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Abstract – Recently, Solid-State Disks (SSDs) are widely adopted by high-performance storage systems.  As 

the capacity of SSD increases, the DRAM size for address mapping table becomes a critical problem of SSD. 

To address this problem, we propose a novel log-structured file system for block-level maping flash 

translation layer. By synchronizing the address spaces of file system and flash translation layer, the scheme 

can eliminate the duplicated garbage collection and can minimize the flash block management cost. In 

experiments with a real SSD device, the proposed scheme improved the write performance significantly for 

the random write intensive workloads. 
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1 Introduction 
 

 Recently, Solid-State Disks (SSDs) are widely 

adopted by high-performance storage systems. SSD uses 

flash memory as storage media. A flash memory chip is 

composed of several blocks, and a block is composed of 

several pages. While the erase operation is performed by 

the unit of block, the program or read operation is 

performed by the unit of page.  

 Flash memory does not support in-place update due 

to its “erase-before-write” constraint. Therefore, several 

out-of-place update schemes are used by SSD firmware, 

called flash translation layer (FTL), which can emulate a 

normal block device for flash memory. In order to handle 

the out-of-place update scheme, FTL manages an address 

mapping table that provides the translation information 

between a logical address and a physical address. 

Generally, recent SSDs use the page-level address 

mapping rather than the block-level address mapping since 

the former provides a higher performance.  

 The size of mapping table is increasing in proportion 

to the capacity of SSD.  For example, a 1TB size of SSD 

requires 512MB of DRAM space for mapping table if it 

uses 8KB of page-level mapping.  However, a large 

capacity of DRAM requires extra power consumption, 

space, and hardware cost. Since the capacities of SSDs are 

exponentially increasing, the page-level mapping FTL can 

be no longer adopted by the large capacity of SSDs. 

 Several techniques are proposed for reducing the 

memory space of address mapping table in SSD. In DFTL 

[1] scheme, only a portion of the page-level mapping table 

is cached at DRAM while the overall mapping table is 

stored in flash memory. If the mapping entries that are 

associated with an incoming I/O request are not cached, 

DFTL replaces old mapping entries with the required 

mapping entries on demand. The replacement operation 

causes extra flash memory accesses, and thus degrades 

SSD performance. In particular, when the storage access 

pattern is random, there will be frequent replacement 

operations. The block-level mapping with several log 

blocks [2] can reduce the mapping table size. However, 

the log block merge operation invokes a large 

performance overhead. The block-level mapping also 

shows a poor performance when the workload is random 

since the random writes increase the log block merge cost. 

As long as the poor random I/O performances of these 

alternative mapping techniques are not solved, they cannot 

be solutions for the mapping table size problem.  

  In order to mitigate the random I/O performance 

problem of the block-level mapping FTL, the log-

structured file system (LFS) can be useful since it can 

control the write access pattern due to its out-of-place 

update scheme. When a file system block should be 

updated, LFS does not overwrite the block, instead it 

writes new data at another free block. Therefore, LFS can 

determine the write pattern considering the internal cost 

within SSD. However, LFS must perform the garbage 

collection in order to reclaim invalid blocks. The garbage 

collection copies valid blocks in the victim segment to the 

free segment. A critical problem of garbage collection is 

that the same operations will happen at SSD. Even though 

an LFS performs the garbage collection to make an empty 

segment, FTL will also perform the garbage collection to 

make a free flash memory block. The duplicated garbage 

collections reduce the I/O performance and lifespan of 

SSD [3]. 



 To solve the duplicated address space management 

problem, Lee et al. [4] proposed the REDO scheme which 

is composed of a simple block-level mapping FTL and a 

LFS. The garbage collection is performed only by the file 

system. However, the host-level garbage collection 

invokes many data transfer operations between host and 

device. In addition, if the file system block size and the 

flash memory page size are different, the host file system 

cannot perfectly control the internal behavior of SSD. For 

example, if SSD uses 8KB of page size but LFS uses 4KB 

of block size, SSD should perform the read-modify-write 

operation for 4KB write request.  

 In this paper, we proposes an integrated file system 

and FTL scheme, which is composed of a block-level 

mapping FTL for small mapping table and a LFS. In order 

to remove the data transfer operations during garbage 

collection, our LFS uses the threaded-logging scheme, 

which reclaims invalid blocks (holes) by overwriting 

instead of copying then into other free segments. The LFS 

selects the holes considering the write cost in SSD. 

 

2 Archtecture 

2.1 Block-Level Mapping FTL 
 

 Our scheme uses the block mapping, which allocates 

a replacement block to update a flash block. The 

replacement block uses the in-place write scheme, i.e., the 

physical location within a block of each logical page is 

determined based on the logical address. Therefore, the 

data location can be directly controlled by the host file 

system which determines the logical address. The FTL is 

called as S-FTL. 

 In the block mapping scheme with out-of-place log 

blocks [2], the log block is programmed in the order of 

request arrival time. Therefore, for random write requests, 

there are significant log block merge overhead as shown in 

Figure 1(a). However, our FTL performs the page 

padding technique in order to maintain the in-place write 

scheme as shown in Figure 1(b). 

 

2.2 LFS 
 

 Our LFS has several features. First, the LFS segment 

size is equal to the flash memory block size of SSD. 

Second, only the threaded-logging scheme is used to 

remove the garbage collection cost. When the threaded-

logging selects holes for new data, it selects the block 

location considering the padding cost. Third, the threaded-

logging utilizes the holes of a segment at the increasing 

address order to generate only sequential write requests 

for the associated flash block. The file system is called as 

S-LFS. 

 Figure 2 (a) shows an example of when the LFS 

segment size is smaller than the flash block size. Although 

the LFS considers the segment 1 as a free segment, the 

segment 1 is associated with a part of flash block. 

Therefore, the file system cannot directly control the 

padding cost within SSD. As shown in Figure 2 (b), if the 

file system segment size and the flash block size are 

identical, there are no unexpected page copy operations in 

SSD. 
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Figure 1. FTL operation comparison 

 

 
(a) Segment and flash block is unaligned 

 

 
(b) Segment and flash block is aligned 

 

Figure 2. FTL behavior comparison according to the alignment 

between the segment and the flash block 

 

 When the LFS generates the write requests in the 

threaded-logging manner, if the block size of file system 

and the flash page size in SSD are different, there will be 

read-modify-write operations in FTL and the in-place 

write policy in a flash block can be broken. To solve this 

problem, our LFS performs the host-level padding 



technique if the hole size is less than the flash page size or 

the hole location is unaligned to the flash page size. It 

reads valid blocks from SSD, merges it with new data, and 

sends aligned write requests to SSD. 

 

3 Experiments 
 

 We implemented the proposed LFS technique at 

F2FS [5].  The block-level mapping FTL was 

implemented at the Jasmine OpenSSD platform [6]. For 

comparisons, we also implemented DFTL [1] and the pure 

block mapping of REDO [4] at the OpenSSD platform. 

The ext4 file system is used for DFTL, and an F2FS-based 

LFS is used for REDO. The flash memory chips in 

OpenSSD uses 16KB of pages and 128 pages of block.  

The total capacity of OpenSSD is 3GB and the 

overprovision ratio is 3%. Several benchmark programs 

are used such as Tiobench, TPC-C, and Filebench 

(varmail workload). The target SSD is initialized with 

dummy data such that the garbage collections are invoked 

during the target workload executions. 

 As shown in Figure 3, the proposed scheme improves 

the performance by 71%~793%. The ext4 with DFTL 

shows significantly low performance due to the random 

write patterns of workloads. REDO performs well in the 

Tiobench workload since REDO changes the random 

write requests of the benchmark into sequential write 

requests. However, for other benchmarks, REDO shows 

the lowest performance due to its unaligned write requests. 

Therefore, as shown in Figure 4, REDO suffers from the 

full merge operation overhead when small random write 

requests are dominant.  Figure 4 shows that the proposed 

scheme performs only the switch merges and the partial 

merges since the replacement block is programmed by the 

in-place scheme. 

 

4 Conclusions 
 

 In this paper, we proposed a log-structured file 

system for block-level mapping flash translation layer, 

which can reduce the mapping table size of SSD. By the 

in-place write scheme for the flash blocks, it can avoid 

high-cost of block merge operations. In order to eliminate 

duplicated garbage collections, the LFS uses only 

threaded-logging scheme. Experiments showed that the 

proposed scheme improves the write performance 

significantly for random write intensive workloads.  It can 

also extend the lifespan of SSD by 72% on average. 

 

 
Figure 3. Normalized write performance 

 

 
Figure 4. Normalized erase count of each FTLs 
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