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Abstract—Although much research efforts have been devoted
to reducing the size of address mapping table which consumes
DRAM space in solid state drives (SSDs), most SSDs still use
page-level mapping for high performance in their firmware called
flash translation layer (FTL). In this paper, we propose a novel
FTL scheme, called StreamFTL. In order to reduce the size of the
mapping table in SSDs, StreamFTL maintains a mapping entry
for each stream, which consists of several logical pages written
at contiguous physical pages. Unlike extent, which is used by
previous FTL schemes, the logical pages in a stream do not need
to be contiguous. We show that StreamFTL can reduce the size of
the mapping table by up to 90% compared to page-level mapping
scheme.

I. INTRODUCTION

Flash storage systems such as solid state drives (SSDs)
and eMMC have been widely used upon various computing
systems. The widespread use of SSDs result from the higher
performance of SSD compared to hard disk drives and the
continuous decreasing in cost-per-bit of SSDs.

In order to lower the price of SSDs, many researchers have
tried to reduce the size of the mapping table in the flash
translation layer (FTL) [1], [2] which is a special firmware
managing flash storage systems. Most recent SSDs use page-
level mapping in their FTLs for high performance. However,
page-level mapping requires a large amount of DRAM. For
example, 8 TB of SSD requires 8 GB of DRAM for its
mapping table since page-level mapping maintains 4 byte
mapping entry for each 4 KB page. The block-level mapping
or hybrid mapping [2], [3] can reduce the size of the mapping
table by using a coarser-grained mapping. However, such
FTLs have a large amount of write amplification due to
their merge operations. We can reduce the required DRAM
size of SSD by using a demand-loading scheme such as
(DFTL) [1], which loads only a portion of the entire mapping
table dynamically on a small DRAM cache. However, DFTL
shows poor performance by cache misses. Moreover, even for
read request, DFTL can invoke flash write operations for map
loading and unloading.

The extent mapping FTL [4] uses a variable-sized mapping
unit called extent, which has logically contiguous pages written
at physically contiguous flash pages. An extent mapping entry
consists of the start logical page number (LPN), the start phys-
ical page number (PPN), and the extent size. Since a single
extent entry can map a large amount of sequentially written
pages, the mapping table size can be reduced significantly.
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Fig. 1. Comparison between extent and stream (σ=10).

However, if a write request partially updates several pages
within an extent, the extent must be split because the updated
pages will be written at flash pages. The split operation
generates many small-sized extents, and increases the number
of mapping entries. Moreover, the maximum number of extent
entries cannot be fixed, and thus we cannot reduce the size of
DRAM. In order to solve this problem, µ-FTL [5] manages
the entire mapping table on NAND flash memory using the
µ-tree structure, and loads only a small number of map entries
on-demand into DRAM. As a result, µ-FTL suffers from the
map loading overhead like DFTL.

In this paper, we propose a novel FTL, called StreamFTL,
which can drastically reduce the mapping table size while
achieving comparable performance to page-level mapping. The
StreamFTL maintains the stream-level mapping entries by
exploiting the increasing tendency of address sequences of
storage access requests. Whereas an extent used by µ-FTL
consists of logically contiguous pages, a stream can include
logically non-contiguous pages, which arrived in address-
ascending order and are written at physically contiguous flash
pages. StreamFTL allows each logical page to be stored at any
flash page similarly at page-level mapping. We show that the
StreamFTL can reduce the entire mapping table size by up
to 90% compared to page-level mapping and thus the entire
mapping table can be loaded into a small size of DRAM.

II. MOTIVATION
A. Extent vs. Stream

Fig. 1(a) shows an example of extent mapping. By writing
12 pages, 8 extents are generated. For example, extent 0 (e0)
covers the LPNs from 0 to 1 and its PPNs are from 0 to 1. The



mapping entry of e0 is (0, 0, 2), which represents start LPN,
start PPN and page count, respectively. Notice that the logical
address range covered by an extent cannot be overlapped by
other extents. If a write request which partially updates an
extent is submitted, the extent must be split into multiple
extents. At the figure, write request write(10,4) makes e2,
but by the following write request write(11,2) e2 was split
into three extents e4, e5 and e6. Therefore, the number of
extents will be various depending on the write workload, and
the maximum number of extents cannot be fixed.

The basic mapping unit in StreamFTL is stream, which is
more flexible than extent. A stream includes several ascending-
ordered logical pages which are written at physically-
contiguous pages. In addition, stream satisfies the following
condition, when a stream Si contains pages pi,1 to pi,n:

Si = {pi,1, pi,2, ..., pi,n}, where, L(pi,k) < L(pi,k+1),

P (pi,k) + 1 = P (pi,k+1), L(pi,n)− L(pi,1) ≤ σ (1)

L(p), P (p) are the LPN and the PPN of page p, respec-
tively. σ represents the maximum stream size in the page
unit. As the equation shows, the pages written with ascending-
ordered LPNs can be represented as a single stream entry if the
pages are stored continuously in physical flash pages. Thus,
compared to an extent, a stream can cover more logical pages
with a single mapping entry. Fig. 1(b) shows an example of
stream mapping for the same write requests used in Fig. 1(a).
We assumed σ is 10. From the figure, stream 0 (s0) covers
LPNs 0, 1 and 4, and its PPNs are from 0 to 2. The mapping
entry will be like (0, 0, 0, 1, 4), start LPN, start PPN, first-third
logical pages from start LPN1, respectively.

The stream mapping can reduce the number of mapping
entries compared to the extent mapping. Moreover, since
StreamFTL allows overlapping between streams, the split
operations are not required. Owing to the flexibility of stream
mapping, the maximum number of stream entries can be fixed
due to stream merge operation which periodically reclaims
stream entries. In the case of extent mapping, since an extent
covers only contiguous logical pages, it is difficult or might be
impossible to reclaim free extents by merging several extents
without re-allocating logical addresses of the data. However,
StreamFTL can merge multiple streams if their logical address
ranges can be covered by a stream. As a result, the mapping
table of the StreamFTL can be fixed into a certain size.

B. Current Storage I/O Systems

In real storage systems, the write requests within a short
time interval often has an ascending-ordered pattern in their
logical addresses. In the Linux kernel, since the page cache
buffers the file-backed data in DRAM with a page-sorted tree,
the addresses of write requests tend to be ascending-ordered.
When a legacy filesystem such as EXT4 is fragmented, the
filesystem cannot allocate contiguous blocks for a file, thus the
write requests will not be contiguous but ascending-ordered.
When log-structured filesystems (LFSs) [6] such as F2FS [7]

1These information will be represented as a bitmap, 1 bit per each logical
page. Section III-A will explain the details.
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Fig. 2. Average size of extent/stream at MSR trace.
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Fig. 3. Mapping entries of StreamFTL. Physical block contains physical
pages, and the physical blocks are allocated in out-of-order [1].

use the threaded logging scheme, the write pattern of LFS also
will be similar to the above. Fig. 2 shows the average sizes
of extent and stream collected by a simulation with MSR-
Cambridge workloads [8]. We assumed the extent or stream
size is infinite. As figure shows, stream covers more logical
pages. Thus, it can be said that the real storage I/O pattern
can benefit from StreamFTL.

III. STREAMFTL SCHEME

A. Mapping Method & Address Translation

Each stream maintains a mapping entry to map its several
LPN elements. Fig. 3 shows an example of the mapping entries
at StreamFTL. The bit 1 in the LPN bitmap represents the
corresponding LPN which was written in the physical page
of the stream. The PPN for an LPN can be calculated by
two phase of address translation, getStream and getPPN.
When trying to find the corresponding PPN for an LPN,
StreamFTL first finds the stream of the LPN. With the start
LPN and the LPN bitmap of a stream map entry, StreamFTL
checks whether the target LPN exists in the stream. Since
the logical address range of a stream can be overlapped by
other streams, the data in most recently allocated stream is
the correct data for the LPN. After finding the stream for
the LPN, StreamFTL does getPPN operation in order to find
the target PPN. First, StreamFTL calculates the logical offset
within stream with the start LPN of the stream, and the number
of bit 1s from the first bit location to logical offset location
on the LPN bitmap.

For example, when searching the PPN for LPN 14 from
Fig. 3, the first thing to do is finding correct stream for the
LPN 14. Since s2 is the latest stream whose logical offset (14
- 4) of LPN bitmap is set to 1, the data of LPN 14 is in s2.
Second, because the number of bit 1s from first bit to 11-th
bit is 6, the physical offset of the LPN 14 in s2 is 5. Finally,
as figure shows, the target PPN for LPN 14 can be found from
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Fig. 4. Block GC and Stream merge.

0-th page of physical block number (PBN) 8. There are many
algorithms and hardware instructions to count the number of
bit 1s [9], hence StreamFTL can speed up the calculation with
using these solutions.

The block order field in Fig. 3 stores the allocation order
of physical blocks when multiple blocks are associated with a
single stream. Since the first PBN can be calculated from start
PPN, the stream map entry does not need to store the first one.
The valid page count of the stream is used at the stream merge
operation to find victim streams. In summary, StreamFTL only
needs a stream size bitmap, and additional few bytes per each
stream map entry compared to the 4 byte for each logical page
on page-level mapping. The size of stream is predefined in
order to fix the size of LPN bitmap. StreamFTL separates the
logical address space into partitions, and streams are grouped
into a partition based on their LPN. StreamFTL can simplify
the stream searching operation at address translation or stream
merging using partition.

Since the storage I/O pattern often has multiple working
sets, if multiple active streams are managed, the stream uti-
lization can be improved. In the result of Fig. 2, the average
size of stream can be increased by about 3 times when there
are 4 multiple active streams. Therefore, StreamFTL maintains
multiple active blocks to preserve multiple append-in-progress
streams. For example, if the number of active stream is 4 at
Fig. 1, s0 can cover the data of s2 and s4, thus improving the
stream utilization.

StreamFTL allocates a new stream to serve write requests
when there are no available active stream for the request,
in other words, when new LPNs cannot be appended at
the existing streams. When allocating a new stream, one of
existing active stream must be closed. There are many ways
to choose victim active stream, but currently we simply choose
the oldest active stream as a victim stream. After allocating a
new stream, the following write requests will be covered by
that stream until closing the stream.

B. Garbage Collection & Stream Merge

Fig. 4 shows the behavior of the block garbage collec-
tion (bGC) and the stream merge (sMerge). The bGC of
StreamFTL is similar to existing FTLs. The bGC selects
victim physical blocks with the minimum number of valid
pages, copies the valid pages to free blocks, and erase the

0

2

4

6

8

10

12

14

16

1.5 2 2.5 3 3.5 4

D
R

A
M

 m
e
m

o
ry

 
(M

B
)

# of streams (multiples of ρ)

512KB 256KB 128KB

Fig. 5. Mapping table size according to stream number/size.

victim blocks. However, in StreamFTL, the copy operations
of valid pages may generate additional streams. At Fig. 4(a),
An additional stream s4 must be generated to write the logical
page 3 at flash block PBN 8.

The sMerge operation of StreamFTL selects victim streams,
and the valid pages of the victim stream are appended to other
streams. sMerge must select victim streams with many over-
lapping streams and fewer valid pages. Therefore, StreamFTL
first selects victim partition by considering the number of
streams and the number of valid pages on the partition.

One interesting problem is that there is a correlation be-
tween bGC and sMerge. bGC can invoke sMerge because
bGC consumes streams, and sMerge also can invoke bGC
because sMerge consumes flash blocks. Therefore, we need
an integrated operation.

IV. EXPERIMENTAL EVALUATION

The total size of the mapping table on StreamFTL is deter-
mined by the size of the stream and the maximum number of
streams. Fig. 5 shows the size of the mapping table according
to those parameters when the storage size is 32 GB. The
maximum number of streams is represented as multiples of
ρ, and ρ is the number of streams which covers entire storage
space, and defined as storage size/stream size. Since each
stream map entry consists of LPN bitmap and some additional
bytes (startLPN, startPPN, block order, etc.), as the size of
stream is growing, the total size of the mapping table will be
close to 1/32 of DFTL’s mapping table. However, if the size
is too large, then the utilization of a stream will be low, hence
it will cause more sMerge operations. On the other hand, if
the maximum number of stream is too small, the size of the
mapping table also will be small while the cost of sMerge
will increase because StreamFTL must merge under-utilized
streams to make a new stream.

Table I shows the mapping table size of various FTLs. The
size of StreamFTL in the table is when the stream size is
256 KB and the maximum number of streams is 1.5 times
of the storage capacity. As the table shows, StreamFTL can
reduce the mapping table by up to 90% compared to page-level
mapping FTL. Although DFTL and µ-FTL also can reduce
the size of DRAM due to their demand-loading scheme, they
cannot reduce the mapping table itself.

For evaluation, we implemented a trace-driven FTL simu-
lator of StreamFTL and DFTL. We assumed the page size is



TABLE I
THE MAPPING TABLE SIZE OF FTLS.

32 GB storage DRAM size Mapping table size
Page-level mapping 32 MB 32 MB

DFTL [1] configurable 32 MB
µ-FTL [5] configurable 640 KB - 70 MB

StreamFTL (red dot) 3.25 MB 3.25 MB

4 KB and the number of pages in a physical flash block is
256. We set the size of DRAM cache at DFTL to be same
to the required DRAM size of StreamFTL. MSR Cambridge
workload is used for input workload.

Fig. 6 (a) compares the amount of operations by DFTL
and StreamFTL when there are no GC. DFTL needs map
loading/unloading for cache misses and thus invokes additional
NAND operations, StreamFTL always outperforms DFTL
when there are no GC. Even for a random read-intensive work-
load such as prn 1, StreamFTL performs well because it does
not need demand loading of the mapping table. However, when
the storage is utilization is high, StreamFTL may show bad
performance due to sMerge overhead. We performed the same
experiment with prn 1 at the aged storage, which is initialized
with sequential write requests filling 50% of logical storage
space, and random writes filling 30% of logical storage space.
Since the initialization consumes almost all physical pages,
any following writes can invoke GCs. Fig. 6(b) compares the
amount of operations by DFTL and StreamFTL at different
stream sizes (128 KB, 256 KB, and 512 KB). We did the
experiments using different sizes of DRAM configurations.
As the DRAM size grows, the maximum number of streams
also increases. With the same size of DRAM, StreamFTL
using a smaller stream size will have a smaller number of
streams. When the number of stream is too small, or the size
of stream is too large, the performance of StreamFTL is much
worse than DFTL. Because sMerge and bGC occur frequently
in StreamFTL. In contrast, as the size or number of stream
increases, the StreamFTL performs better than DFTL since
the reclamation overhead is reduced, while the size of mapping
table is not reduced drastically.

V. DISCUSSION

This is our preliminary work to study the feasibility of the
StreamFTL with a simulator. To improve the performance
of StreamFTL scheme more works are remaining. First of
all, the bGC and sMerge must be improved because they
handle similar or duplicated works. Moreover, we need a
more intelligent victim stream selection algorithm in sMerge
operation. Second, because the LPN bitmap will be sparse
with many 0 bits, especially when the stream size is big, we
are to find an efficient compression algorithm for LPN bitmap
to reduce the size of the mapping table. Lastly, we plan to
implement StreamFTL as a host-level FTL for Open-Channel
SSD [10]. Since Open-Channel SSD runs the FTL at the host
OS, the mapping table must be managed at the host system
which consumes much expensive host DRAM. Moreover, the
demand loading overhead of DFTL will be worse at Open-
Channel SSDs because the demand loading operation incurs
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Fig. 6. Amount of NAND operations on clean/aged storage.

more I/O traffic between host system and SSD. Therefore the
benefit of StreamFTL will be larger at Open-Channel SSDs.
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