
18

1

Embedded Software Lab.

Dong-kun Shin
Embedded Software Laboratory

Sungkyunkwan University
http://nyx.skku.ac.kr

Pipes and FIFOs

18

2

Embedded Software Lab.

• How the Unix kernel represents open files?
– Two descriptors referencing two distinct open files.

Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Open Files in Kernel

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

inode table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

18

3

Embedded Software Lab.

• Two distinct descriptors sharing the same disk file
through two distinct open file table entries
– E.g., Calling open() twice with the same filename argument

File Sharing

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

inode table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

File access

...

File size

File type

File A

File B

18

4

Embedded Software Lab.

• A child process inherits its parent’s open files. Here
is the situation immediately after a fork()

How Processes Share Files

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

inode table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File A

File B

Parent’s table

File access

...

File size

File type

fd 0

fd 1

fd 2

fd 3

fd 4

Child’s table

18

5

Embedded Software Lab.

• Q: How does a shell implement I/O redirection?
$ ls > foo.txt

• A: By calling the dup2(oldfd, newfd) function.
– Copies (per-process) descriptor table entry oldfd to entry newfd

I/O Redirection

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

after dup2(4,1)

18

6

Embedded Software Lab.

• Before calling dup2(4,1), stdout (descriptor 1)
points to a terminal and descriptor 4 points to an
open disk file.

I/O Redirection Example (1)

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

inode table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

File access

...

File size

File type

File A

File B
File access

...

File size

File type

18

7

Embedded Software Lab.

• After calling dup2(4,1), stdout is not redirected to
the disk file pointed at by descriptor 4.

I/O Redirection Example (2)

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

inode table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

File access

...

File size

File type

File A

File B
File access

...

File size

File type

18

8

Embedded Software Lab.

• Pipes

– The oldest form of UNIX IPC (Inter-process
Communication) and provide by all Unix systems.

• Two limitations
– Half-duplex: data flows only in one direction.

– Can be used only between processes that have a common
ancestor.

• Usually used between the parent and child processes.

Pipes

18

9

Embedded Software Lab.

• int pipe (int fd[2]);

– Two file descriptors are returned through the fd argument

• fd[0]: open for reading

• fd[1]: open for writing

– The output of fd[1] is the input for fd[0].

Creating Pipes (1)

18

10

Embedded Software Lab.

Creating Pipes (2)

parent => child:
parent closes fd[0];
child closes fd[1];

parent <= child:
parent closes fd[1];
child closes fd[0];

18

11

Embedded Software Lab.

• When one end of a pipe is closed,
– reading from a pipe returns an end of file.

– writing to a pipe causes SIGPIPE is generated and
the write returns an error (EPIPE).

– A write of PIPE_BUF (kernel’s pipe buffer size) bytes
or less will not be interleaved with the writes from
other processes.

– fstat function returns a file type of FIFO for the
pipe file descriptors (can be tested by S_ISFIFO
macro)

• You should close unused file descriptors!

Reading/Writing Pipes

18

12

Embedded Software Lab.

Using Pipes

#include <unistd.h>
#define MAXLINE 80

int main(void)
{

int n, fd[2];
pid_t pid;
char line[MAXLINE];

if(pipe(fd) < 0) exit(1);
if((pid = fork()) < 0) exit(2);

if (pid > 0) { /* parent */
close(fd[0]);
write(fd[1], "hello world\n", 12);

} else { /* child */
close(fd[1]);
n = read(fd[0], line, MAXLINE);
write(1, line, n);

}
exit(0);

}

18

13

Embedded Software Lab.

• int mkfifo (const char *path, mode_t mode)

– Named pipes

– Unrelated processes can exchange data, whereas
pipes can be used only between related processes.

– FIFO is a type of file: FIFO type (S_ISFIFO macro)

– Once a FIFO created, the normal file I/O functions
all work with FIFO.

• /usr/bin/mkfifo program can be used to
make FIFOs on the command line.

FIFOs

18

14

Embedded Software Lab.

• Opening a FIFO

– An open for read(write)-only blocks until some
other process opens the FIFO for writing(reading).

• Reading/Writing a FIFO

– Writing to a FIFO that no process has open for
reading causes SIGPIPE to generate.

– When the last writer for a FIFO closes the FIFO, an
end of file is generated for the reader of the FIFO.

– PIPE_BUF: the maximum amount of data that can
be written atomically to a FIFO (without being
interleaved among multiple writers).

Using FIFOs

18

15

Embedded Software Lab.

• Duplicating a Stream

– Shell commands to pass data from one shell
pipeline to another without creating intermediate
temporary files

Use of FIFOs (1)

$ mkfifo fifo1
$ prog3 < fifo1 &
$ prog1 < infile | tee fifo1 | prog2

prog1 tee

prog2

prog3fifo1
infile

18

16

Embedded Software Lab.

• Client-server Communication

– A client-server application to pass data between the
client and server on the same machine.
• Clients write to a “well-known” FIFO to send a request to the

server.

Use of FIFOs (2)

18

17

Embedded Software Lab.

• IPC (Inter-Process Communication)

– Signal

– Pipe

– Named pipe (FIFO)

– Shared memory

– Semaphore

– Sockets

– …

Summary

18

18

Embedded Software Lab.

• Make C programs run the following tasks:

$ echo "124 * (42 + 3) % 17" | bc

- main -> pipe -> fork
– dup2 -> exec family  echo

– dup2 -> exec family  bc

$ cat < /proc/meminfo | grep -i active | tail -n4 > memory.txt

Exercise

