
1Dongkun Shin, SKKU

Chap 7, 8: Scheduling

2Dongkun Shin, SKKU

Introduction

• Multiprogramming

– Multiple processes in the system with one or more processors

– Increases processor utilization by organizing processes so that
the processor always has one to execute

– Resource management

• Resources for time sharing

– Multiple processes use a resource in a time-shared
manner

– Processor

– Process scheduling: Allocates processor time slots to
processes

• Resources for space sharing

– Partition a resource and let each process use the
partitions

– Memory

3Dongkun Shin, SKKU

Goals of Scheduling

• Goals of process scheduling

– Improving system performance

• Typical performance indices

– Turnaround time: amount of time to execute a particular
process

• Tturnaround = Tcompletion − Tarrival

– Response time: amount of time it takes to start responding

• Tresponse = Tfirstrun − Tarrival

– Throughput: number of processes completed per time unit

– Fairness

– Utilization: Percentage of time that the resource is busy during
a given interval

– Predictability

– Etc

• Each system selects a scheduling policy with the consideration on
the performance indices for its application domain

4Dongkun Shin, SKKU

Scheduling Policies

• Preemptive/non-preemptive scheduling

– Preemptive scheduling

• CPU may be preempted to another process independent of
the intention of the running process

– Flexibility, adaptability, performance improvements

• For time-sharing systems and real-time systems

• Incurs a cost associated with access to shared data

→ [Process synchronization]

• Affects the design of operating system kernel

– Kernel data integrity and consistency

– Preemptible kernel

• High context switching overhead

5Dongkun Shin, SKKU

Scheduling Policies

• Preemptive/non-preemptive scheduling

– Non-preemptive scheduling

• Process uses the CPU until it voluntarily releases it

(eg. for system call)

• No preemption

• Pros

– Low context switch overhead

• Cons

– Frequent priority inversions

– May result in longer mean response time

6Dongkun Shin, SKKU

Terminologies

• CPU burst vs. I/O burst

– Process execution consists of a cycle of
CPU execution and I/O wait

– CPU burst

• Each cycle of CPU execution

– I/O burst

• Each cycle of I/O wait

– Burst time is an important factor(criteria)
for scheduling algorithms

7Dongkun Shin, SKKU

Scheduling Schemes

• FIFO, FCFS (First-Come First Service)

• SJF (Shortest Job First)

• STCF (Shortest Time-to-Completion First)

• RR

• Priority

• MLFQ

8Dongkun Shin, SKKU

Scheduling Schemes

• FCFS(First-Come-First-Service) scheduling

– Non-preemptive scheduling

– Scheduling criteria

• Arrival time (at the ready queue)

• Faster arrival time process first

– High resource utilization

– Adequate for batch systems, not for interactive systems

– Disadvantages

• Convoy effect

– short process behind long process

– Consider one CPU-bound and many I/O-bound
processes

• Longer mean response time

9Dongkun Shin, SKKU

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

10Dongkun Shin, SKKU

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

P
1

0 3 6 30

P
2

P
3

11Dongkun Shin, SKKU

Scheduling Schemes

• SJF (Shortest Job First) scheduling

– Non-preemptive scheduling

– Scheduling criteria

• Burst time

• Shortest next CPU burst time first scheduling

– Pros

• Gives minimum average waiting time for a given set of
processes

• Minimizes the number of processes in the system

– Reduces the size of the ready queue

– Reduces the overall space requirements

• Fast responses to many processes

12Dongkun Shin, SKKU

Scheduling Schemes

• SJF (Shortest Job First) scheduling

– Cons

• Starvation, indefinite postponement(blocking)

– Long burst-time processes

– Can be solved by aging

• No way to know the length of the next CPU burst for each
process

– It is necessary to have a scheme for burst time
estimation

– Estimation by exponential average

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

Commonly, α set to ½  .1 1 nnn t  

13Dongkun Shin, SKKU

Scheduling Schemes

• SJF (Shortest Job First) scheduling

n+1 =  tn+(1 - ) tn-1 + …+(1 - )j  tn-j + …+(1 - )n +1 0

14Dongkun Shin, SKKU

Scheduling Schemes

• STCF (Shortest Time-to-Completion First) scheduling

– Variation of SJF scheduling (preemptive SJF)

– Preemptive scheduling

• Preempt current running process when another process with
shorter remaining CPU burst time arrives at the ready queue

– Cons

• Burst time estimation overhead as in SPN

• Overhead for tracing remaining burst time

• High context switching overhead

15Dongkun Shin, SKKU

Example of STCF

• Now we add the concepts of varying arrival times and
preemption to the analysis

ProcessAarri Arrival TimeTBurst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 =
26/4 = 6.5 msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

16Dongkun Shin, SKKU

A New Metric: Response Time

• At time-shared machines, users would sit at a terminal and demand
interactive performance from the system.

• Response time: the time from when the job arrives in a system
to the first time it is scheduled

– Tresponse = Tfirstrun − Tarrival

17Dongkun Shin, SKKU

Scheduling Schemes

• RR (Round-Robin) scheduling

– Preemptive scheduling

– Scheduling criteria

• Arrival time (at the ready queue)

• Faster arrival time process first

– Time slice (scheduling quantum) for each process

• System parameter

• The (running) process that has exhausted his time slice
releases the CPU and goes to the ready state (timer runout)

– Prevents monopoly of the CPU by a process

– High context switching overhead due to preemptions

– Adequate for interactive/time-sharing system

18Dongkun Shin, SKKU

Scheduling Schemes

• RR (Round-Robin) scheduling

– Performance of the RR scheme depends heavily on the size of
the time slice

• Very large (infinite) time slice → FCFS

• Very small time slice → processor sharing

– Appears to the users as though each of the n processes
has its own processor running at 1/n the speed of the
real processor

– Better response time

– High context switching cost

• OS actions of saving and restoring a few registers

• H/W flush: Cache, TLB, branch predictor

• Deciding on the length of the time slice presents a trade-off
to a system designer, making it long enough to amortize the
cost of switching without making it so long that the system
is no longer responsive.

19Dongkun Shin, SKKU

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better
response

– RR is indeed one of the worst policies if turnaround time is our
metric

• q should be large compared to context switch time

• q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

20Dongkun Shin, SKKU

Time Quantum and Context Switch Time

21Dongkun Shin, SKKU

Turnaround Time Varies With The Time Quantum

80% of CPU bursts should
be shorter than q

22Dongkun Shin, SKKU

Incorporating I/O

• When a job initiates an I/O request, because the currently-running
job won’t be using the CPU during the I/O; it is blocked waiting for
I/O completion

• When the I/O completes, an interrupt is raised, and the OS runs
and moves the blocked process back to the ready state.

Treat each CPU burst as a job

23Dongkun Shin, SKKU

Scheduling Schemes

• Priority scheduling

– Scheduling criteria

• Process priority

• Tie breaking: FCFS

– Priority range is different for each system

– Mapping from the numerical value of the priority to the priority
level is different for each system

– Can be either preemptive or non-preemptive

– Major problem

• Starvation

• Solution

– Aging – as time progresses increase the priority of the
process

24Dongkun Shin, SKKU

Scheduling Policies

• Priority

– Classification

• Static priority (external priority)

– Decided at process creation time and fixed during
execution of the process

– Not adaptable to system environments

– Simple, low-overhead

• Dynamic priority (internal priority)

– Initial priority at process creation time

– May vary as the state of the system and processes
changes

– Adaptable to system environments

– Complex, high overhead doe to priority adjustment

25Dongkun Shin, SKKU

Example of Priority Scheduling

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

1

0 1 19

P
1

P
2

16

P
4

P
3

6 18

PP2 P5

26Dongkun Shin, SKKU

MLFQ (Multi-Level Feedback Queue)

• First described by Corbato et al. in 1962 in Compatible Time-Sharing
System (CTSS) and Multics

• To optimize turnaround time
– running shorter jobs first
– Problem: SJF/STCF cannot know how long a job will run for

• To be responsive to interactive users
– Round Robin
– Problem: RR is terrible for turnaround time.

• Our problem
– Given that we in general do not know anything about a process,

how can we build a scheduler to achieve these goals?
 learn from the past to predict the future

MULTICS

UNIX

Corbato, MIT 1965
(Turing Award 1990)

Ken Thompson
Dennis Ritchie
Bell Lab 1973
(Turing Award 1983)

27Dongkun Shin, SKKU

MLFQ: Basic Rules

• Multiple separate ready queues, each assigned a different priority.

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

• Rule 2: If Priority(A) = Priority(B), A & B run in RR.

• Interactive process

– Repeatedly relinquishes the CPU

while waiting for input

– High priority

• Batch process (CPU-bound)

– Uses the CPU intensively for long

periods of time

– Low Priority

28Dongkun Shin, SKKU

Attempt #1: How To Change Priority

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it
stays at the same priority level.

29Dongkun Shin, SKKU

Problems With Our Current MLFQ

• Starvation

– if there are “too many” interactive jobs in the system, long-
running jobs will never receive any CPU time (they starve).

 Need Priority Boost

• Gaming the scheduler

– a smart user could rewrite their program

– before the time slice is over, issue an I/O operation (to some
file you don’t care about) and thus relinquish the CPU

• Program may change its behavior over time

30Dongkun Shin, SKKU

Attempt #2: The Priority Boost

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

– Prevent starvation and detect the change of behavior

• Aging is also a choice

– Processes that have long waiting time moves up in the queue
hierarchy

31Dongkun Shin, SKKU

Attempt #3: Better Accounting

• Rule 4: Once a job uses up its time allotment at a given level
(regardless of how many times it has given up the CPU), its priority
is reduced (i.e., it moves down one queue).

– Instead of forgetting how much of a time slice a process used
at a given level, the scheduler should keep track

32Dongkun Shin, SKKU

Attempt #4: Different Time Slice

• Three queues:

– Q0 – RR with time quantum 8ms

– Q1 – RR with time quantum 16ms

– Q2 – FCFS

• Scheduling

– A new job enters queue Q0

• When it gains CPU, job receives
8ms

• If it does not finish in 8ms, job
is moved to queue Q1

– At Q1 job receives additional 16ms

• If it still does not complete, it is
preempted and moved to
queue Q2

33Dongkun Shin, SKKU

Parameters for MLFQ scheduling

• The number of queues

• The scheduling algorithm for each queue

• The time slice of each queue

• The method used to determine when to upgrade a process to a
higher-priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when
that process needs service

• Easy Configuration

– Provides a set of tables that determine exactly how the priority of
a process is altered, how long each time slice is, and how often to
boost the priority of a job (Solaris)

– Uses a formula to calculate the current priority level of a job
(FreeBSD)

