tiobench workload since REDO changes the random

write requests of the benchmark into sequential write

requests. However, for other benchmarks, REDO shows

the lowest performance due to its unaligned write requests.

Therefore, as shown in Figure 4, REDO suffers from the

full merge operation overhead when small random write

requests are dominant. Figure 4 shows that the proposed

scheme performs only the switch merges and the partial

merges since the replacement block is programmed by the

in-place scheme.

4 Conclusions

 In this paper, we proposed a log-structured file

system for block-level mapping flash translation layer,

which can reduce the mapping table size of SSD. By the

in-place write scheme for the flash blocks, it can avoid

high-cost of block merge operations. In order to eliminate

duplicated garbage collections, the LFS uses only

threaded-logging scheme. Experiments showed that the

proposed scheme improves the write performance

significantly for random write intensive workloads. It can

also extend the lifespan of SSD by 72% on average.

Figure 3. Normalized write performance

Figure 4. Normalized erase count of each FTLs

References

[1] A. Gupta, Y. Kim, and B. Urgaonkar, "DFTL: a flash

translation layer employing demand-based selective

caching of page-level address mappings", In Proc. of the

International Conference on Architectural Support for

Programming Languages and Operating System

(ASPLOS), pp. 229–240, March 2009.

[2] J. Kim, J.M. Kim, S.H. Noh, S. Min, and Y. Cho. "A

Space-Efficient Flash Translation Layer for Compactflash

Systems", IEEE Transactions on Consumer Electronics,

48(2):366–375, May 2002.

[3] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha

Talagala, and Swaminathan Sundararaman. "Don’t Stack

Your Log On My Log", In Proc. of the USENIX

Workshop on Interactions of NVM/Flash with Operating

Systems and Workloads (INFLOW), October 2014.

[4] S. Lee, J. Kim, and A. Mithal, “Refactored Design of

I/O Architecture for Flash Storage”, Compututer

Architecture Letters, pp. 99:1–1, 2014.

[5] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A

New File System for Flash Storage”, In Proc. of the

USENIX File and Storage Technologies (FAST),

Fabruary 2015.

[6] The OpenSSD Project, http://www.openssd-

project.org

