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Chap 7, 8: Scheduling
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Introduction

• Multiprogramming

– Multiple processes in the system with one or more processors

– Increases processor utilization by organizing processes so that 
the processor always has one to execute

– Resource management

• Resources for time sharing

– Multiple processes use a resource in a time-shared 
manner

– Processor

– Process scheduling: Allocates processor time slots to 
processes

• Resources for space sharing

– Partition a resource and let each process use the 
partitions

– Memory
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Goals of Scheduling

• Goals of process scheduling

– Improving system performance

• Typical performance indices

– Turnaround time: amount of time to execute a particular 
process

• Tturnaround = Tcompletion − Tarrival

– Response time: amount of time it takes to start responding

• Tresponse = Tfirstrun − Tarrival

– Throughput: number of processes completed per time unit

– Fairness

– Utilization: Percentage of time that the resource is busy during 
a given interval

– Predictability

– Etc

• Each system selects a scheduling policy with the consideration on 
the performance indices for its application domain
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Scheduling Policies

• Preemptive/non-preemptive scheduling

– Preemptive scheduling

• CPU may be preempted to another process independent of 
the intention of the running process

– Flexibility, adaptability, performance improvements

• For time-sharing systems and real-time systems

• Incurs a cost associated with access to shared data

→ [Process synchronization]

• Affects the design of operating system kernel

– Kernel data integrity and consistency

– Preemptible kernel

• High context switching overhead
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Scheduling Policies

• Preemptive/non-preemptive scheduling

– Non-preemptive scheduling

• Process uses the CPU until it voluntarily releases it 

(eg. for system call)

• No preemption

• Pros

– Low context switch overhead

• Cons

– Frequent priority inversions

– May result in longer mean response time
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Terminologies

• CPU burst vs. I/O burst

– Process execution consists of a cycle of 
CPU execution and I/O wait

– CPU burst

• Each cycle of CPU execution

– I/O burst

• Each cycle of I/O wait

– Burst time is an important factor(criteria) 
for scheduling algorithms
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Scheduling Schemes

• FIFO, FCFS (First-Come First Service)

• SJF (Shortest Job First) 

• STCF (Shortest Time-to-Completion First)

• RR

• Priority

• MLFQ
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Scheduling Schemes

• FCFS(First-Come-First-Service) scheduling

– Non-preemptive scheduling

– Scheduling criteria

• Arrival time (at the ready queue)

• Faster arrival time process first

– High resource utilization

– Adequate for batch systems, not for interactive systems

– Disadvantages

• Convoy effect

– short process behind long process

– Consider one CPU-bound and many I/O-bound 
processes

• Longer mean response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time:  (0 + 24 + 27)/3 = 17
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time:   (6 + 0 + 3)/3 = 3

• Much better than previous case
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Scheduling Schemes

• SJF (Shortest Job First) scheduling

– Non-preemptive scheduling

– Scheduling criteria

• Burst time

• Shortest next CPU burst time first scheduling

– Pros

• Gives minimum average waiting time for a given set of 
processes

• Minimizes the number of processes in the system

– Reduces the size of the ready queue

– Reduces the overall space requirements

• Fast responses to many processes
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Scheduling Schemes

• SJF (Shortest Job First) scheduling

– Cons

• Starvation, indefinite postponement(blocking)

– Long burst-time processes

– Can be solved by aging

• No way to know the length of the next CPU burst for each 
process

– It is necessary to have a scheme for burst time 
estimation

– Estimation by exponential average
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Scheduling Schemes

• SJF (Shortest Job First) scheduling

n+1 =  tn+(1 - ) tn-1 + …+(1 -  )j  tn-j + …+(1 -  )n +1 0
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Scheduling Schemes

• STCF (Shortest Time-to-Completion First) scheduling

– Variation of SJF scheduling (preemptive SJF)

– Preemptive scheduling

• Preempt current running process when another process with 
shorter remaining CPU burst time arrives at the ready queue

– Cons

• Burst time estimation overhead as in SPN

• Overhead for tracing remaining burst time

• High context switching overhead
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Example of STCF

• Now we add the concepts of varying arrival times and 
preemption to the analysis

ProcessAarri Arrival TimeTBurst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 
26/4 = 6.5 msec
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A New Metric: Response Time

• At time-shared machines, users would sit at a terminal and demand 
interactive performance from the system.

• Response time: the time from when the job arrives in a system 
to the first time it is scheduled

– Tresponse = Tfirstrun − Tarrival
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Scheduling Schemes

• RR (Round-Robin) scheduling

– Preemptive scheduling

– Scheduling criteria

• Arrival time (at the ready queue)

• Faster arrival time process first

– Time slice (scheduling quantum) for each process

• System parameter

• The (running) process that has exhausted his time slice 
releases the CPU and goes to the ready state (timer runout)

– Prevents monopoly of the CPU by a process

– High context switching overhead due to preemptions

– Adequate for interactive/time-sharing system
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Scheduling Schemes

• RR (Round-Robin) scheduling

– Performance of the RR scheme depends heavily on the size of 
the time slice

• Very large (infinite) time slice → FCFS

• Very small time slice → processor sharing

– Appears to the users as though each of the n processes 
has its own processor running at 1/n the speed of the 
real processor

– Better response time

– High context switching cost 

• OS actions of saving and restoring a few registers 

• H/W flush: Cache, TLB, branch predictor

• Deciding on the length of the time slice presents a trade-off 
to a system designer, making it long enough to amortize the 
cost of switching without making it so long that the system 
is no longer responsive.
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Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is: 

• Typically, higher average turnaround than SJF, but better 
response

– RR is indeed one of the worst policies if turnaround time is our 
metric

• q should be large compared to context switch time

• q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1



20Dongkun Shin, SKKU

Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum

80% of CPU bursts should 
be shorter than q
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Incorporating I/O

• When a job initiates an I/O request, because the currently-running 
job won’t be using the CPU during the I/O; it is blocked waiting for 
I/O completion

• When the I/O completes, an interrupt is raised, and the OS runs 
and moves the blocked process back to the ready state.

Treat each CPU burst as a job
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Scheduling Schemes

• Priority scheduling

– Scheduling criteria

• Process priority

• Tie breaking: FCFS

– Priority range is different for each system

– Mapping from the numerical value of the priority to the priority 
level is different for each system

– Can be either preemptive or non-preemptive

– Major problem

• Starvation

• Solution 

– Aging – as time progresses increase the priority of the 
process
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Scheduling Policies

• Priority

– Classification

• Static priority (external priority)

– Decided at process creation time and fixed during 
execution of the process

– Not adaptable to system environments

– Simple, low-overhead

• Dynamic priority (internal priority)

– Initial priority at process creation time

– May vary as the state of the system and processes 
changes

– Adaptable to system environments

– Complex, high overhead doe to priority adjustment
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Example of Priority Scheduling

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec
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MLFQ (Multi-Level Feedback Queue)

• First described by Corbato et al. in 1962 in Compatible Time-Sharing 
System (CTSS) and Multics

• To optimize turnaround time
– running shorter jobs first
– Problem: SJF/STCF cannot know how long a job will run for

• To be responsive to interactive users 
– Round Robin
– Problem: RR is terrible for turnaround time. 

• Our problem
– Given that we in general do not know anything about a process, 

how can we build a scheduler to achieve these goals? 
 learn from the past to predict the future

MULTICS

UNIX

Corbato, MIT 1965 
(Turing Award 1990)

Ken Thompson
Dennis Ritchie
Bell Lab 1973
(Turing Award 1983)
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MLFQ: Basic Rules

• Multiple separate ready queues, each assigned a different priority.

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

• Rule 2: If Priority(A) = Priority(B), A & B run in RR.

• Interactive process

– Repeatedly relinquishes the CPU 

while waiting for input

– High priority

• Batch process (CPU-bound)

– Uses the CPU intensively for long 

periods of time

– Low Priority
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Attempt #1: How To Change Priority

• Rule 3: When a job enters the system, it is placed at the highest 
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its 
priority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it 
stays at the same priority level.
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Problems With Our Current MLFQ

• Starvation 

– if there are “too many” interactive jobs in the system, long-
running jobs will never receive any CPU time (they starve).

 Need Priority Boost

• Gaming the scheduler

– a smart user could rewrite their program

– before the time slice is over, issue an I/O operation (to some 
file you don’t care about) and thus relinquish the CPU

• Program may change its behavior over time 
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Attempt #2: The Priority Boost

• Rule 5: After some time period S, move all the jobs in the system 
to the topmost queue.

– Prevent starvation and detect the change of behavior

• Aging is also a choice

– Processes that have long waiting time moves up in the queue 
hierarchy



31Dongkun Shin, SKKU

Attempt #3: Better Accounting

• Rule 4: Once a job uses up its time allotment at a given level 
(regardless of how many times it has given up the CPU), its priority 
is reduced (i.e., it moves down one queue).

– Instead of forgetting how much of a time slice a process used 
at a given level, the scheduler should keep track
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Attempt #4: Different Time Slice

• Three queues: 

– Q0 – RR with time quantum 8ms 

– Q1 – RR with time quantum 16ms

– Q2 – FCFS

• Scheduling

– A new job enters queue Q0

• When it gains CPU, job receives 
8ms

• If it does not finish in 8ms, job 
is moved to queue Q1

– At Q1 job receives additional 16ms

• If it still does not complete, it is 
preempted and moved to 
queue Q2
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Parameters for MLFQ scheduling

• The number of queues

• The scheduling algorithm for each queue

• The time slice of each queue

• The method used to determine when to upgrade a process to a 
higher-priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when 
that process needs service

• Easy Configuration

– Provides a set of tables that determine exactly how the priority of 
a process is altered, how long each time slice is, and how often to 
boost the priority of a job (Solaris)

– Uses a formula to calculate the current priority level of a job 
(FreeBSD)


